Isotope Hydrology: an Overview by Lucía Ortega and Laura Gil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 2.Iii.1. Fissionable Isotopes1
FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector. -
An Introduction to Isotopic Calculations John M
An Introduction to Isotopic Calculations John M. Hayes ([email protected]) Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, 30 September 2004 Abstract. These notes provide an introduction to: termed isotope effects. As a result of such effects, the • Methods for the expression of isotopic abundances, natural abundances of the stable isotopes of practically • Isotopic mass balances, and all elements involved in low-temperature geochemical • Isotope effects and their consequences in open and (< 200°C) and biological processes are not precisely con- closed systems. stant. Taking carbon as an example, the range of interest is roughly 0.00998 ≤ 13F ≤ 0.01121. Within that range, Notation. Absolute abundances of isotopes are com- differences as small as 0.00001 can provide information monly reported in terms of atom percent. For example, about the source of the carbon and about processes in 13 13 12 13 atom percent C = [ C/( C + C)]100 (1) which the carbon has participated. A closely related term is the fractional abundance The delta notation. Because the interesting isotopic 13 13 fractional abundance of C ≡ F differences between natural samples usually occur at and 13F = 13C/(12C + 13C) (2) beyond the third significant figure of the isotope ratio, it has become conventional to express isotopic abundances These variables deserve attention because they provide using a differential notation. To provide a concrete the only basis for perfectly accurate mass balances. example, it is far easier to say – and to remember – that Isotope ratios are also measures of the absolute abun- the isotope ratios of samples A and B differ by one part dance of isotopes; they are usually arranged so that the per thousand than to say that sample A has 0.3663 %15N more abundant isotope appears in the denominator and sample B has 0.3659 %15N. -
Toxicological Profile for Plutonium
PLUTONIUM 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about plutonium and the effects of exposure to it. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Plutonium has been found in at least 16 of the 1,689 current or former NPL sites. Although the total number of NPL sites evaluated for this substance is not known, strict regulations make it unlikely that the number of sites at which plutonium is found would increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to this substance may be harmful. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are normally exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. However, since plutonium is radioactive, you can also be exposed to its radiation if you are near it. External exposure to radiation may occur from natural or man-made sources. Naturally occurring sources of radiation are cosmic radiation from space or radioactive materials in soil or building materials. Man- made sources of radioactive materials are found in consumer products, industrial equipment, atom bomb fallout, and to a smaller extent from hospital waste and nuclear reactors. -
Chromium-Nickel Steels Depleted of Nickel Stable Isotope Ni-58 As a Material for Fast Reactor Claddings
IAEA-CN-114/15p Chromium-Nickel steels depleted of nickel stable isotope Ni-58 as a material for fast reactor claddings G.L.Khorasanov, A.P.Ivanov, A.I.Blokhin, N.A.Demin Institute of Physics and Power Engineering named after A.I.Leypunsky 1, Bondarenko square, Obninsk, Kaluga region, 249033 Russia Tel.: +7-08439-98505, Fax: +7-095-2302326, E-mail: [email protected] INTRODUCTION Presently, the creation of new materials for fast reactor (FR) claddings is one of the main tasks of the nuclear engineering [1]. Now the Russian austenitic steel grade TchS68 with 15 % of nickel content is used as a material for the Russian FR BN-600 claddings [2]. With such a cladding the BN-600 fuel rod is stably operating during 10 years up to the fuel burn-up fraction of 10 % of heavy atoms (h.a.). The cladding material becomes swelled and unfit for further service after the fuel burn-up fraction of 10 % h.a. The task of increasing the fuel burn-up fraction up to 14 % h.a. is now the principal one for the BN-600 operation. For this purpose the new radiation–resistant austenitic steel grade EK164 with 19 % of nickel content is now developing in the Bochvar Institute, Russia [3]. It is generally assumed that steel swelling is caused by the combined action of radiation damage and helium accumulation in the irradiated material. In this case, nickel stable isotope, Ni-58 (its content in natural nickel is equal to 68%) is a source of helium creation. After 4 neutron capture via (n,g) reaction, Ni-58 is transmuted to radioisotope Ni-59 (T1/2=7.6⋅10 years) which has a high value of (n,α) reaction cross-section for thermal and epithermal neutrons. -
5.15 Water Pollution and Hydrologic Impacts 5.15.1 Chapter Index 5.15
Transportation Cost and Benefit Analysis II – Water Pollution Victoria Transport Policy Institute (www.vtpi.org) 5.15 Water Pollution and Hydrologic Impacts This chapter describes water pollution and hydrologic impacts caused by transport facilities and vehicle use. 5.15.1 Chapter Index 5.15 Water Pollution and Hydrologic Impacts ........................................................... 1 5.15.2 Definitions .............................................................................................. 1 5.15.3 Discussion ............................................................................................. 1 5.15.4 Estimates: .............................................................................................. 3 Summary Table ..................................................................................... 3 Water Pollution & Combined Estimates ................................................. 4 Storm Water, Hydrology and Wetlands ................................................. 6 5.15.5 Variability ............................................................................................... 7 5.15.6 Equity and Efficiency Issues .................................................................. 7 5.15.7 Conclusion ............................................................................................. 7 5.15.8 Information Resources .......................................................................... 9 5.15.2 Definitions Water pollution refers to harmful substances released into surface or ground water, -
Using Isotopes to Constrain Water Flux and Age Estimates in Snow
Hydrol. Earth Syst. Sci., 21, 5089–5110, 2017 https://doi.org/10.5194/hess-21-5089-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model Pertti Ala-aho1, Doerthe Tetzlaff1, James P. McNamara2, Hjalmar Laudon3, and Chris Soulsby1 1Northern Rivers Institute, School of Geosciences, University of Aberdeen, AB24 3UF, UK 2Department of Geosciences, Boise State University, Boise, ID 83725, USA 3Department of Forest, Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden Correspondence to: Pertti Ala-aho ([email protected]) Received: 24 February 2017 – Discussion started: 9 March 2017 Revised: 28 June 2017 – Accepted: 18 August 2017 – Published: 9 October 2017 Abstract. Tracer-aided hydrological models are increasingly water age distributions, which was captured by the model. used to reveal fundamentals of runoff generation processes Our study suggested that snow sublimation fractionation pro- and water travel times in catchments. Modelling studies in- cesses can be important to include in tracer-aided modelling tegrating stable water isotopes as tracers are mostly based for catchments with seasonal snowpack, while the influence in temperate and warm climates, leaving catchments with of fractionation during snowmelt could not be unequivocally strong snow influences underrepresented in the literature. shown. Our work showed the utility of isotopes to provide Such catchments are challenging, as the isotopic tracer sig- a proof of concept for our modelling framework in snow- nals in water entering the catchments as snowmelt are typi- influenced catchments. -
Lithium Isotope Fractionation During Uptake by Gibbsite
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 168 (2015) 133–150 www.elsevier.com/locate/gca Lithium isotope fractionation during uptake by gibbsite Josh Wimpenny a,⇑, Christopher A. Colla a, Ping Yu b, Qing-Zhu Yin a, James R. Rustad a, William H. Casey a,c a Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, CA 95616, United States b The Keck NMR Facility, University of California, One Shields Avenue, Davis, CA 95616, United States c Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States Received 5 November 2014; accepted in revised form 8 July 2015; available online 15 July 2015 Abstract The intercalation of lithium from solution into the six-membered l2-oxo rings on the basal planes of gibbsite is well-constrained chemically. The product is a lithiated layered-double hydroxide solid that forms via in situ phase change. The reaction has well established kinetics and is associated with a distinct swelling of the gibbsite as counter ions enter the interlayer to balance the charge of lithiation. Lithium reacts to fill a fixed and well identifiable crystallographic site and has no solvation waters. Our lithium-isotope data shows that 6Li is favored during this intercalation and that the À À solid-solution fractionation depends on temperature, electrolyte concentration and counter ion identity (whether Cl ,NO3 À or ClO4 ). We find that the amount of isotopic fractionation between solid and solution (DLisolid-solution) varies with the amount of lithium taken up into the gibbsite structure, which itself depends upon the extent of conversion and also varies À À À with electrolyte concentration and in the counter ion in the order: ClO4 <NO3 <Cl . -
Environmental Isotope Hydrology Environmental Isotope Hydrology Is a Relatively New Field of Investigation Based on Isotopic Variations Observed in Natural Waters
Environmental Isotope Hydrology Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32Si and 2381//234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. Stable Isotopes of Hydrogen and Oxygen in the Hydrological Cycle The variations of the isotopic ratios D/H and 18O/16O in water samples are expressed in terms of per mille deviation (6%o) from the isotope ratios of mean ocean water, which constitutes the reference standard SMOW: 5%o= (^ RSMOW The isotope ratio, R, is measured using a special mass spectrometer. -
NRSM 385 Syllabus for Watershed Hydrology V200114 Spring 2020
NRSM 385 Syllabus for Watershed Hydrology v200114 Spring 2020 NRSM (385) Watershed Hydrology Instructor: Teaching Assistant: Kevin Hyde Shea Coons CHCB 404 CHCB 404 [email protected] [email protected] Course Time & Location: Office Hours: (or by appointment) Tue/Thu 0800 – 0920h Kevin: Tue & Thu, 1500 – 1600h Natural Science 307 Shea: Wed & Fri, 1200 – 1300h Recommended course text: Physical Hydrology by SL Dingman, 2002 (2nd edition). Other readings as assigned. Additional course information and materials will be posted on Moodle: umonline.umt.edu Science of water resource management in the 21st Century: Sustainability of all life requires fundamental changes in hydrologic science and water resource management. Forty percent of the Earth’s ever-increasing population lives in areas of water scarcity, where the available supply cannot meet basic needs. Water pollution from human activities and increasing water withdrawals for human use impair and threaten entire ecosystems upon which human survival depends. Climate change increases environmental variability, exacerbating drought in some regions while leading to greater hydrologic hazards in others. Higher intensity and more frequent storms generate flooding that is especially destructive in densely developed areas of and where ecosystems are already compromised. Sustainable water resource management starts with scientifically sound management of forested landscapes. Eighty percent of fresh water supplies in the US originate on forested lands, providing over 60% of municipal drinking water. Forests also account for significant portions of biologically complex and vital ecosystems. Multiple land use activities including logging, agriculture, industry, mining, and urban development compromise forest ecosystems and threaten aquatic ecosystems and freshwater supplies. -
Isotopic Composition of Fission Gases in Lwr Fuel
XA0056233 ISOTOPIC COMPOSITION OF FISSION GASES IN LWR FUEL T. JONSSON Studsvik Nuclear AB, Hot Cell Laboratory, Nykoping, Sweden Abstract Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. 1. INTRODUCTION Most LWRs use low enriched uranium oxide as fuel. Thermal fissions in U-235 dominate during the earlier part of the irradiation. Due to the build-up of heavier actinides during the irradiation fissions in Pu-239 and Pu-241 increase in importance as the burnup of the fuel increases. The composition of the fission products varies with the composition of the fuel and the irradiation conditions. The isotopic composition of fission gases is often determined in connection with measurement of gases in the plenum of punctured fuel rods. It can be of interest to discuss how more information on the fuel behaviour can be obtained by use of information available from already performed determinations of gas compositions. -
From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science
Hydrol. Earth Syst. Sci., 22, 1665–1693, 2018 https://doi.org/10.5194/hess-22-1665-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science Murugesu Sivapalan1,* 1Department of Civil and Environmental Engineering, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA * Invited contribution by Murugesu Sivapalan, recipient of the EGU Alfred Wegener Medal & Honorary Membership 2017. Correspondence: Murugesu Sivapalan ([email protected]) Received: 13 November 2017 – Discussion started: 15 November 2017 Revised: 2 February 2018 – Accepted: 5 February 2018 – Published: 7 March 2018 Abstract. Hydrology has undergone almost transformative hydrology to Earth system science, drawn from the work of changes over the past 50 years. Huge strides have been made several students and colleagues of mine, and discuss their im- in the transition from early empirical approaches to rigorous plication for hydrologic observations, theory development, approaches based on the fluid mechanics of water movement and predictions. on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogene- ity, including subsurface heterogeneity present at all scales. எப்ெபாள் யார்யாரவாய் ் க் ேகட்ம் The inability to measure or map the heterogeneity every- அப்ெபாள் ெமய் ப்ெபாள் காண் ப த where prevented the development of balance equations and In whatever matter and from whomever heard, associated closure relations at the scales of interest, and has Wisdom will witness its true meaning. -
Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83