DEFENDING HYPATIA Archimedes NEW STUDIES in the HISTORY and PHILOSOPHY of SCIENCE and TECHNOLOGY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
King Lfred's Version Off the Consolations of Boethius
King _lfred's Version off the Consolations of Boethius HENRY FROWDE, M A. PUBLISHER TO THE UNIVERSITY OF OF_0RD LONDON, EDINBURGH_ AND NEW YORK Kring e__lfred's Version o_/"the Consolations of Boethius _ _ Z)one into c_gfodern English, with an Introduction _ _ _ _ u_aa Litt.D._ Editor _o_.,I_ing .... i .dlfred_ OM Englis.h..ffgerAon2.' !ilo of the ' De Con.d.¢_onz,o,e 2 Oxford : _4t the Claro_don:,.....: PrestO0000 M D CCCC _eee_ Ioee_ J_el eeoee le e_ZNeFED AT THE_.e_EN_N PI_.._S _ee • • oeoo eee • oeee eo6_o eoee • ooeo e_ooo ..:.. ..'.: oe°_ ° leeeo eeoe ee •QQ . :.:.. oOeeo QOO_e 6eeQ aee...._ e • eee TO THE REV. PROFESSOR W. W. SKEAT LITT.D._ D.C.L._ LL.D.:_ PH.D. THIS _800K IS GRATEFULLY DEDICATED PREFACE THE preparationsfor adequately commemoratingthe forthcoming millenary of King Alfred's death have set going a fresh wave of popularinterest in that hero. Lectares have been given, committees formed, sub- scriptions paid and promised, and an excellent book of essays by eminent specialists has been written about Alfred considered under quite a number of aspects. That great King has himself told us that he was not indifferent to the opinion of those that should come after him, and he earnestly desired that that opinion should be a high one. We have by no means for- gotten him, it is true, but yet to verymany intelligent people he is, to use a paradox, a distinctly nebulous character of history. His most undying attributes in the memory of the people are not unconnected with singed cakes and romantic visits in disguise to the Danish viii Preface Danish camp. -
Plato As "Architectof Science"
Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries. -
UNDERSTANDING MATHEMATICS to UNDERSTAND PLATO -THEAETEUS (147D-148B Salomon Ofman
UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b Salomon Ofman To cite this version: Salomon Ofman. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO -THEAETEUS (147d-148b. Lato Sensu, revue de la Société de philosophie des sciences, Société de philosophie des sciences, 2014, 1 (1). hal-01305361 HAL Id: hal-01305361 https://hal.archives-ouvertes.fr/hal-01305361 Submitted on 20 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNDERSTANDING MATHEMATICS TO UNDERSTAND PLATO - THEAETEUS (147d-148b) COMPRENDRE LES MATHÉMATIQUES POUR COMPRENDRE PLATON - THÉÉTÈTE (147d-148b) Salomon OFMAN Institut mathématique de Jussieu-PRG Histoire des Sciences mathématiques 4 Place Jussieu 75005 Paris [email protected] Abstract. This paper is an updated translation of an article published in French in the Journal Lato Sensu (I, 2014, p. 70-80). We study here the so- called ‘Mathematical part’ of Plato’s Theaetetus. Its subject concerns the incommensurability of certain magnitudes, in modern terms the question of the rationality or irrationality of the square roots of integers. As the most ancient text on the subject, and on Greek mathematics and mathematicians as well, its historical importance is enormous. -
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
Chapter Two Democritus and the Different Limits to Divisibility
CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is. -
Ancient Rhetoric and Greek Mathematics: a Response to a Modern Historiographical Dilemma
Science in Context 16(3), 391–412 (2003). Copyright © Cambridge University Press DOI: 10.1017/S0269889703000863 Printed in the United Kingdom Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma Alain Bernard Dibner Institute, Boston To the memory of three days in the Negev Argument In this article, I compare Sabetai Unguru’s and Wilbur Knorr’s views on the historiography of ancient Greek mathematics. Although they share the same concern for avoiding anach- ronisms, they take very different stands on the role mathematical readings should have in the interpretation of ancient mathematics. While Unguru refuses any intrusion of mathematical practice into history, Knorr believes this practice to be a key tool for understanding the ancient tradition of geometry. Thus modern historians have to find their way between these opposing views while avoiding an unsatisfactory compromise. One approach to this, I propose, is to take ancient rhetoric into account. I illustrate this proposal by showing how rhetorical categories can help us to analyze mathematical texts. I finally show that such an approach accommodates Knorr’s concern about ancient mathematical practice as well as the standards for modern historical research set by Unguru 25 years ago. Introduction The title of the present paper indicates that this work concerns the relationship between ancient rhetoric and ancient Greek mathematics. Such a title obviously raises a simple question: Is there such a relationship? The usual appreciation of ancient science and philosophy is at odds with such an idea. This appreciation is rooted in the pregnant categorization that ranks rhetoric and science at very different levels. -
Platonist Philosopher Hypatia of Alexandria in Amenabar’S Film Agorá
A STUDY OF THE RECEPTION OF THE LIFE AND DEATH OF THE NEO- PLATONIST PHILOSOPHER HYPATIA OF ALEXANDRIA IN AMENABAR’S FILM AGORÁ GILLIAN van der HEIJDEN Submitted in partial fulfilment of the requirement for the degree of MASTER OF ARTS In the Faculty of Humanities School of Religion, Philosophy and Classics at the UNIVERSITY OF KWAZULU-NATAL, DURBAN SUPERVISOR: PROFESSOR J.L. HILTON MARCH 2016 DECLARATION I, Gillian van der Heijden, declare that: The research reported in this dissertation, except where otherwise indicated, is my original research; This dissertation has not been submitted for any degree or examination at any other university; This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons; The dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) their words have been re-written but the general information attributed to them has been referenced; b) where their exact words have been used, their writing has been paragraphed and referenced; c) This dissertation/thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation/thesis and in the References sections. Signed: Gillian van der Heijden (Student Number 209541374) Professor J. L. Hilton ii ABSTRACT The film Agorá is better appreciated through a little knowledge of the rise of Christianity and its opposition to Paganism which professed ethical principles inherited from Greek mythology and acknowledged, seasonal rituals and wealth in land and livestock. -
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes. -
Bernardino Baldi's in Mechanica Aristotelis Problemata Exercitationes
Bernardino Baldi’s In mechanica Aristotelis problemata exercitationes ii Max Planck Research Library for the History and Development of Knowledge Series Editors Jürgen Renn, Robert Schlögl, Bernard F. Schutz. Edition Open Access Development Team Lindy Divarci, Beatrice Gabriel, Jörg Kantel, Matthias Schemmel, and Kai Surendorf, headed by Peter Damerow. Scientific Board Markus Antonietti, Ian Baldwin, Antonio Becchi, Fabio Bevilacqua, William G. Boltz, Jens Braarvik, Horst Bredekamp, Jed Z. Buchwald, Olivier Darrigol, Thomas Duve, Mike Edmunds, Yehuda Elkana, Fynn Ole Engler, Robert K. Englund, Mordechai Feingold, Rivka Feldhay, Gideon Freudenthal, Paolo Galluzzi, Kostas Gavroglu, Mark Geller, Domenico Giulini, Günther Görz, Gerd Graßhoff, James Hough, Manfred Laubich- ler, Glenn Most, Pier Daniele Napolitani, Alessandro Nova, Hermann Parzinger, Dan Potts, Circe Silva da Silva, Ana Simões, Richard Stephen- son, Mark Stitt, Noel M. Swerdlow, Liba Taub, Martin Vingron, Scott Walter, Norton Wise, Gerhard Wolf, Rüdiger Wolfrum, Zhang Baichun. Sources 3 Edition Open Access 2011 Bernardino Baldi’s In mechanica Aristotelis problemata exercitationes Elio Nenci Communicated by Jürgen Renn and Antonio Becchi Edition Open Access 2011 Max Planck Research Library for the History and Development of Knowledge Sources 3 Communicated by Jürgen Renn and Antonio Becchi Translated from Italian into English by Adriano Carugo Copyedited by Lindy Divarci ISBN 978-3-86931-961-2 First published 2011 Printed in Germany by epubli, Oranienstraße 183, 10999 Berlin http://www.epubli.de Edition Open Access http://www.edition-open-access.de Published under Creative Commons by-nc-sa 3.0 Germany Licence http://creativecommons.org/licenses/by-nc-sa/3.0/de/ The Deutsche Nationalbibliothek lists this publication in the Deutsche Na- tionalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. -
Neutral Geometry
Neutral geometry And then we add Euclid’s parallel postulate Saccheri’s dilemma Options are: Summit angles are right Wants Summit angles are obtuse Was able to rule out, and we’ll see how Summit angles are acute The hypothesis of the acute angle is absolutely false, because it is repugnant to the nature of the straight line! Rule out obtuse angles: If we knew that a quadrilateral can’t have the sum of interior angles bigger than 360, we’d be fine. We’d know that if we knew that a triangle can’t have the sum of interior angles bigger than 180. Hold on! Isn’t the sum of the interior angles of a triangle EXACTLY180? Theorem: Angle sum of any triangle is less than or equal to 180º Suppose there is a triangle with angle sum greater than 180º, say anglfle sum of ABC i s 180º + p, w here p> 0. Goal: Construct a triangle that has the same angle sum, but one of its angles is smaller than p. Why is that enough? We would have that the remaining two angles add up to more than 180º: can that happen? Show that any two angles in a triangle add up to less than 180º. What do we know if we don’t have Para lle l Pos tul at e??? Alternate Interior Angle Theorem: If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel. Converse of AIA Converse of AIA theorem: If two lines are parallel then the aliilblternate interior angles cut by a transversa l are congruent. -
Geometry by Its History
Undergraduate Texts in Mathematics Geometry by Its History Bearbeitet von Alexander Ostermann, Gerhard Wanner 1. Auflage 2012. Buch. xii, 440 S. Hardcover ISBN 978 3 642 29162 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 836 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 The Elements of Euclid “At age eleven, I began Euclid, with my brother as my tutor. This was one of the greatest events of my life, as dazzling as first love. I had not imagined that there was anything as delicious in the world.” (B. Russell, quoted from K. Hoechsmann, Editorial, π in the Sky, Issue 9, Dec. 2005. A few paragraphs later K. H. added: An innocent look at a page of contemporary the- orems is no doubt less likely to evoke feelings of “first love”.) “At the age of 16, Abel’s genius suddenly became apparent. Mr. Holmbo¨e, then professor in his school, gave him private lessons. Having quickly absorbed the Elements, he went through the In- troductio and the Institutiones calculi differentialis and integralis of Euler. From here on, he progressed alone.” (Obituary for Abel by Crelle, J. Reine Angew. Math. 4 (1829) p. 402; transl. from the French) “The year 1868 must be characterised as [Sophus Lie’s] break- through year. -
The Function of Diorism in Ancient Greek Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Historia Mathematica 37 (2010) 579–614 www.elsevier.com/locate/yhmat The function of diorism in ancient Greek analysis Ken Saito a, Nathan Sidoli b, a Department of Human Sciences, Osaka Prefecture University, Japan b School of International Liberal Studies, Waseda University, Japan Available online 26 May 2010 Abstract This paper is a contribution to our knowledge of Greek geometric analysis. In particular, we investi- gate the aspect of analysis know as diorism, which treats the conditions, arrangement, and totality of solutions to a given geometric problem, and we claim that diorism must be understood in a broader sense than historians of mathematics have generally admitted. In particular, we show that diorism was a type of mathematical investigation, not only of the limitation of a geometric solution, but also of the total number of solutions and of their arrangement. Because of the logical assumptions made in the analysis, the diorism was necessarily a separate investigation which could only be carried out after the analysis was complete. Ó 2009 Elsevier Inc. All rights reserved. Re´sume´ Cet article vise a` contribuer a` notre compre´hension de l’analyse geometrique grecque. En particulier, nous examinons un aspect de l’analyse de´signe´ par le terme diorisme, qui traite des conditions, de l’arrangement et de la totalite´ des solutions d’un proble`me ge´ome´trique donne´, et nous affirmons que le diorisme doit eˆtre saisi dans un sens plus large que celui pre´ce´demment admis par les historiens des mathe´matiques.