Lipid Raft Formation and Peptide-Lipid Interactions in Myelin Model Membranes

Total Page:16

File Type:pdf, Size:1020Kb

Lipid Raft Formation and Peptide-Lipid Interactions in Myelin Model Membranes Wilfrid Laurier University Scholars Commons @ Laurier Theses and Dissertations (Comprehensive) 2012 Lipid raft formation and peptide-lipid interactions in myelin model membranes Ashtina R. Appadu Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/etd Part of the Biochemistry Commons, and the Biophysics Commons Recommended Citation Appadu, Ashtina R., "Lipid raft formation and peptide-lipid interactions in myelin model membranes" (2012). Theses and Dissertations (Comprehensive). 1124. https://scholars.wlu.ca/etd/1124 This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Lipid raft formation and peptide-lipid interactions in myelin model membranes By Ashtina Appadu B.Sc. Biochemistry/Biotechnology, Wilfrid Laurier University, 2009 THESIS Submitted to the Department of Chemistry In partial fulfillment of the requirements for Master of Science in Chemistry Wilfrid Laurier University 2012 Ashtina Appadu ©2012 Abstract Multiple sclerosis (MS), a demyelinating disease affecting 75,000 Canadians and almost 400,000 Americans, is one of the most prevalent diseases in young adults. Unfortunately, there exist no known cures to date and the pathways involved in the progression of the disease remain relatively obscure. The demyelination process triggered by the onset of MS, affects the lipid composition of the myelin membrane and causes a loss in viable myelin which can in turn greatly impact the proper functioning of the central nervous system (CNS). The cholesterol content of myelin fluctuates during MS and consequently this could affect the fluidity as well as the lipid microdomain profile in the membranes. Using model membranes such as a fluid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) system and the “canonical’ raft system (POPC/sphingomyelin/cholesterol 1:1:1) to represent the two extremes of the fluidity scale, as well as myelin-mimicking membranes (healthy and diseased) which have intermediate lipid fluidities, the lipid domains in each of the systems were probed using fluorescence resonance energy transfer (FRET). FRET analysis indicated that the myelin membrane models contained lipid domains than were overall smaller that those found in the raft system. The addition of melittin, a positively-charged (+6) peptide, to these lipid systems triggered lipid rearrangement to yield larger lipid domains in the myelin systems, whereas in the raft system a change from large domains to smaller ones in the presence of the peptide was observed. Melittin interacted differently with each of the lipid systems where the lipid composition determined the overall conformation of the peptide which, according to circular dichroism (CD) spectroscopy, was shown to be mostly α-helical in membrane environments. It is believed that melittin can exist in a number of different states; a monomer at low concentrations, and as the concentration increases self-association results in either dimers consisting of two parallel α-helices or even a tetramer which would be a dimer of dimers (four α-helices). Tryptophan fluorescence indicated that melittin had a strong affinity for the myelin mimicking models which were negatively-charged and the peptide appeared to be buried relatively deep into the hydrocarbon core of the bilayer, whereas melittin was located nearer the interfacial region in the raft system which was not ii charged. Furthermore, melittin appeared to interact more strongly with the healthy myelin model compared to the diseased model which contained a higher level of cholesterol. This would indicate that melittin’s interaction is strongly dictated by electrostatic interactions as well as the presence of cholesterol which would affect the fluidity and physical properties of the lipid bilayer, thus making it harder for the peptide to penetrate deeply. Since the lipid composition is affected during demyelination and the cholesterol content has been shown to increase, this could suggest that similarly to melittin, other basic proteins found in the CNS could also suffer reduced lipid interactions which would affect their overall structure and consequently their function. The proteolipid protein (PLP) is amongst one of the most abundant proteins found in the myelin membrane. This extremely hydrophobic integral membrane protein consisting of four transmembrane α-helices is known to induced encephalomyelitis in experimental animals and is consequently of great interest in MS research. Among the different loops that connect the helices, the C-terminus located on the cytoplasmic side of the membrane, is of particular interest since it has been hypothesized that it could be involved in guiding and properly positioning PLP in myelin, as well as potentially interacting with other myelin proteins. A PLP C-terminus peptide (residues 258- 277 in the human sequence) was synthesized and its interaction and secondary structure were studied using CD spectroscopy. CD measurements indicated that this loop region adopted different conformations in the different lipid systems, but all in all, it appeared to be mostly randomly coiled and it had a limited amount of interaction with the lipid vesicles. The structure of the peptide also seemed unaffected by the change in lipid composition of the healthy and diseased myelin model systems. This would suggest that the lack of structure of the peptide could allow it to interact with other cytosolic myelin proteins. These studies on the lipid domains in myelin membrane models as well as their interactions with melittin and the PLP C-terminus peptide suggest that within the myelin sheath protein structure and protein-lipid interactions are affected during MS. iii Acknowledgements I would like to express my gratitude and thanks to my wonderful supervisor Dr Lillian DeBruin, for being an amazing mentor and giving me the opportunity to work on this project. Without her guidance and continuous support, this project would have been impossible to complete. I would also like to thank Dr Masoud Jelokhani for his advice and help in understanding and analyzing my data and for allowing me to use the equipment in his lab. I would also like thank my good friend Patrick Hoang for all the help he has provided me in the lab as well as my lab mates Baindu Kosia, Matthew Nichols, Vatsal Patel and Miljan Kuljanin for their company and help during the long hours spent in the lab. Finally I would also like to thank my family, specially my mother, who have always supported me in my studies and encouraged me do better. iv Declaration of work performed All data presented and described in this thesis are the results of my own work. Furthermore, I hereby declare that I am the sole author of this thesis that includes all final revisions, as accepted by my examiners. v TABLE OF CONTENTS ABSTRACT ii ACKNOWLEDGEMENTS iv DECLARATION OF WORK PERFORMED v TABLE OF CONTENTS vi LISTS OF FIGURES x LISTS OF TABLES xii LIST OF ABBREVIATIONS xiii Chapter 1- The myelin membrane and lipid rafts 1 1.1 A brief introduction to the myelin membrane 2 1.1.1 Structure, function and morphology 2 1.1.2 Lipid and protein composition of the myelin membrane 3 1.2 Demyelinating diseases – multiple sclerosis (MS) 5 1.3 Lipid Rafts 7 1.3.1 Lipid phases in the cell membrane 7 1.3.2 Membrane rafts: properties and function 8 1.3.3 Biosynthesis of raft clusters 12 1.3.4 Techniques used to study microdomains 13 1.4 Lipid rafts and the myelin membrane 14 1.5 Purpose of study 15 Chapter 2- Biophysical techniques for the study of peptide-lipid interactions and lipid domain formation 18 2.1 Model membranes 19 2.1.1 Size-dependent vesicle preparation 20 2.1.2 Characterization of myelin domains using model membrane systems 21 vi 2.2. Protein lipid interactions and consequential secondary conformational changes 23 2.2.1 Melittin as a model peptide 24 2.2.2 Myelin proteolipid protein 28 2.3 FRET as a method to monitor changes in microdomain formation 31 2.4 Tryptophan fluorescence and melittin 35 2.5 Circular dichroism (CD) spectroscopy for the determination of peptide and protein secondary structure 36 2.6 Isothermal titration calorimetry (ITC) for the determination of binding affinities 37 Chapter 3 – Materials and Methods 40 3.1 Materials 41 3.2 Methods 42 3.2.1 Vesicle preparation 42 3.2.2 FRET measurements 43 3.2.3 Tryptophan fluorescence measurement 45 3.2.4 CD spectroscopy 45 3.2.5 Isothermal titration calorimetry (ITC) measurements 46 Chapter 4-characterization of lipid microdomains using fluorescence resonance energy transfer (FRET) 4.1 Fluorescence resonance energy transfer (FRET) for the study of lipid rafts 49 4.2 FRET characterization of model membrane systems 50 4.2.1 Fluorescence of donor probe in model membrane systems 50 4.2.2 Energy transfer of in model membranes 55 4.3 FRET analysis and characterization of lipid domains in model membranes 59 4.4 The impact of cholesterol levels on membrane domains 66 vii Chapter 5- Peptide–lipid interactions of melittin and the myelin specific PLP peptide 68 5.1 The effects of lipid composition on the secondary structure of melittin 69 5.1.1 Concentration-dependent structure of melittin in buffer 70 5.1.2 Concentration-dependent structure of melittin in POPC 72 5.1.3 Concentration-dependent structure of melittin in the raft “canonical mixture” membrane
Recommended publications
  • A Unique Structure at the Carboxyl Terminus of the Largest Subunit of Eukaryotic RNA Polymerase II (Transcription/Gene Expression/Protein Phosphorylation) JEFFRY L
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 7934-7938, December 1985 Biochemistry A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II (transcription/gene expression/protein phosphorylation) JEFFRY L. CORDEN*, DEBORAH L. CADENAt, JOSEPH M. AHEARN, JR.*, AND MICHAEL E. DAHMUSt *Howard Hughes Medical Institute Laboratory, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and tDepartment of Biochemistry and Biophysics, University of California, Davis, CA 95616 Communicated by Daniel Nathans, August 2, 1985 ABSTRACT Purified eukaryotic nuclear RNA polymerase alous mobility in NaDodSO4 gels due to postsynthetic mod- II consists of three subspecies that differ in the apparent ification cannot be ruled out. The three forms of the largest molecular masses of their largest subunit, designated Ho, Ha, subunit Ho (240 kDa), Iha (210-220 kDa), and lIb (170-180 and HIb for polymerase species HO, HA, and BIB, respectively. kDa) also differ in their ability to be phosphorylated both in Subunits Ho, Ha, and IHb are the products of a single gene. We vitro and in vivo (14). Subunit lIc (140 kDa) is structurally present here the amino acid composition of calf thymus different from IHo, Iha, and IIb (2, 33) and is present in all subunits Ha and lIb and the C-terminal amino acid sequence three forms of RNA polymerase II in equimolar stoichiom- of subunit Ha (Ho) inferred from the nucleotide sequence of etry with the largest subunit. part of the mouse gene encoding this RNA polymerase subunit. A monoclonal antibody prepared against calfthymus RNA The calculated amino acid composition ofthe peptide unique to polymerase II has been shown to recognize a determinant on subunit Ha indicates that subunit Ha contains a domain rich in subunit Iha (IIo) but not on IIb (15).
    [Show full text]
  • Lipid Bilayer, with the Nonpolar Regions of the Lipids Facing Inward
    Chapter 7 Membranes: Their Structure, Function, and Chemistry Lectures by Kathleen Fitzpatrick Simon Fraser University © 2012 Pearson Education, Inc. Membranes: Their Structure, Function, and Chemistry • Membranes define the boundaries of a cell, and its internal compartments • Membranes play multiple roles in the life of a cell © 2012 Pearson Education, Inc. Figure 7-1A © 2012 Pearson Education, Inc. Figure 7-1B © 2012 Pearson Education, Inc. The Functions of Membranes • 1. Define boundaries of a cell and organelles and act as permeability barriers • 2. Serve as sites for biological functions such as electron transport • 3. Possess transport proteins that regulate the movement of substances into and out of cells and organelles © 2012 Pearson Education, Inc. The Functions of Membranes (continued) • 4. Contain protein molecules that act as receptors to detect external signals • 5. Provide mechanisms for cell-to-cell contact, adhesion, and communication © 2012 Pearson Education, Inc. Figure 7-2 © 2012 Pearson Education, Inc. Models of Membrane Structure: An Experimental Approach • The development of electron microscopy in the 1950s was important for understanding membrane structure • The fluid mosaic model is thought to be descriptive of all biological membranes • The model envisions a membrane as two fluid layers of lipids with proteins within and on the layers © 2012 Pearson Education, Inc. Overton and Langmuir: Lipids Are Important Components of Membranes • In the 1890s Overton observed the easy penetration of lipid-soluble substances into cells and concluded that the cell surface had some kind of lipid “coat” on it • Langmuir studied phospholipids and found that they were amphipathic and reasoned that they must orient on water with the hydrophobic tails away from the water © 2012 Pearson Education, Inc.
    [Show full text]
  • An Overview of Lipid Membrane Models for Biophysical Studies
    biomimetics Review Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies Alessandra Luchini 1 and Giuseppe Vitiello 2,3,* 1 Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 2 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy 3 CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy * Correspondence: [email protected] Abstract: Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their Citation: Luchini, A.; Vitiello, G.
    [Show full text]
  • Membrane Proteins Are Associated with the Membrane of a Cell Or Particular Organelle and Are Generally More Problematic to Purify Than Water-Soluble Proteins
    Strategies for the Purification of Membrane Proteins Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland. Email: [email protected] Abstract Although membrane proteins account for approximately 30 % of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilization and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non- covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction require phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilization, where problems are most frequently are encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilization of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of downstream purification techniques. Key Words: peripheral membrane protein, integral membrane protein, detergent, protein purification, protein solubilization. 1. Introduction Membrane proteins are associated with the membrane of a cell or particular organelle and are generally more problematic to purify than water-soluble proteins. Membrane proteins represent approximately 30 % of the open-reading frames of an organism’s genome (1-4), and play crucial roles in basic cell functions including signal transduction, energy production, nutrient uptake and cell-cell communication.
    [Show full text]
  • Lysis of Red Blood Cells and Alveolar Epithelial Toxicity by Therapeutic Pulmonary Surfactants
    0031-3998/95/3701-0026$03.0010 PEDIATRIC RESEARCH Vol. 37, No. 1, 1995 Copyright 0 1994 International Pediatric Research Foundation, Inc. Printed in U.S.A. Lysis of Red Blood Cells and Alveolar Epithelial Toxicity by Therapeutic Pulmonary Surfactants RICHARD D. FINDLAY, H. WILLIAM TAEUSCH, REMEDIOS DAVID-CU, AND FRANS J. WALTHER Division of Neonatology, Department of Pediatrics, Martin Luther King, Jr./Drew University Medical Center, UCLA School of Medicine, Los Angeles, Calijornia 90059 The risk of pulmonary hemorrhage is increased in extremely rats were treated with Survanta, Exosurf, the Exosurf compo- low birth weight infants treated with surfactant. The pathogenesis nents tyloxapol and hexadecanol, melittin, or culture medium of this increased risk is far from clear. We tested whether alone. After 24 h of incubation, lactate dehydrogenase release exposure of cell membranes to surfactant may lead to increased into the media was measured as a percent of total lactate dehy- membrane permeability, hypothesizing that this process may drogenase activity to indicate cytotoxicity. Lactate dehydroge- contribute to the occurrence of alveolar hemorrhage after surfac- nase release was <lo% for control experiments but increased tant treatment. Aliquots of washed packed red blood cells (used sharply with Exosurf and its components tyloxapol and hexade- as membrane model) were suspended in 0.9% NaCl with various canol. These results indicate that surfactant may be associated concentrations of Survanta or Exosurf for either 2 or 24 h at with in vitro cytotoxicity and that this property differs for dif- 37°C. Cytolysis was measured by spectrophotometric determi- ferent surfactants and different dosages. (Pediatr Res 37: 26-30, nation of free Hb after centrifugation.
    [Show full text]
  • The Crosstalk: Exosomes and Lipid Metabolism
    Wang et al. Cell Communication and Signaling (2020) 18:119 https://doi.org/10.1186/s12964-020-00581-2 REVIEW Open Access The crosstalk: exosomes and lipid metabolism Wei Wang1,2†, Neng Zhu3†, Tao Yan1,2†, Ya-Ning Shi1,2, Jing Chen4, Chan-Juan Zhang1,2, Xue-Jiao Xie5, Duan-Fang Liao1,2* and Li Qin1,2* Abstract Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of “cell dust”. Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their “rigidity” and “flexibility”. Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non- alcoholic fatty liver disease (NAFLD), obesity and Alzheimer’s diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Keywords: Exosome, Lipid metabolism, Atherosclerosis, Cancer Background the membrane [8]. Similar to the cell membrane, the lipid Exosomes display cup-like shape of 30 ~ 100 nm in diam- bilayer protects exosome contents from various stimuli in eter, and are secreted by multi-type cells, such as nerve thecirculatingfluid.Therefore,somecontentsinexo- cells [1], natural killer cells [2, 3], cancer cells [4, 5]and somes are usually transported remotely in circulating body adipocytes [6].
    [Show full text]
  • Role of Cholesterol in Lipid Raft Formation: Lessons from Lipid Model Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1610 (2003) 174–183 www.bba-direct.com Review Role of cholesterol in lipid raft formation: lessons from lipid model systems John R. Silvius* Department of Biochemistry, McGill University, Montre´al, Que´bec, Canada H3G 1Y6 Received 21 March 2002; accepted 16 October 2002 Abstract Biochemical and cell-biological experiments have identified cholesterol as an important component of lipid ‘rafts’ and related structures (e.g., caveolae) in mammalian cell membranes, and membrane cholesterol levels as a key factor in determining raft stability and organization. Studies using cholesterol-containing bilayers as model systems have provided important insights into the roles that cholesterol plays in determining lipid raft behavior. This review will discuss recent progress in understanding two aspects of lipid–cholesterol interactions that are particularly relevant to understanding the formation and properties of lipid rafts. First, we will consider evidence that cholesterol interacts differentially with different membrane lipids, associating particularly strongly with saturated, high-melting phospho- and sphingolipids and particularly weakly with highly unsaturated lipid species. Second, we will review recent progress in reconstituting and directly observing segregated raft-like (liquid-ordered) domains in model membranes that mimic the lipid compositions of natural membranes incorporating raft domains. D 2003 Elsevier Science B.V. All rights reserved. Keywords: Sterol; Phospholipid; Sphingolipid; Lipid bilayer; Lipid monolayer; Membrane domain 1. Introduction Two major observations suggest that cholesterol–lipid interactions play an important role in the formation of rafts Cholesterol–lipid interactions have long been recognized in animal cell membranes.
    [Show full text]
  • The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress
    City University of New York (CUNY) CUNY Academic Works Publications and Research City College of New York 2014 The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress Ye Zeng CUNY City College John M. Tarbell CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_pubs/34 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] The Adaptive Remodeling of Endothelial Glycocalyx in Response to Fluid Shear Stress Ye Zeng1,2, John M. Tarbell1* 1 Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America, 2 Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China Abstract The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell.
    [Show full text]
  • Biological Membranes
    14 Biological Membranes To understand the structure The fundamental unit of life is the cell. All living things are composed of Goal and composition of biological cells, be it a single cell in the case of many microorganisms or a highly membranes. organized ensemble of myriad cell types in the case of multicellular organisms. A defining feature of the cell is a membrane, the cytoplasmic Objectives membrane, that surrounds the cell and separates the inside of the cell, the After this chapter, you should be able to cytoplasm, from other cells and the extracellular milieu. Membranes also • distinguish between cis and trans surround specialized compartments inside of cells known as organelles. unsaturated fatty acids. Whereas cells are typically several microns (μm) in diameter (although • explain why phospholipids some cells can be much larger), the membrane is only about 10 nanometers spontaneously form lipid bilayers and (nm) thick. Yet, and as we will see in subsequent chapters, the membrane is sealed compartments. not simply an ultra-thin, pliable sheet that encases the cytoplasm. Rather, • describe membrane fluidity and how it membranes are dynamic structures that mediate many functions in the is affected by membrane composition life of the cell. In this chapter we examine the composition of membranes, and temperature. their assembly, the forces that stabilize them, and the chemical and physical • explain the role of cholesterol in properties that influence their function. buffering membrane fluidity. The preceding chapters have focused on two kinds of biological molecules, • explain how the polar backbone namely proteins and nucleic acids, that are important in the workings of a membrane protein can be accommodated in a bilayer.
    [Show full text]
  • Diffusion of Lipids and GPI-Anchored Proteins in Actin-Free Plasma Membrane Vesicles Measured by STED-FCS Falk Schneidera, Mathias P
    bioRxiv preprint doi: https://doi.org/10.1101/076109; this version posted September 19, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS Falk Schneidera, Mathias P. Clausena,b, Dominic Waithec, Thomas Kollera, Gunes Ozhand,e, Christian Eggelinga,c,*, Erdinc Sezgina,* a MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS, Oxford, United Kingdom b MEMPHYS – Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark c Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, OX39DS, Oxford, United Kingdom d Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Inciralti- Balcova, 35340 Izmir, Turkey; e Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey. Correspondence: [email protected]; [email protected] Running title: Diffusion in actin-free plasma membrane vesicles Keywords: plasma membrane biophysics, fluorescence correlation spectroscopy, lipid raft, GPI anchored proteins, STED microscopy, STED-FCS, giant plasma membrane vesicles, Abbreviations: giant plasma membrane vesicles (GPMVs), giant unilamellar vesicles (GUVs), Glycophosphatidylinositol anchored protein (GPI-AP), phospholipid (PL), Stimulated emission depletion (STED), fluorescence correlation spectroscopy (FCS) Character count: 19,026 1 bioRxiv preprint doi: https://doi.org/10.1101/076109; this version posted September 19, 2016.
    [Show full text]
  • Lipid Rafts Facilitate LPS Responses 2605
    Research Article 2603 Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation Martha Triantafilou1, Kensuke Miyake2, Douglas T. Golenbock3,* and Kathy Triantafilou1,‡ 1University of Portsmouth, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK 2Department of Immunology, Saga Medical School, Nabeshima, Japan 3Boston University School of Medicine, Boston Medical Center, The Maxwell Finland Laboratory for Infectious Diseases, Boston, Massachusetts 02118, USA *Present address: Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA 01665, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 19 March 2002 Journal of Cell Science 115, 2603-2611 (2002) © The Company of Biologists Ltd Summary The plasma membrane of cells is composed of lateral present in microdomains following LPS stimulation. Lipid heterogeneities, patches and microdomains. These raft integrity is essential for LPS-cellular activation, since membrane microdomains or lipid rafts are enriched raft-disrupting drugs, such as nystatin or MCD, inhibit in glycosphingolipids and cholesterol and have been LPS-induced TNF-α secretion. Our results suggest that the implicated in cellular processes such as membrane sorting entire bacterial recognition system is based around the and signal transduction. In this study we investigated the ligation of CD14 by bacterial components and the importance of lipid raft formation in the innate immune recruitment of multiple signalling molecules, such as hsp70, recognition of bacteria using biochemical and fluorescence hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS imaging techniques. We found that receptor molecules ligation, within the lipid rafts.
    [Show full text]
  • The Lipid Bilayer: Composition and Structural Organization
    THE LIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION • MR. SOURAV BARAI • ASSISTANT PROFESSOR • DEPARTMENT OF ZOOLOGY • JHARGRAM RAJ COLLEGE THELIPID BILAYER: COMPOSITION AND STRUCTURAL ORGANIZATION The Fluid Mosaic Model of Biomembrane Plasma membrane • 1. Affect shape and function • 2. Anchor protein to the membrane • 3. Modify membrane protein activities • 4. Transducing signals to the cytoplasm “A living cell is a self-reproducing system of molecules held inside a container - the plasma membrane” Membrane comprised of lipid sheet (5 nm thick) • Primary purpose - barrier to prevent cell contents spilling out BUT, must be selective barrier Lipid Composition and struCturaL organization • Phospholipids of the composition present in cells spontaneously form sheet like phospholipid bilayers, which are two molecules thick. • The hydrocarbon chains of the phospholipids in each layer, or leaflet, form a hydrophobic core that is 3–4 nm thick in most biomembranes. • Approx 10^6 lipid molecule in 1µm×1µm area of lipid bilayer. • Electron microscopy of thin membrane sections stained with osmium tetroxide, which binds strongly to the polar head groups of phospholipids, reveals the bilayer structure. • A cross section of all single membranes stained with osmium tetroxide looks like a railroad track: two thin dark lines (the stain–head group complexes) with a uniform light space of about 2nm (the hydrophobic tails) between them. PROPERTIES • PERMIABILITY: The hydrophobic core is an impermeable barrier that prevents the diffusion of water-soluble (hydrophilic) solutes across the membrane. • STABILITY: The bilayer structure is maintained by hydrophobic and van der Waals interactions between the lipid chains. Even though the exterior aqueous environment can vary widely in ionic strength and pH, the bilayer has the strength to retain its characteristic architecture.
    [Show full text]