Human-In-The-Loop Development of Soft Wearable Robots

Total Page:16

File Type:pdf, Size:1020Kb

Human-In-The-Loop Development of Soft Wearable Robots COMMENT SOFT ROBOTICS Human- in-the- loop development of soft wearable robots Conor Walsh The field of soft wearable robotics offers the opportunity to wear robots like clothes to assist the movement of specific body parts or to endow the body with functionalities. Collaborative efforts of materials, apparel and robotics science have already led to the development of wearable technologies for physical therapy. Optimizing the human–robot system by human- in-the- loop approaches will pave the way for personalized soft wearable robots for a variety of applications. It is exciting to imagine a future in which soft wearable increased strength. In particular, active exoskeletons robots can be worn underneath clothing. This would have been investigated for their potential to augment enable a paradigm change in how we assist healthy indi- load carrying capacity. Such active devices consist of a viduals (for example, by providing support to soldiers supporting brace that is applied in parallel to the biolog- overburdened by heavy loads) and patients with mobility ical limb to transfer load to the ground; however, mini- impairments (for example, by eliminating the need for mizing weight and power requirements of these systems canes, plastic braces and walkers). A rapidly increasing remains a key challenge. number of academic and industry groups are working on the development of soft robotic component techno- Soft wearable robots logies and integrated soft wearable robot systems. Soft Soft robotics is a rapidly growing research field that wearable robots will not replace traditional rigid exo- combines robotics and soft materials, such as elasto- skeletons that are emerging as a valuable clinical tool mers and textiles. Soft robotic systems are engineered for patients with severe impairments, but will instead using low- cost fabrication techniques (for example, offer complementary capabilities for applications which moulding and sewing), their morphology is adaptable require soft systems. and they are ideally suited for gripping and manipu- lating delicate objects. There is growing interest in The Ironman suit the materials science, apparel, robotics and medical Over the last two decades, a variety of rigid exoskele- research communities in the field of soft wearable tons have been developed for tasks ranging from robots, as demonstrated by numerous special sessions heavy lifting to walking assistance. Rigid exoskeletons and workshops at conferences across these fields. rely on inelastic frameworks of linkages, coupled to Compared to traditional rigid robots, soft robotic sys- the body at specific locations through pads, straps or tems are inherently compliant and have a low weight. other interfacing techniques. Improvements in actua- The compliant nature enables soft robots to safely tor and sensor technology enabled the engineering of interact with humans, for example, for medical and portable systems and the transition from academic to wearable applications. commercial applications. Medical exoskeletons pro- The soft material properties provide a particular vide the ability to move body parts for patients who advantage for assisting with human motion by min- are paralyzed below the waist. The possibility to enable imizing restrictions to the wearer and eliminating the John A. Paulson School of movement requires the device to have a rigid structure, need to carefully align a robot with biological joints. Engineering and Applied powerful actuators and sufficient control to ensure the Textile anchors and flexible actuators can be used to Sciences, Wyss Institute for stability of the patient. Such devices offer a potentially interface a soft robotic device with the human body. Biologically Inspired life- changing tool for patients by enabling them to Powered by actuation systems mounted to the body, Engineering, Harvard stand or walk for short periods each day. Thus, many forces can be created across joints to assist the under- University, Cambridge, MA, USA. comorbidities, such as pressure sores, bone loss and lying biological muscles. Thereby, the limb- worn e- mail: walsh@ muscle atrophy, can be reduced. components of wearable robots have very low inertia seas.harvard.edu Exoskeletons have also been explored for assisting and, thus, do not restrict the natural movement of the https://doi.org/10.1038/ users in performing specific tasks more easily and/or wearer. However, the compliant nature of soft wear- s41578-018-0011-1 for longer periods of time, or for endowing them with able robots also presents fundamental challenges in 78 | JUNE 2018 | VOLUME 3 www.nature.com/natrevmats © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. COMMENT Assisted Unassisted Quantitive and qualitative Iteratively refine evaluation of biomechanical assistance strategy and physiological responses and component design Optimized design evaluated during functional activities Data informs requirements for engineering components (actuators, sensors and control algorithms) Fig. 1 | Human- in-the- loop development of soft wearable robots. The photograph is courtesy of Fred Merz, Rolex Foundation. actuation, sensing, calibration, efficiency and con- and physiological) and qualitative (human factor) data trol that need to be overcome to provide systems that can be collected (Fig. 1). benefit wearers. High impact applications Taking the human into the loop Initial progress in applying soft wearable robots has The concept of providing low to moderate assistance already been achieved with systems whose develop- using platforms with lightweight and non- restrictive ment has been guided by human subjects testing. For components acting on limbs demands the wearer to example, soft wearable robots can reduce the energy adapt to the applied assistance. The rigid links and expenditure of healthy individuals during walking and powerful motors enable a rigid exoskeleton to dom- running by augmenting normal muscle work through inate the gait of the wearer and to enforce a walking the application of assistive torques at the joints of the pattern. However, when using soft wearable robots both wearer. Initial studies applying varying assistance levels the wearer and the robot contribute to the movement, were first performed with lab-based equipment mounted requiring them to be in synchrony. Engineering tools beside a treadmill1. The development of autonomous need to be developed to tailor systems for different systems (that is, fully body worn) has subsequently been applications and individual patients, and importantly, informed by data obtained in the lab-based studies. there is a need to understand which joints and tissues In addition to augmenting gait, soft wearable robots (or combinations thereof) can benefit from assistance and are also studied for their potential to improve mobil- the levels of force and power affecting component ity for patients with physical impairments, specifically and system requirements. For example, how can the gait patients suffering from spinal cord injury or stroke. of a patient who has suffered a stroke be restored and A recent study demonstrated that the application of well-​ what would be the best way of assistance? Should both timed, small assistive forces to the paretic limb of stroke legs get assistance and which joints should be addressed? patients during walking has substantial biomechanical, What are the ideal actuator properties? energetic and cognitive benefits2. Soft wearable robots The development of soft wearable robots needs to could also be used to restore the function of arms and take into account not only the technical performance of hands in patients with upper extremity impairments, for the components but also the entire human–robot system. example, by combining soft gloves with cables connected To understand and determine the requirements for spe- to fingers, driven by a number of motors3, or soft fluid-​ cific applications, studies involving human participants powered actuators with movements matching those of can be performed using versatile lab- based equipment. the hand and arm4. Similar to approaches for the lower Different levels of assistance can be tested at a variety of extremities, components interfaced with the arm are locations, delivering data on the response of the wearer. located on a wheelchair or mounted around the waist, Applying a human- in-the- loop approach enables the thus adding minimal mass and restrictions to the limb. development of new technology, which is linked to an understanding of biological or pathological form and Future perspective function, to investigate how humans adapt to robotic The field of soft wearable robotics will impact funda- assistance. Thereby, development, component and sys- mental and translational research in areas such as move- tem functions can be continuously evaluated and itera- ment assistance, rehabilitation and injury prevention by tively developed, and quantitative (robot, biomechanical developing lightweight systems that can be integrated NATURE REVIEWS | MATERIALS VOLUME 3 | JUNE 2018 | 79 © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. COMMENT into or worn under clothing and that do not restrict or shear forces to tissue on the inside or outside of the the user when unpowered. Most integrated systems body to restore organ function5 simulate the effects of that have already been tested on people were made of massage, or supernumerary limbs or digits that enable commercially available components,
Recommended publications
  • An Overview of Novel Actuators for Soft Robotics
    actuators Review An Overview of Novel Actuators for Soft Robotics Pinar Boyraz 1,2,* ID , Gundula Runge 3 and Annika Raatz 3 1 Mechanics and Maritime Sciences Department, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 Mechanical Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey 3 Institut fur Montagetechnik (match), Leibniz Universität Hannover, 30823 Garbsen, Hannover, Germany; [email protected] (G.R.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-730-49-8780 Received: 10 June 2018; Accepted: 9 August 2018; Published: 16 August 2018 Abstract: In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria. Keywords: soft-robotics; actuator performance; SMA; SMP; FEA; DEAP; E/MA 1.
    [Show full text]
  • Customizing a Self-Healing Soft Pump for Robot
    ARTICLE https://doi.org/10.1038/s41467-021-22391-x OPEN Customizing a self-healing soft pump for robot ✉ Wei Tang 1, Chao Zhang 1 , Yiding Zhong1, Pingan Zhu1,YuHu1, Zhongdong Jiao 1, Xiaofeng Wei1, ✉ Gang Lu1, Jinrong Wang 1, Yuwen Liang1, Yangqiao Lin 1, Wei Wang1, Huayong Yang1 & Jun Zou 1 Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft 1234567890():,; electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation per- formances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power con- verter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics. ✉ 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:2247 | https://doi.org/10.1038/s41467-021-22391-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22391-x nspired by biological systems, scientists and engineers are a robotic vehicle to achieve untethered and versatile motions Iincreasingly interested in developing soft robots1–4 capable of when the customized soft pumps are implanted into them.
    [Show full text]
  • Position Control for Soft Actuators, Next Steps Toward Inherently Safe Interaction
    electronics Article Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction Dongshuo Li, Vaishnavi Dornadula, Kengyu Lin and Michael Wehner * Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA; [email protected] (D.L.); [email protected] (V.D.); [email protected] (K.L.) * Correspondence: [email protected] Abstract: Soft robots present an avenue toward unprecedented societal acceptance, utility in popu- lated environments, and direct interaction with humans. However, the compliance that makes them attractive also makes soft robots difficult to control. We present two low-cost approaches to control the motion of soft actuators in applications common in human-interaction tasks. First, we present a passive impedance approach, which employs restriction to pneumatic channels to regulate the inflation/deflation rate of a pneumatic actuator and eliminate the overshoot/oscillation seen in many underdamped silicone-based soft actuators. Second, we present a visual servoing feedback control approach. We present an elastomeric pneumatic finger as an example system on which both methods are evaluated and compared to an uncontrolled underdamped actuator. We perturb the actuator and demonstrate its ability to increase distal curvature around the obstacle and maintain the desired end position. In this approach, we use the continuum deformation characteristic of soft actuators as an advantage for control rather than a problem to be minimized. With their low cost and complexity, these techniques present great opportunity for soft robots to improve human–robot interaction. Citation: Li, D.; Dornadula, V.; Lin, Keywords: soft robot; human–robot interaction; control K.; Wehner, M. Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction.
    [Show full text]
  • Lab Notebook – Soft Robotics
    Technology Lab: Lab Notebook – Soft Robotics ã2018 Boy Scouts of America. All rights reserved. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means without the proper written permission of the Boy Scouts of America or as expressly permitted by law. The design of a circle divided into four quadrants with wavy lines along the perimeter (the “BSA STEM logo”) is a trademark of the Boy Scouts of America. Lab Notebook Soft Robotics OVERVIEW ........................................................................................................................... 3 MEETING 1: SOFT ROBOT STRUCTURES ............................................................................. 5 MEETING 2: POWERING SOFT ROBOTS ............................................................................. 16 MEETING 3: BUILD A SOFT ROBOTIC GRASPER ............................................................... 24 MEETING 4: BUILD A SOFT TENTACLE-ARM ROBOT – PART 1 ......................................... 30 MEETING 5: BUILD A SOFT TENTACLE-ARM ROBOT – PART 2 ........................................ 36 MEETING 6: PROGRAMMING MOTIONS ............................................................................41 2 Lab Notebook Soft Robotics Overview This module will delve into an exciting and newly developing branch of robotics—soft or flexible robotic structures. When you look at an elephant’s trunk or an octopus’s arm, you can see natural examples of flexible structures used to grasp and manipulate objects. There are many tasks in our world that a rigid structure just does not perform well. Soft Robotics explores the development of flexible structures to work in these areas. In this module, you and your team will explore the concept of soft robots and learn how flexible structures move and how they can be programmed to perform useful tasks. This module was developed by the REACH Lab at the University of Tennessee, Knoxville. The group focuses on medical applications of robots and soft robots, and the mathematics behind them.
    [Show full text]
  • Architectures of Soft Robotic Locomotion Enabled by Simple
    Architectures of Soft Robotic Locomotion Enabled by Simple Mechanical Principles Liangliang Zhu a, c, Yunteng Cao a, Yilun Liu b, Zhe Yang a, Xi Chen c* a International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China b State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China c Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA Abstract In nature, a variety of limbless locomotion patterns flourish from the small or basic life form (Escherichia coli, the amoeba, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and go beyond existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion * Corresponding author at: Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA. Tel.: +1 2128543787. E-mail address: [email protected] (X. Chen). 1 functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc.
    [Show full text]
  • The SLS-Generated Soft Robotic Hand – an Integrated Approach Using Additive Manufacturing and Reinforcement Learning
    The SLS-generated Soft Robotic Hand – An Integrated Approach using Additive Manufacturing and Reinforcement Learning Arne Rost Corporate Research Festo AG & Co. KG 73734 Esslingen, Germany [email protected] Stephan Schädle Institute for Artificial Intelligence University of Applied Sciences Ravensburg-Weingarten 88250 Weingarten, Germany [email protected] / [email protected] Abstract – To develop a robotic system for a complex task is a time- targeted task execution is trained via Reinforcement Learning, a consuming process. Merging methods available today, a new ap- machine learning approach. Optimization points are subsequently proach for a faster realization of a multi-finger soft robotic hand is derived and fed back into the hardware development. With this presented here. This paper introduces a robotic hand with four Concurrent Engineering strategy a fast development of this robotic fingers and 12 Degrees of Freedom (DoFs) using bellow actuators. hand is possible. The paper outlines the relevant key strategies and The hand is generated via Selective Laser Sintering (SLS), an Additive gives insight into the design process. At the end, the final hand with Manufacturing method. The complex task execution of a specific its capabilities is presented and discussed. action, i.e. the lifting, rotating and precise positioning of a handling- object with this robotic hand, is used to structure the whole develop- Soft Robotic Hand; Reinforcement Learning; Additive Manufacturing; ment process. To validate reliable functionality of the hand from SLS; Concurrent Engineering; Compliant; LearningGripper; the beginning, each development stage is SLS-generated and the I INTRODUCTION Soft robots are one kind of intrinsically safe service robots, which strategies [5, 6].
    [Show full text]
  • Design, Fabrication and Control of Soft Robots Daniela Rus1 and Michael T
    Design, fabrication and control of soft robots Daniela Rus1 and Michael T. Tolley2 1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 2Department of Mechanical and Aerospace Engineering, University of California, San Diego Abstract Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modeled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates like humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics. Introduction Biology has long been a source of inspiration for engineers making ever-more capable machines1. Softness and body compliance are salient features often exploited by biological systems, which tend to seek simplicity and exhibit reduced complexity in their interactions with their environment2. Several of the lessons learned from studying biological systems are now culminating in the definition of a new class of machine we, and others, refer to as soft robots3, 4, 5, 6. Traditional, rigid-bodied robots are used today extensively in manufacturing and can be specifically programmed to perform a single task efficiently, but often with limited adaptability. Because they are built of rigid links and joints, they are unsafe for interaction with human beings. A common practice is to separate human and robotic workspaces in factories to mitigate safety concerns.
    [Show full text]
  • A Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity Chad G
    IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018 1 A Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity Chad G. Rose and Marcia K. O’Malley Abstract—A hybrid hand exoskeleton, leveraging rigid and soft elements, has been designed to serve as an assistive device to return the ability to perform activities of daily living (ADLs) and improve quality of life (QOL) for a broad population with hand impairment. This glove-like exoskeleton, the SeptaPose Assistive and Rehabilitative (SPAR) Glove, is underactuated, enabling seven hand poses which support most ADLs. The device resides on the spectrum between traditional rigid devices and the latest soft robotic designs. It includes novel ergonomic elements for power transmission and additional features to Rigid Soft enable self-donning and doffing. Embedded sensors enable pose estimation and intent detection for intuitive control of the Fig. 1. Devices fall along the rigid-soft spectrum, with most, such as the glove. In this paper, we summarize the overall design of the Cybergrasp [10] and the glove by Polygerinos et al. [11], residing at the glove, and present details of the novel rigid palm bar and ends. In the hybrid middle of the spectrum, we propose the SPAR Glove, hyperextension prevention elements. We characterize the grasp a novel device which leverages the strengths of each end of the spectrum force and range of motion (ROM) of the glove, and present initial to serve as a technology framework for investigating impacts of assistive feedback from an end-user. The SPAR Glove meets or exceeds devices, developing novel intent detection schemes, and creating softgoods the functional requirements of ADLs for both ROM and grasp (fabric and other flexible material-based) designs to promote wearability.
    [Show full text]
  • Soft Robotics: the Route to True Robotic Organisms
    Rossiter, J. M. (2021). Soft robotics: the route to true robotic organisms. Artificial Life and Robotics, 26(3), 269-274. https://doi.org/10.1007/s10015-021-00688-w Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s10015-021-00688-w Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s10015-021-00688-w . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Artifcial Life and Robotics https://doi.org/10.1007/s10015-021-00688-w INVITED ARTICLE Soft robotics: the route to true robotic organisms Jonathan Rossiter1 Received: 11 January 2021 / Accepted: 9 June 2021 © The Author(s) 2021 Abstract Soft Robotics has come to the fore in the last decade as a new way of conceptualising, designing and fabricating robots. Soft materials empower robots with locomotion, manipulation, and adaptability capabilities beyond those possible with conven- tional rigid robots. Soft robots can also be made from biological, biocompatible and biodegradable materials. This ofers the tantalising possibility of bridging the gap between robots and organisms. Here, we discuss the properties of soft materials and soft systems that make them so attractive for future robots.
    [Show full text]
  • Transforming Robotics with Soft Robotics
    18 ABB REVIEW 02 — TECHNOLOGY VENTURES Transforming robotics with Soft Robotics ABB Technology Ventures (ATV) is ABB’s strategic venture capital investment arm. ATV finds the startup partners from which ABB can best benefit, both strategically and financially. ABB’s partnership with Soft Robotics provides a perfect example of how proactive engagement with a startup can make all the difference when it comes to improving innovation processes. Who says a robot has to be made of metal? For the past decade, Harvard’s George Whitesides and his army of post-doctorate fellows have been rewriting the rules on what constitutes a robot. Through a collaboration between Harvard and DARPA, the innovation arm of the Department of Defense, the Whitesides Group at Harvard Victoria Lietha University has been focused on a new breed of ABB Technology Ventures Zurich, Switzerland biologically inspired “soft robots.” The challenge was initially to create a robot that could make [email protected] its way underneath a pane of glass just 20 mm above a surface [1]. While most robotic engineers attempted to solve this problem with traditional, rigid robots, Dr. Whitesides drew inspiration from nature to create a new class of soft robots made entirely of elastomeric polymers. It was that challenger mindset that made way for a breakthrough in the field of robotics. 01 01|2018 PARTNERSHIP WITH SOFT ROBOTICS 19 Soft Robotics is born The earliest applications of the technology to come out of the DARPA collaboration were in surgery and other biomedical applications. But a major unmet need and opportunity in industrial automation were recognized: The majority of robotic solutions today are based on hard linkages, making it difficult for them to pick up soft and variable objects, like fresh produce, or interact safely with humans.
    [Show full text]
  • Soft Robotics As Emerging Technologies
    Girls in Emergency Medicine. feature articlefeature soft robotics as emerging technologies: preparing students for future work through soft robot design experiences Students prepared with strategies for learning now will be able to apply the same strategies when faced with new situations in the future. n our field of technology and engineering educa- teachers to grow student confidence for emerging engineer- tion, we are limited by our inability to predict what ing careers. is coming; as the saying goes, we are preparing our students for jobs that don’t even exist yet. Two adap- Preparing Students for the Future tive approaches can help prepare students for this Integrating 21st century skills devel- Iuncertainty: teaching broad skills that can be applied in by opment—problem solving, creativity, new situations and exposing students to recent technologi- and communication, among others— cal developments that hint at the future. Soft robotics is an Andrew in our classrooms is one way to pre- emerging technology with advantages to traditional robotics Jackson, pare students for an uncertain career in some circumstances. In this article, we describe several landscape. Learning these types of Nathan emergent applications of soft robotics and how they align skills “allows the individual to transfer with the Standards for Technological Literacy (STL) domains Mentzer, and what was learned to solve new of technology. We also share an overview of our approach to problems” (Pellegrino & Hilton, 2012, Rebecca implementing a soft robotics design
    [Show full text]
  • 3D Model Identification of a Soft Robotic Neck
    mathematics Article 3D Model Identification of a Soft Robotic Neck Fernando Quevedo * , Jorge Muñoz , Juan Alejandro Castano Pena and Concepción A. Monje RoboticsLab, University Carlos III of Madrid, Avenida Universidad 30, 28911 Madrid, Spain; [email protected] (J.M.); [email protected] (J.A.C.P.); [email protected] (C.A.M.) * Correspondence: [email protected] Abstract: Soft robotics is becoming an emerging solution to many of the problems in robotics, such as weight, cost and human interaction. In order to overcome such problems, bio-inspired designs have introduced new actuators, links and architectures. However, the complexity of the required models for control has increased dramatically and geometrical model approaches, widely used to model rigid dynamics, are not enough to model these new hardware types. In this paper, different linear and non-linear models will be used to model a soft neck consisting of a central soft link actuated by three motor-driven tendons. By combining the force on the different tendons, the neck is able to perform a motion similar to that of a human neck. In order to simplify the modeling, first a system input–output redefinition is proposed, considering the neck pitch and roll angles as outputs and the tendon lengths as inputs. Later, two identification strategies are selected and adapted to our case: set membership, a data-driven, nonlinear and non-parametric identification strategy which needs no input redefinition; and Recursive least-squares (RLS), a widely recognized identification technique. The first method offers the possibility of modeling complex dynamics without specific knowledge of its mathematical representation.
    [Show full text]