Kinematics and Physical Properties of a Highly Filamentary Infrared Dark

Total Page:16

File Type:pdf, Size:1020Kb

Kinematics and Physical Properties of a Highly Filamentary Infrared Dark Kinematics and physical properties of a highly filamentary Infrared Dark Cloud Jonathan David Henshaw School of Physics and Astronomy University of Leeds Submitted in accordance with the requirements for the degree of Doctor of Philosophy May 2014 ii The candidate confirms that the work submitted is his own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors of this work has been explicitly indicated. The candidate confirms that appropriate credit has been given within this thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. c 2014 The University of Leeds and Jonathan David Henshaw. For my parents Preface Within this thesis, chapters 2 and 3 have been based on work presented in the following jointly authored publications: I. Complex, quiescent kinematics in a filamentary infrared dark cloud, J. D. Henshaw, P. Caselli, F. Fontani, I. Jim´enez-Serra, J. C. Tan, A. K. Hernandez, MNRAS, 428, p.3425-3442. II. The dynamical properties of dense filaments in the Infrared Dark Cloud G035.39-00.33, J. D. Henshaw, P. Caselli, F. Fontani, I. Jim´enez-Serra, J. C. Tan, MNRAS, 440, p.2860-2881. Paper i forms the basis of chapter 2. The data were obtained with pro- posals written by P. Caselli. The data were collected by P. Caselli, F. Fontani, and I. Jim´enez-Serra. The primary author (J. D. Henshaw) was responsible for the data analysis and interpretation. The anal- ysis involved the development of a technique required to decompose and analyse the spectra. The information extracted from this analysis technique was then used to comprise the primary results of this pa- per. Further analysis incorporated the use of radiative transfer code, radex, written by F. F. S. Van der Tak. The primary author wrote the initial draft of the publication, and then incorporated comments from co-authors in the final draft. Paper ii forms the basis of chapter 3. The data were obtained with pro- posals written by the primary author (J. D. Henshaw) and P. Caselli. The primary author was responsible for the data reduction, analysis (including the development of the fitting routine used), and interpre- tation. The primary author wrote the initial draft of the publication, and then incorporated comments from co-authors in the final draft. Acknowledgements First and foremost, I would like to express my gratitude to my su- pervisor Paola Caselli, for being so generous with her time, patience, knowledge, and for regularly encouraging me to step out of my com- fort zone throughout this process. It has been (and continues to be) a pleasure to work with Paola, and a fantastic group of researchers whose knowledge and experience has enriched my research. I would particularly like to thank Izaskun Jim´enez-Serra, Francesco Fontani, and Jonathan Tan for their help and guidance, and for taking the time to read countless drafts of papers and proposals. I would also like to thank Jaime Pineda and Cormac Purcell for their assistance, particu- larly in the earliest stages of my PhD. I am grateful to my examiners, Gary Fuller and Tom Hartquist, for taking the time to read my thesis, and for making my viva an enjoyable experience. Having been a tutee of Tom during my undergraduate degree, I am extremely proud to have completed my PhD with Tom as my examiner. Thanks must also go to the staff at Leeds, Melvin Hoare, Stuart Lumsden, Ren´eOudmaijer, and Julian Pittard for sharing their knowledge over the years I have spent at Leeds. A warm thank you goes to my fellow PhD students and the postdoc- toral researchers at the University of Leeds. I thank in particular Mo Ali, Robbie Al¯uzas, Tom Douglas, John Fairlamb, Dan Parsons, Hazel Rogers, and Hugh Wheelwright for making Leeds such an enjoyable place to work. A special thank you goes to my good friends Nichol Cunningham, John Ilee and Luke Maud for always being there for a pint when things got tough (and for those other times, when things were not so tough and we went to the pub anyway). I am extremely fortunate to have to love and support of my wonderful family and friends. Thank you to my grandparents for always being interested in what I do, it is a constant source of encouragement to know that it makes you proud. To my brother Alex and sister-in-law Gemma, thank you for having been through this experience before me, understanding, and for offering advice whenever I needed it. To Grace, thank you for being so selfless, and for so often picking me up, dusting me off, and sending me back off to work in those last few months. Finally, I would like to thank my parents, Chris and Margaret, for always believing in me, even when I don’t always believe in myself. Abstract This thesis contains a detailed study of the kinematics and physical properties of a potential site of massive star formation; the IRDC G035.39-00.33. The gas kinematics are first of all investigated using high-spectral res- olution and high-sensitivity data from the IRAM 30 m telescope. The + primary focus of this work is the J = 1 → 0 transition of both N2H 18 + and C O, as well as N2H (3 − 2). Dense gas is found to be extended over ∼ 3 pc scales within G035.39-00.33. The C18O observations con- firm the presence of at least three morphologically distinct filamentary components. It is speculated that the merging of filaments may be re- sponsible for the formation of localised density enhancements at their interface; the potential sites for massive star and star-cluster formation. The kinematic properties of the dense gas are then probed at high- + angular resolution, using observations of N2H (1−0) from the Plateau de Bure Interferometer. It is revealed that the dense gas of G035.39- 00.33 is organised into a complex network of mildly supersonic filaments separated in velocity by < 1 km s−1. Whilst global velocity gradients throughout each filament are small, there is evidence for dynamic pro- cesses on local scales. This suggests that the kinematics are influenced by the dense (and in some cases, starless) cores. The physical properties of the embedded core population are derived in the final study of this thesis. A total of 14 continuum peaks are identified, representative of the pre- and protostellar core population covering two main clumps within G035.39-00.33. The derived core masses are found to be between 2.4-12.3 M⊙, with sizes and densities between 0.03-0.07 pc and 1.6×105-7.3×105, respectively. Some of the cores exhibit irregular boundaries, which may imply the presence of unresolved sub-structure. Although the dynamical state of each core is dependent on both its geometry and density profile (which are both sources of uncertainty) it is found that many of the identified cores are unstable to collapse. Cores which are well represented by mono- lithic, centrally condensed structures, exhibiting low virial parameters and many Jeans masses, are good candidates for the progenitors of intermediate-to-high-mass stars. Within the selected area of G035.39- 00.33, two of the identified cores meet this criteria. ix Abbreviations ALMA Atacama Large Millimeter Array arcsec Arc Second CMZ Central Molecular Zone EMIR Eight MIxer Receiver FWHM Full-Width at Half-Maximum GMC Giant Molecular Cloud HFS Hyperfine Structure HMSC High-Mass Starless Core HWHM Half-Width at Half-Maximum IDL Interactive Data Language IMF Initial Mass Function IRAM Institut de Radioastronomie Millim´etrique IRAS Infrared Astronomical Satellite IRDC Infrared Dark Cloud ISM Interstellar Medium ISO Infrared Space Observatory LTE Local Thermodynamic Equilibrium MIR Mid-Infrared MSC Massive Starless Core MSX Midcourse Space Experiment MYSO Massive Young Stellar Object NIR Near-Infrared NOEMA Northern Extended Millimetre Array PACS Photodetector Array Camera & Spectrometer pc Parsec x PdBI Plateau de Bure Interferometer PPV Position-Position-Velocity PV Position-Velocity RMS Red MSX Source SMA Submillimeter Array SPIRE Spectral and Photometric Imaging Receiver VESPA VErsatile SPectrometer Assembly Contents 1 Introduction 1 1.1 An introduction to molecular clouds . 3 1.1.1 The structure of molecular clouds . 4 1.1.2 Formation mechanisms of molecular clouds . 12 1.2 Anintroductiontostarformation . 19 1.2.1 Virialized vs. transient clouds . 20 1.2.2 The stellar initial mass function & low-mass star formation . 23 1.2.3 Massivestarformation . 25 1.3 TheroleofInfraredDarkClouds . 33 1.3.1 Physicalstructure. .. .. 33 1.3.2 Kinematics ........................... 36 1.3.3 Chemistry............................ 37 1.4 IRDCsummary&thesismotivation. 39 2 Complex kinematics in a filamentary IRDC 41 2.1 Introduction............................... 41 2.1.1 G035.39–00.33.......................... 41 2.1.2 Previouswork.......................... 43 2.1.3 Investigating the large-scale structure of G035.39–00.33 . 46 2.2 Observations&dataprocessing . 49 2.3 Observationalresults .. .. .. 53 2.3.1 Averagespectraandintegratedintensity . 53 2.3.2 Opticaldepth .......................... 62 2.4 Analysis: The physical properties of G035.39–00.33 . 67 xii 2.4.1 Columndensity ......................... 67 2.4.2 Number density and kinetic temperature . 70 2.5 Analysis: The kinematics of G035.39–00.33 . 81 2.5.1 Evidence for multiple velocity components . 81 2.5.2 Position-velocity analysis . 84 2.5.3 Centroid velocity and line-width . 87 + 18 2.5.4 The N2H –C Ovelocityshift................. 91 2.6 Discussion................................ 97 2.6.1 Are the filaments of G035.39–00.33 interacting? .
Recommended publications
  • The Discovery of Herbig-Haro Objects in Ldn 673
    Draft version December 4, 2017 Typeset using LATEX default style in AASTeX61 THE DISCOVERY OF HERBIG-HARO OBJECTS IN LDN 673 T. A. Rector1 | R. Y. Shuping2 | L. Prato3 | H. Schweiker4, 5, 6 | 1Department of Physics and Astronomy, University of Alaska Anchorage, Anchorage, AK 99508, USA 2Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA 3Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA 4National Optical Astronomy Observatory, Tucson, AZ 85719, USA 5Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. 6WIYN Observatory, Tucson, AZ 85719, USA ABSTRACT We report the discovery of twelve faint Herbig-Haro (HH) objects in LDN 673 found using a novel color-composite imaging method that reveals faint Hα emission in complex environments. Follow-up observations in [S II] confirmed their classification as HH objects. Potential driving sources are identified from the Spitzer c2d Legacy Program catalog and other infrared observations. The twelve new HH objects can be divided into three groups: Four are likely associated with a cluster of eight YSO class I/II IR sources that lie between them; five are colinear with the T Tauri multiple star system AS 353, and are likely driven by the same source as HH 32 and HH 332; three are bisected by a very red source that coincides with an infrared dark cloud. We also provide updated coordinates for the three components of HH 332. Inaccurate numbers were given for this object in the discovery paper.
    [Show full text]
  • The Future of the GBT
    The Future of the GBT Felix J. Lockman NRAO Green Bank Arecibo, July 2009 UNOFFICIAL The Future of the GBT Felix J. Lockman NRAO Green Bank Arecibo, July 2009 Characteristics of the GBT Large Collecting Area Sensitive to Low Surface Brightness Sky Coverage & Tracking (>85%) Angular Resolution Frequency Coverage Radio Quiet Zone Unblocked Aperture state-of-art receivers & detectors modern control software flexible scheduling Unique capabilities which complement EVLA, VLBA, and ALMA The Advantage of Unblocked Optics Dynamic Range Near sidelobes reduced by a factor >10 from conventional antennas Gain & Sensitivity The 100 meter diameter GBT performs better than a 120 meter conventional antenna Reduced Interference 2002 panels active surface retroreflectors for future metrology A telescope designed to be enhanced Unique active surface →Unlike any other radio telescope← Green Bank and the GBT A telescope that works well over a factor of 1000 in frequency/wavelength / energy -- equivalent to the range from the infrared (10μ) to the soft X-ray (0.01μ) GALEX HST Chandra Spitzer “...just hitting its stride” Future Prospects & Development at NRAO and in the US Radio Community ~ 2008 NRAO Staff Retreat 4 AOC Auditorium, NRAO, Socorro, NM ~ April 10-11, 2008 A telescope for fundamental physics The fastest pulsars test our understanding of matter at the most extreme densities “A Radio Pulsar Spinning at 716 Hz” Hessels et al 2006 Science A telescope for fundamental physics The fastest pulsars test our understanding of matter at the most extreme densities
    [Show full text]
  • A Multi-Transition Molecular Line Study of Infrared Dark Cloud G331.71+00.59
    Research in Astron. Astrophys. 2013 Vol. 13 No. 1, 28 – 38 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and Astrophysics A multi-transition molecular line study of infrared dark cloud G331.71+00.59 Nai-Ping Yu and Jun-Jie Wang National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] NAOC-TU Joint Center for Astrophysics, Lhasa 850000, China Received 2012 March 12; accepted 2012 August 3 Abstract Using archive data from the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90), carried out using the Mopra 22-m telescope, we made the first multi-transition molecular line study of infrared dark cloud (IRDC) MSXDC G331.71+00.59. Two molecular cores were found embedded in this IRDC. Each of these cores is associated with a known extended green object (EGO), indicating places of massive star formation. The HCO+ (1–0) and HNC (1–0) transitions show promi- nent blue or red asymmetric structures, suggesting outflow and inflow activities of young stellar objects (YSOs). Other detected molecular lines include H13CO+ (1– 0), C2H (1–0), HC3N (10–9), HNCO(40;4–30;3) and SiO (2–1), which are typical of hot cores and outflows. We regard the two EGOs as evolving from the IRDC to hot cores. Using public GLIMPS data, we investigate the spectral energy distribution of EGO G331.71+0.60. Our results support this EGO being a massive YSO driving the outflow. G331.71+0.58 may be at an earlier evolutionary stage.
    [Show full text]
  • Abstract Book & Logistics
    MASSIVE STAR FORMATION 2007 Observations confront Theory September 10 – 14, 2007 Convention Centre Heidelberg, Germany ABSTRACT BOOK & LOGISTICS 2 List of Contents Heidelberg Map Extract Page 7 Room Plan of the Convention Center Page 9 Social Events Page 11 Proceedings Information Page 13 Scientific Program Page 15 Abstracts for Talk Contributions Page 25 Abstracts for Poster Contributions Page 91 List of Participants Page 245 3 4 LOGISTICS 5 6 A Cutout Map of Heidelberg 7 The image shows a cutout from the Heidelberg map included in your conference papers. Three impor- tant locations, the Convention Centre (“Stadthalle”), the Heidelberg Castle (“Schloß”), and the University including the Old Assembly Hall are indicated with ellipses. Note that the Konigstuhl¨ Hill with the Lan- dessternwarte and MPIA is not included here. 8 A Sketch of the Room Plan in the Convention Center Internet cafe Main hall for talks and posters Coffee Reception Area Desk Main Entrance Internet Connection We provide an “Internet Cafe”´ with 8 comput- ers and additional plugins for laptops. Furthermore, the Coffee Area will be wireless and you can easily connect to the Internet via a normal DHCP connection from there. The WLAN net will have the name Kon- gresshaus. Convention Center Telephone during the meeting The Convention Center provides a telephone number for callers from outside: +49 (0)6221 14 22 812 9 10 Social Events Beside the scientific program, we have arranged for some “Social Events” that, we hope, are a nice and light addition to the concentrated series of talks during the conference. Welcome Reception On Monday, September 10, we will have the welcome reception at the Heidelberg Castle at 19:30 in the evening.
    [Show full text]
  • Early Stages of Massive Star Formation
    Early Stages of Massive Star Formation Vlas Sokolov Munchen¨ 2018 Early Stages of Massive Star Formation Vlas Sokolov Dissertation an der Fakultat¨ fur Physik der Ludwig–Maximilians–Universitat¨ Munchen¨ vorgelegt von Vlas Sokolov aus Kyjiw, Ukraine Munchen,¨ den 13 Juli 2018 Erstgutachter: Prof. Dr. Paola Caselli Zweitgutachter: Prof. Dr. Markus Kissler-Patig Tag der mundlichen¨ Prufung:¨ 27 August 2018 Contents Zusammenfassung xv Summary xvii 1 Introduction1 1.1 Overview......................................1 1.2 The Interstellar Medium..............................2 1.2.1 Molecular Clouds..............................5 1.3 Low-mass Star Formation..............................9 1.4 High-Mass Star and Cluster Formation....................... 12 1.4.1 Observational perspective......................... 14 1.4.2 Theoretical models............................. 16 1.4.3 IRDCs as the initial conditions of massive star formation......... 18 1.5 Methods....................................... 20 1.5.1 Radio Instrumentation........................... 20 1.5.2 Radiative Processes in the Dark Clouds.................. 22 1.5.3 Blackbody Dust Emission......................... 23 1.5.4 Ammonia inversion transitions....................... 26 1.6 This Thesis..................................... 28 2 Temperature structure and kinematics of the IRDC G035.39–00.33 31 2.1 Abstract....................................... 31 2.2 Introduction..................................... 32 2.3 Observations.................................... 33 2.3.1 GBT observations............................
    [Show full text]
  • Eric Keto Publications REFEREED JOURNALS 2014
    { 1 { Eric Keto Publications REFEREED JOURNALS 2014 (1) Chitsazzadeh, S., Di Francesco, J., Schnee, S., Friesen, R. K., Shimajiri, Y., Langston, G. I., Sadavoy, S. I., Bourke, T. L., Keto, E., Pineda, J. E., Takakuwa, S., Tatematsu, K., 2014, ApJ, 790, 129-150 "Physical and Chemical Characteristics of L1689-SMM16, an Oscillating Prestellar Core in Ophiuchus" (2) Zhang, Q. Qiu, K., Girart, J., Hauyu, L., Tang, Y.-W., Koch, P., Li, Z.-Y., Keto, E., Ho, P.T.P., Rao, R., Lai, S.-P., Ching, T.-C., Frau, P., Chen, H.-H., Li, H.-B., Padovani, M., Bontemps, S., Csengeri, T., Juarez, C., 2014, ApJ in press, arXiv:1407.3984, "Magnetic Fields and Massive Star Formation" (3) Inoue, M., Algaba-Marcos, J. C., Asada, K., Chang, C.-C., Chen, M.-T., Han, J., Hi- rashita, H., Ho, P.T.P., Hsieh, S.-N., Huang, T., Jiang, H., Koch, P. M., Kubo, D. Y., Kuo, C.-Y., Liu, B., Martin-Cocher, P., Matsushita, S., Meyer-Zhao, Z., Naka- mura, M., Nishioka, H., Nystrom, G., Pradel, N., Pu, H.-Y., Raffin, P. A., Shen, H.-Y., Snow, W., Srinivasan, R., Wei, T.-S., Blundell, R., Burgos, R., Grimes, P., Keto, E., Paine, S., Patel, N., Sridharan, T. K., Doeleman, S. S., Fish, V., Brisken, W., Napier, P., 2014, Radio Science Journal, in press, arXiv:1407.2450 "Greenland Telescope Project | Direct Confirmation of Black Hole with Sub-millimeter VLBI" (4) van Loo, S., Keto, E., Zhang, Q., 2014, ApJ, 789, 37-50, "Core and Filament Formation in Magnetized, Self-gravitating Isothermal Layers" (5) Keto, E., Burkert, A., 2014, MNRAS, 441, 1468-1473, "From filaments to oscillating starless
    [Show full text]
  • Publications 2012
    Publications - print summary 27 Feb 2013 1 *Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; and 201 coauthors "A multiwavelength view of the flaring state of PKS 2155-304 in 2006". (C) A&A, 539, 149 (2012). 2 *Ackermann, M.; Ajello, J.; Ballet, G.; Barbiellini, D.; Bastieri, A.; Belfiore; Bellazzini, B.; Berenji, R.D. and 57 coauthors "Periodic emission from the Gamma-Ray Binary 1FGL J1018.6–5856". (O) Science, 335, 189-193 (2012). 3 *Agliozzo, C.; Umana, G.; Trigilio, C.; Buemi, C.; Leto, P.; Ingallinera, A.; Franzen, T.; Noriega-Crespo, A. "Radio detection of nebulae around four luminous blue variable stars in the Large Magellanic Cloud". (C) MNRAS, 426, 181-186 (2012). 4 *Ainsworth, R.E.; Scaife, A.M.M.; Ray, T.P.; Buckle, J.V.; Davies, M.; Franzen, T.M.O.; Grainge, K.J.B.; Hobson, M.P.; Shimwell, T.; and 12 coauthors "AMI radio continuum observations of young stellar objects with known outflows". (O) MNRAS, 423, 1089-1108 (2012). 5 *Allison, J.R.; Curran, S.J.; Emonts, B H.C.; Geréb, K.; Mahony, E.K.; Reeves, S.; Sadler, E.M.; Tanna, A.; Whiting, M.T.; Zwaan, M.A. "A search for 21 cm H I absorption in AT20G compact radio galaxies". (C) MNRAS, 423, 2601-2616 (2012). 6 *Allison, J R.; Sadler, E.M.; Whiting, M.T. "Application of a bayesian method to absorption spectral-line finding in simulated ASKAP Data". (A) PASA, 29, 221-228 (2012). 7 *Alves, M.I.R.; Davies, R.D.; Dickinson, C.; Calabretta, M.; Davis, R.; Staveley-Smith, L.
    [Show full text]
  • Newsletter Submillimeter Array Newsletter Number 20 | July 2015
    SMA Newsletter Submillimeter Array Newsletter Number 20 | July 2015 CONTENTS FROM THE DIRECTOR 1 From the Director SCIENCE HIGHLIGHTS: Dear SMA Newsletter readers, 2 Nuclear Ashes and Outflow in the Eruptive Star Nova I am pleased to congratulate Thomas Kaminski (ESO Chile and MPI Bonn), Hua-Bai Vul 1670 Li (The Chinese University of Hong Kong), Jean Turner (UCLA) and their colleagues 5 Magnetic Fields Shape for their recent publications in Nature, summarized in this Newsletter. Collectively Molecular Cloud Structures 7 A Cosmic Factory of Stars these publications highlight the relative ease and utility of the SMA to observe bright, and Soot – SMA Reveals a chemically rich, galactic sources, and nearby galaxies; and further demonstrate the SMA’s Super Star Cluster of Highly Efficient Star Formation in relatively unique polarization capability. NGC 5253 I would also like to thank members of the SMA correlator group for their continued efforts TECHNICAL HIGHLIGHTS: to provide additional wideband signal-processing capacity. We now regularly observe with bu A SWARM of ROACHs the first tranche of SWARM, albeit at 3/4 speed, in parallel with the aging ASIC correlator, Has Been Deployed for Submillimeter Array Science in service since 2002. While not yet perfect, the additional 2x1.5 GHz bands, coupled with bp Securing Service - Availability the original 2x2 GHz bands of the ASIC correlator and double sideband receiver operation in Hawaii Using Virtual Infrastructure result in an instantaneous bandwidth of 14 GHz. This provides additional flexibility OTHER NEWS during spectral line observations and improves the continuum sensitivity of the SMA by about 40%.
    [Show full text]
  • Resultados Concurso Apex 2007
    Resultados Concurso Apex 2012-B Propuesta: 2012B-20 Investigador Principal: Guido Garay, Universidad de Chile. Título: Mapping The Structure of an Extreme Massive Star Forming Core. Resumen: The infrared dark cloud (IRDC) SDC335 is among the most massive and extreme objects in the recently constructed Spitzer catalogue of IRDCs. Within it are two of the most luminous candidate high mass protostars known. However compared to other candidate massive star forming clouds, SDC335 is in a very quiscent region making it a prime candidate for studying the initial conditions of massive star formation. The remarkable kinetics of SDC335 indicating infall along its _laments have recently been imaged in an ALMA Cycle 0 project. Here we request time to map SDC335 with LABOCA and SABOCA to image the dust continuum emission. In combination with the shorter wavelength data from HiGAL, these APEX observations will allow us to construct temperature and density maps of the region as well as better constrain the nature of the two young massive protostars within it. Tiempo asignado: 10 Horas Propuesta: 2012B-12 Investigador Principal: David R. Rodriguez, Universidad de Chile. Título: Characterizing Phoenix Giant Disks. Resumen: We are studying a new class of _rst-ascent giant stars that are surrounded by substantial dusty disks that are sometimes being accreted by the host giant star| Phoenix Giants. We propose APEX-LABOCA observations of a subset of the most infrared-bright systems to constrain their disk dust mass. Such observations will enable probes into the origin of the Phoenix Giant phenomenon. Tiempo asignado: 8 horas Propuesta: 2012B-17 Investigador Principal: Leopoldo Infante, Universidad de Chile.
    [Show full text]
  • 2009 Annual Report
    Boston University Institute for Astrophysical Research Annual Report June 2009 GLIMPSE/MIPSGAL image of the "Nessie Nebula," an extremely filamentary infrared dark cloud (IRDC). IRDCs host the earliest stages of high-mass star and cluster formation, and many pre- stellar evolutionary phases can be seen in the Nessie Nebula. The color scale shows 3.6 micron emission (blue), 8 micron emission (green) and 24 micron emission (red). Tereasa Brainerd, Director Kimberly Paci, Administrator Table of Contents Introduction 4 Summary 4 Institute Mission 4 Faculty, Staff and Students 4 New Faculty Member 5 Science Highlights 6 Infrared Dark Clouds 6 Intrinsic Alignments of Galaxies 7 Formation Sites of Massive Stars 9 Instrumentation Program 12 Mimir 12 Flexi – A New Initiative 15 PRISM 16 HIPO 18 MIRSI 19 Science Programs 21 Lowell Observatory Partnership 36 PREST 38 Impact on Education 40 Impact on Research and Instrumentation Programs 40 Funding for Instrumentation and Science at the Perkins Telescope 41 Funding for Instrumentation and Science at the Perkins Telescope 41 Future of the Perkins Telescope Beyond 2013 42 Future Activities 43 Seminar Series 45 Accounts, Funding, Expenditures 45 Lowell Operations 45 IAR IDC Return 46 Sponsored Grants and Contracts 47 Appendices 51 2 Appendix A: Publications and Presentations 51 Articles in Refereed Journals 51 Professional Seminars, Colloquia and Conference Talks 53 Conference Proceedings, Abstracts and Poster Papers 53 Other Publications 56 Book Chapters Published 57 Electronic Publications 57 Appendix B: Seminar Series Schedules 58 3 Introduction Summary The Institute for Astrophysical Research marked a successful 11th year in its mission to foster research at Boston University.
    [Show full text]
  • The Impact of Magnetic Fields on the IMF in Star-Forming Clouds Near A
    A&A 545, A46 (2012) Astronomy DOI: 10.1051/0004-6361/201219628 & c ESO 2012 Astrophysics The impact of magnetic fields on the IMF in star-forming clouds near a supermassive black hole S. Hocuk1,D.R.G.Schleicher2, M. Spaans1, and S. Cazaux1 1 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [seyit;spaans;cazaux]@astro.rug.nl 2 Institüt für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] Received 18 May 2012 / Accepted 17 July 2012 ABSTRACT Star formation in the centers of galaxies is thought to yield massive stars with a possibly top-heavy stellar mass distribution. It is likely that magnetic fields play a crucial role in the distribution of stellar masses inside star-forming molecular clouds. In this context, we explore the effects of magnetic fields, with a typical field strength of 38 μG, such as in RCW 38, and a field strength of 135 μG, similar to NGC 2024 and the infrared dark cloud G28.34+0.06, on the initial mass function (IMF) near (≤10 pc) a 107 solar mass black hole. Using these conditions, we perform a series of numerical simulations with the hydrodynamical code FLASH to elucidate the impact of magnetic fields on the IMF and the star-formation efficiency (SFE) emerging from an 800 solar mass cloud. We find that the collapse of a gravitationally unstable molecular cloud is slowed down with increasing magnetic field strength and that stars form along the field lines.
    [Show full text]
  • Gallery Exhibition Catalog
    SOFIA and the Infrared Universe Visually striking and scientifically impactful images of SOFIA science Gallery Exhibition Catalog NASA Ames Research Center • Building 232 Stratospheric Observatory for Infrared Astronomy (SOFIA) Artist Concept 1 Artist’s impression California artist Lynette Cook created an impressionistic montage that includes the SOFIA aircraft set against the types of cosmic phenomena that SOFIA observes, including a star-forming region, the Orion Nebula, comets, a supernova, a variety of biogenic molecules, a protoplanetary disk, Jupiter-like extrasolar planets likely to have moons, and various galax- ies, including the Milky Way. SOFIA’s instruments — cameras, spectrometers and polarimeters — operate at near-, mid- and far-infrared wavelengths, each suited to studying a particular phenomenon. Flying into the stratosphere at 38,000–45,000 feet puts SOFIA above 99 percent of Earth’s infrared-blocking atmosphere, letting astronomers study the solar system and beyond in ways that are not possible from the ground. SOFIA is an 80/20 partnership of NASA and the German Aerospace Center (DLR). Copyright 2000 Lynette Cook. All rights reserved. 2 SOFIA observes the solar system and beyond, gathering data to investigate fundamental astrophys- ical phenomena such as star birth and death, formation of new solar systems, organic compounds in space, nebulae and the ecosystems of galaxies, celestial magnetic fields, black holes at the center of galaxies, and planets, comets and asteroids in our solar system. SOFIA investigates the physical, chemical, and dynamical processes at work in the formation of stars and planets. These data help us understand how massive stars form in various environments. It also investigates astrochemistry, including the chem- ical composition of the gaseous and solid-state material out of which new planets form.
    [Show full text]