Pollucite (Cesium Ore)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Session 1 Sources and Availability of Materials for Lithium Batteries
Session 1: Sources and Availability of Materials for Lithium Batteries Session 1 Sources and Availability of Materials for Lithium Batteries Adrian Griffin Managing Director, Lithium Australia NL ABSTRACT Lithium, as a feedstock for the battery industry, originates from two primary sources: hard-rock (generally spodumene and petalite), and brines. Brine processing results in the direct production of lithium chemicals, whereas the output from hard-rock production is tradeable mineral concentrates that require downstream processing prior to delivery, as refined chemicals, into the battery market. The processors of the concentrates, the 'converters', are the major constraint in a supply chain blessed with abundant mineral feed. The battery industry must overcome the constraints imposed by the converters, and this can be achieved through the application of the Sileach™ process, which produces lithium chemicals from concentrates direct, without the need for roasting. The cathode chemistries of the most efficient lithium batteries have a common thread – a high dependence on cobalt. Battery manufacturers consume around 40% of the current production of cobalt, a by-product of the nickel and copper industries. This means cobalt is at a tipping point – production will not keep up with demand. In the short term, the solution lies in developing alternative cathode compositions, while in the longer term recycling may be the answer. Lithium Australia NL is researching the application of its Sileach™ process to waste batteries to achieve a high-grade, low-cost source of battery materials and, in so doing, ease the supply constraints on cathode metals. To ensure that the battery industry is sustainable, better utilisation of mineral resources, more efficient processing technology, an active battery reprocessing capacity and less reliance on cobalt as a cathode material are all necessary. -
Cesstibtantite Cs(Sb3+
3+ Cesstibtantite Cs(Sb , Na)Ta2(O, OH, F)7 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As cubo-octahedral crystals; granular, to 3 mm. Physical Properties: Fracture: Uneven. Tenacity: Brittle. Hardness = ∼5 VHN = 670– 780 (100 g load). D(meas.) = 6.4–6.6 D(calc.) = 6.49 Fluoresces yellow-orange to orange under LW UV; weak yellowish cathodoluminescence. Optical Properties: Transparent; may be opaque except in thinnest fragments. Color: Colorless to gray, yellow-orange, black. Luster: Adamantine to vitreous. Optical Class: Isotropic. n = > 1.8 R: (480) 13.8, (551) 13.6, (589) 13.6, (656) 13.0 Cell Data: Space Group: Fd3m. a = 10.496–10.515 Z = 8 X-ray Powder Pattern: Kola Peninsula, Russia. 3.04 (10), 1.860 (10), 1.587 (10), 1.012 (10), 3.17 (9), 1.370 (9), 1.017 (9) Chemistry: (1) (2) (3) (1) (2) (3) Nb2O5 2.3 2.8 1.2 CaO 0.1 0.6 Ta2O5 72.0 70.8 72.5 Na2O 1.3 1.7 2.4 Bi2O3 0.7 0.3 0.6 K2O 0.0 0.05 Sb2O3 13.6 14.2 9.7 Cs2O 7.3 7.4 5.4 SnO 0.1 H2O [1.5] [1.2] PbO 1.6 0.8 5.3 Total 98.9 [99.5] [99.0] (1) Kola Peninsula, Russia; by electron microprobe, average of five analyses; (OH)1− confirmed by IR. (2) Do.; by electron microprobe, H2O calculated from structural considerations; corresponds to [Cs0.31(OH, F)0.69]Σ=1.00(Sb0.57Na0.31Pb0.02Bi0.01)Σ=0.91(Ta1.88Nb0.12)Σ=2.00 [O5.69(OH, F)0.31]Σ=6.00. -
RESEARCH Petrogenesis of the Cogenetic
RESEARCH Petrogenesis of the cogenetic Stewart pegmatite-aplite, Pala, California: Regional implications Douglas M. Morton1, J. Blue Sheppard2, Fred K. Miller3, and Cin-Ty A. Lee4 1U.S. GEOLOGICAL SURVEY AND DEPARTMENT OF EARTH SCIENCES, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CALIFORNIA 92521, USA 2STEWART LITHIA MINES, P.O. BOX 382, PALA, CALIFORNIA 92059, USA 3U.S. GEOLOGICAL SURVEY, SPOKANE, WASHINGTON 99201, USA 4DEPARTMENT OF EARTH, ENVIRONMENTAL, AND PLANETARY SCIENCES, RICE UNIVERSITY, HOUSTON, TEXAS 77005, USA ABSTRACT The Stewart pegmatite-aplite dike in Pala, California (USA) is well known as a source of lithium, gem minerals, and unusual phosphate minerals. We reinterpret the petrogenesis of the dike based on a combination of new regional and detailed geochemical isotopic and textural data. The Stewart dike, like other pegmatites in the Pala district and other major pegmatite districts in the northern Peninsular Ranges batholith, is enclosed within gabbro/mafic tonalite. The 40Ar/39Ar method of dating on muscovite from the dike, and U/Pb dating of zircon from the gabbro yield essentially the same age. Initial 87Sr/86Sr is similar for the dike, 0.7042, and the gabbro, 0.7036–0.7037, indicating a juvenile and likely common source for both. The extreme mineralogic, lithologic, and textural variations within the dike are interpreted to have resulted from in situ mineral seg- regation, autometasomatism, and migration of volatiles within an essentially closed system. Contacts between the pegmatite dike and the host gabbro are diffuse. All previous interpretations of the Stewart pegmatite dike invoked an allogenic origin, formed by fluids derived externally from a nearby or distant granitic body, with the fluids subsequently migrating to, and intruding, their gabbro/mafic tonalite host. -
Batterierohstoffe Für Lithiumionenbatterien by Dr
DERA Industrieworkshop Lithium Batterierohstoffe für Lithiumionenbatterien by Dr. Reiner Haus Dorfner ANZAPLAN GmbH, D-92242 Hirschau, Germany www.anzaplan.com Berlin, 27. June 2017 Berlin 06-2017 page 1 © DORFNER Analysenzentrum und Anlagenplanungsgesellschaft mbH COPYRIGHT/DISCLAIMER Neither this publication nor any part thereof may be copied, reprinted, sold, published or distributed without prior written permission. This presentation provides non-binding information only and we do not assume any liability for correctness, accuracy and completeness of the information provided. Dorfner Analysenzentrum und Anlagenplanungsgesellschaft GmbH makes every effort to provide timely and accurate information. Nevertheless, mistakes and confusions may occur. The information and statistical data herein have been obtained from sources we believe to be reliable. Nevertheless, such information has not been independently verified and we do not assume any liability. Any opinions or estimates herein reflect the judgment of Dorfner Analysenzentrum und Anlagenplanungsgesell- schaft GmbH at the date of publication and are subject to changes at any time without notice. This applies especially to information reflecting estimations and technical standards since they are subject to changes over time. Dorfner Analysenzentrum und Anlagenplanungsgesellschaft GmbH does not intend, and does not assume any liability or obligation whatsoever, to update these forward-looking statements and/or estimations or to conform them to future events and developments. Berlin 06-2017 page 2 © DORFNER Analysenzentrum und Anlagenplanungsgesellschaft mbH Dorfner Group of Companies Renowned in the Industrial and Speciality Minerals Business ° Founded 1895 ° More than 100 years experience in industrial and specialty minerals processing ° Family owned ° Independent Berlin 06-2017 page 3 © DORFNER Analysenzentrum und Anlagenplanungsgesellschaft mbH Dorfner ANZAPLAN The Service Company ° Founded in 1985 to become the most independent venture within the Dorfner Group. -
Lithium 2017
2017 Minerals Yearbook LITHIUM [ADVANCE RELEASE] U.S. Department of the Interior September 2020 U.S. Geological Survey Lithium By Brian W. Jaskula Domestic survey data and tables were prepared by Annie Hwang, statistical assistant. In the United States, one lithium brine operation with an cobalt oxide and 2,160 kg of lithium-nickel-cobalt-aluminum associated lithium carbonate plant operated in Silver Peak, oxide (Defense Logistics Agency Strategic Materials, 2017). At NV. Domestic and imported lithium carbonate, lithium yearend 2017, the NDS held 540 kg of lithium-cobalt oxide and chloride, and lithium hydroxide were consumed directly 1,620 kg of lithium-nickel-cobalt-aluminum oxide. in industrial applications and used as raw materials for downstream lithium compounds. In 2017, lithium consumption Production in the United States was estimated to be equivalent to The U.S. Geological Survey (USGS) collected domestic 3,000 metric tons (t) of elemental lithium (table 1) [16,000 t production data for lithium from a voluntary canvass of the of lithium carbonate equivalent (LCE)], primarily owing to only U.S. lithium carbonate producer, Rockwood Lithium Inc. demand for lithium-based battery, ceramic and glass, grease, (a subsidiary of Albemarle Corp. of Charlotte, NC). Production pharmaceutical, and polymer products. In 2017, the gross weight and stock data collected from Rockwood Lithium were withheld of lithium compounds imported into the United States increased from publication to avoid disclosing company proprietary data. by 7% and the gross weight of exports increased by 29% from The company’s 6,000-metric-ton-per-year (t/yr) Silver Peak those in 2016. -
Extraction of Zinnwaldite from Mining and Processing Wastes
Sborník vědeckých prací Vysoké školy báňské – Technické univerzity Ostrava Řada hornicko-geologická Volume LI (2005), No.2, p. 9-16, ISSN 0474-8476 Jiří BOTULA*, Pavel RUCKÝ**, Vlastimil ŘEPKA*** EXTRACTION OF ZINNWALDITE FROM MINING AND PROCESSING WASTES ZÍSKÁVÁNÍ CINVALDITU Z ODPADŮ PO TĚŽBĚ A ÚPRAVĚ Abstract Lithium is the lightest metal in the periodic table of elements, whose world reserves in the available deposits are estimated to be 20Mt, and in the Czech Republic Li makes up about 1% of the world reserves as the residual element in Sn-W ore mineralization. Significant reserves of Li are also represented in waste from the former mining and processing of Sn-W ores in the Krušné hory region, containing about 0.2% Li. The world consumption of lithium is estimated 6 kt/year and a gradual increase is expected, as well as an increase of the price. With regard to the fact that the consumption of Li in the Czech Republic is covered by the import, it would be suitable to eliminate this dependence to some extent and utilize the Czech resources of Li for production. At the beginning, the easiest method seems to be utilization of the present waste piles from the gravity processing of Sn-W ores in the estimated amount of 3.5 Mt in the former deposit of Cínovec. This paper is devoted to the possibilities of extracting Li-concentrates from raw materials. Abstrakt Lithium je nejlehčím kovem periodické soustavy prvků, jehož světové zásoby v dostupných ložiscích se odhadují na 20Mt, přičemž v České republice tvoří Li jako doprovodný prvek Sn-W zrudnění přibližně 1% světových zásob. -
A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits
Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30, 2005 © 2006 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved. Printed in Canada. 0964-1823/00 $17.00 + .00 A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits JULIE B. SELWAY, FREDERICK W. BREAKS Precambrian Geoscience Section, Ontario Geological Survey 933 Ramsey Lake Road, Sudbury, ON P3E 6B5 ANDREW G. TINDLE Department of Earch Sciences, Open University Milton Keynes, Buckinghamshire, UK MK7 6AA (Received February 16, 2004; accepted September 20, 2004) Abstract — Rare-element pegmatites may host several economic commodities, such as tantalum (Ta- oxide minerals), tin (cassiterite), lithium (ceramic-grade spodumene and petalite), and cesium (pollucite). Key geological features that are common to pegmatites in the Superior province of Ontario and Manitoba, Canada, and in other large tantalum deposits worldwide, can be used in exploration. An exploration project for rare-element pegmatites should begin with an examination of a regional geology map. Rare-element pegmatites occur along large regional-scale faults in greenschist and amphibolite facies metamorphic terranes. They are typically hosted by mafic metavolcanic or metasedimentary rocks, and are located near peraluminous granite plutons (A/CNK > 1.0). Once a peraluminous granite pluton has been identified, then the next step is to determine if the pluton is barren or fertile. Fertile granites have elevated rare element contents, Mg/Li ratio < 10, and Nb/Ta ratio < 8. They commonly contain blocky K-feldspar and green muscovite. Key fractionation indicators can be plotted on a map of the fertile granite pluton to determine the fractionation direction: presence of tourmaline, beryl, and ferrocolumbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk granite samples. -
Download the Scanned
ON POLLUCITE W. E. RrcnMoNDAND F. A. GoNvnn, H araard.U niversi.ty, C ambrid.ge, M ass' 1. POLLUCITE AND PETALITE FROM GREENWOOD,MAINE Introduction Several years ago in the course of feldspar mining at a quarry at the base of Noyes Mountain in Greenwood, Maine, a mineral supposed to be spodumene was found in quantity and about eight tons of it were taken to the grinding mill at West Paris, Maine. There it lay in a bin for a year or more before it was examined by the late W. D' Nevel of Andover, Maine, who identified the mineral as petalite. He sorted out the petalite and the rejects were sacked and retained until the summer of t937. On a visit to the mill that year Richmond selected a quantity of petalite for the Harvard Mineralogical Museum and also carried away some of the waste reject material for examination. This proved, after a delay of months, to contain glassy crystals of pollucite. The effort to securemore of this mineral was unsuccessful,however, sinceon returning to the mill it was found that the lot had been sent through the grinder. Occurrence.The specimensstudied are clearly replacementsof petalite by pollucite and quartz. The pollucite is for the most part massive granular but preserves the laminated structure peculiar to the petalite with which it is associated.Some layers are composed of quartz grains, and elsewhere there are fractures showing indistinct faces of pollucite crystals. In a few cavities in massivepollucite the walls are covered with small crystals of pollucite, the first to be reported from an American locality. -
Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research. -
Spodumene and Quartz Intergrowth – Textural and Genesis Point of View
Geophysical Research Abstracts Vol. 21, EGU2019-13404, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Spodumene and Quartz Intergrowth – Textural and Genesis Point of View Alexandre Lima and Filipa Dias Faculty of Sciences of University of Porto, Institute of Earth Sciences, Pole of University of Porto (Portugal) ([email protected]) The observation of spodumene quartz intergrowth both in the field and in microscopy is a common texture found in Lithium-rich pegmatites from different parts around the world. However, this texture may result from different environments of formation, it may be a primary texture or a secondary texture resultant from secondary reactions or posterior deformation. This study will approach the meaning of these terminologies and how different types of spodumene and quartz intergrowth can have similar textures but completely different conditions of formation. The amazing variety of textures and crystal morphologies in pegmatites are related to the crystal growth rate and to the degree of undercooling of the pegmatitic melt (the difference between the liquidus temperature and the actual temperature of the magma) resultant from non-equilibrium kinetic factors (Vernon, 2004; Webber and Simmons, 2007; London, 2008). The fact that pegmatites with symplectites of SQI originated from petalite seems to indicate that the rock after being solid still had some time at an elevated temperature to try to re-equilibrate its mineral phases while cooling down, indicating a low-to-moderate degree of undercooling. Another indication for its relatively low degree of undercooling is the lack of abundant textures reflecting a high degree of undercooling, such as skeletal, and radial crystals morphologies. -
AM30 616.Pdf
QUANTITATIVE SPECTROCHEMICAL EXAMINATION OF THE MINOR CONSTITUENTS IN POLLUCITE L. H. AHnnNs, Go o er n m ent M etallur gicaI L abor at or y, W itw ater sr an d U niner s ity, J ohonnesburg, South AJrica. Cor.rrnNrs Introduction. 616 Brief outline of analytical principles. 617 Quantitative analysis of pollucite samples. 618 Discussion: (1) Rubidium and thallium. 619 Quantitative analysis of a lepidolite sample.. 619 (2) Gallium. 620 (3) Lithium. 620 Radioactive disintegration of rubidium. 621 Acknowledgments... 622 References. 622 ABSTRACT Details are given of a quantitative spectrochemical analysis for Tl, Rb, Li, Ga, and K, in two samples of poilucite, one from Karibib, South West Africa, and the other from near Norway, Maine, U.S.A., and the presence of these elements (excluding potassium) within the pollucite lattice is discussed. The ratio, Rb/Tl, is approximately 50 (Karibib) and 180 (Maine). Both ratios are within the limits of 40 and 440 found in 42 analyses of various Rb- and Tl-containing minerals, chiefly South AIrican, data on which will be published later. Although the former ratio (50) is considerably lower than the mean ratio of the 42 analyses (150) it is worth noting that the mean Rb/TI ratio for two samples of lepidolite from the same locality was found to be almost identical (70), providing further evidence that Rb and TI enter different crystal lattices with equal facility. The presence of a trace of strontium is discussed, and a radioactive origin, involving the transition RbE?-51s2, is suggested. h.rrnooucttoN Recently, a sample of pollucite from K.aribib, South West Africa, was examined at the Union Geological Survey, South Africa, by Nel.l This investigation included a qualitative spectrochemicalanalysis by Dr. -
New Family of Silicate Phases with the Pollucite Structure
Zeitschrift fUr Kristallographie 175, 1-7 (1986) @ by R. Oldenbourg Verlag, Miinchen 1986 New family of silicate phases with the pollucite structure Leticia M. Torres-Martinez and A. R. West University of Aberdeen, Department of Chemistry, Meston Walk, Old Aberdeen AB9 2UE, Scotland, United Kingdom Received: April 10, 1984; in final form: February 14, 1986 Pollucite structure I RbzMgSis012 type Abstract. A new family of silicate phases, CszMSi5012: M = Be, Mg, Fe, Co, Ni, Zn, Cd; RbzMSi5012: M = Mg, Fe, (Co, Zn) has been prepared with the cubic pollucite structure, a in the range 13.3 to 13.8 A, space group Ia3d, Z = 8. The structure of one, RbzMgSi5012' has been refined to R = 10.8% using X-ray powder data. The structures are built of a 3D, [MSi50u]z- framework containing large, 12-coordinated cavities for the alkali cations. These structures are unusual in that a wide range of divalent cations have partially replaced Si4+ in the silicate anion framework. Introduction Pollucite, CsAISiz06, is a framework alumino silicate containing large, 12- coordinated cavities suitable for occupation by Cs+ ions (Strunz, 1936; Naray-Szabo, 1938; Newnham, 1967). The unit cell is cubic with space group Ia3d, Z = 16. Similar alumino-silicate frameworks are present in analcite, NaAISiz06 . HzO and leucite, KAISiz06 (Taylor, 1938; Beattie, 1954; Knowles et aI., 1965; Wyart, 1941; Deer et aI., 1963; Wyckoff, 1968), although leucite is tetragonal below 6050 (Wyart, 1941; Deer et aI., 1963; Wyckoff, 1968). Structural studies on these phases are complicated by the occurrence of twinning in tetragonalleucite (Mazzi et aI., 1976) and by Si, Al disorder in the alumino silicate framework.