Exploring the Chemistry and Evolution of the Isomerases

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Chemistry and Evolution of the Isomerases Exploring the chemistry and evolution of the isomerases Sergio Martínez Cuestaa, Syed Asad Rahmana, and Janet M. Thorntona,1 aEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved January 12, 2016 (received for review May 14, 2015) Isomerization reactions are fundamental in biology, and isomers identifier serves as a bridge between biochemical data and ge- usually differ in their biological role and pharmacological effects. nomic sequences allowing the assignment of enzymatic activity to In this study, we have cataloged the isomerization reactions known genes and proteins in the functional annotation of genomes. to occur in biology using a combination of manual and computa- Isomerases represent one of the six EC classes and are subdivided tional approaches. This method provides a robust basis for compar- into six subclasses, 17 sub-subclasses, and 245 EC numbers cor- A ison and clustering of the reactions into classes. Comparing our responding to around 300 biochemical reactions (Fig. 1 ). results with the Enzyme Commission (EC) classification, the standard Although the catalytic mechanisms of isomerases have already approach to represent enzyme function on the basis of the overall been partially investigated (3, 12, 13), with the flood of new data, an integrated overview of the chemistry of isomerization in bi- chemistry of the catalyzed reaction, expands our understanding of ology is timely. This study combines manual examination of the the biochemistry of isomerization. The grouping of reactions in- chemistry and structures of isomerases with recent developments volving stereoisomerism is straightforward with two distinct types cis-trans in the automatic search and comparison of reactions. Results (racemases/epimerases and isomerases), but reactions obtained using our de novo reaction-based clustering approach entailing structural isomerism are diverse and challenging to clas- were compared with the EC classification. sify using a hierarchical approach. This study provides an overview of which isomerases occur in nature, how we should describe and Results classify them, and their diversity. Unlike other EC classes, the overall chemistry of isomerases is diverse, especially at the subclass level (Fig. 1A). Some isomer- BIOCHEMISTRY isomerases | enzyme reaction | EC-BLAST | reaction similarity | ases change stereochemistry [racemases and epimerases (EC 5.1) EC classification and cis-trans isomerases (EC 5.2)]; the rest catalyze major structural rearrangements and mirror the chemistry of other EC he 3D structure and function of biomolecules are intimately primary classes but act intramolecularly [intramolecular oxido- Tlinked. One of the most outstanding attributes of enzymes is reductases (EC 5.3) evoke oxidoreductases (EC 1), intra- their ability to recognize similar molecules, such as isomers, se- molecular transferases (EC 5.4) are designated from transferases (EC 2), and intramolecular lyases (EC 5.5) are designated from lectively. For example, glutamate racemase catalyzes the inter- lyases (EC 4)]. Finally, other isomerases (EC 5.99) refer to conversion between the isomers L-glutamate and D-glutamate, isomerases that do not fit any of the above and exhibit even with the first being one of the 20 amino acids used to build greater diversity. Only three subclasses, EC 5.1, EC 5.3, and EC proteins, whereas the second is an essential component of bac- 5.4, are further divided into sub-subclasses depending on dif- terial cell walls (1). Isomers of the same drug are often distin- ferent attributes of the reaction: type of substrate, bond change, guished; for example, the tragic story of thalidomide unveiled how subtle changes in the spatial arrangement of atoms can have Significance drastic consequences in their biological effect (2). The isomerases, which catalyze these interconversions, are involved in the central metabolism of most living organisms and Biologists are now challenged with the functional interpreta- have important applications in organic synthesis, biotechnology, tion of vast amounts of sequencing data derived from geno- and drug discovery (3–5). In comparison to other classes, isom- mics initiatives. Among all known proteins, the function of erases are a small class involving unimolecular reactions, which enzymes is probably the most investigated and best described are easy to analyze manually. The study of the biological mecha- at the molecular level. Together with enzymes changing the nisms of isomerases provided fundamental insights into the elec- redox state of substrates and transferring chemical groups trostatic principles of enzyme catalysis (6) and helped to reveal the between molecules, isomerases catalyze interconversion of connection between host–parasite interactions and cancer (7). The isomers, molecules sharing the same atomic composition but challenges of automatically detecting stereoisomerization in re- different arrangements of chemical groups. This study presents actions also make their chemistry technically interesting (8–11). a way of describing isomerases that will give biochemists a method A standard description of the biological function of genes and to search and utilize reaction data in a more knowledge- proteins is essential to interpret and report the outcome of se- based manner. It captures our current knowledge, charac- quencing initiatives. Scientists have traditionally developed elab- terizing the chemistry of isomerization in biology, and will orate classification systems to group functions in a hierarchical contribute to improving the annotation of sequences derived manner. Among the existing approaches, enzyme function is from genomes. probably the best described at the molecular level, due to the long- standing effort of a team of enzymologists from the Enzyme Author contributions: S.M.C., S.A.R., and J.M.T. designed research; S.M.C. performed re- Commission (EC) of the Nomenclature Committee of the In- search; S.A.R. contributed new reagents/analytic tools; S.M.C. and J.M.T. analyzed data; ternational Union of Biochemistry and Molecular Biology (NC- and S.M.C. and J.M.T. wrote the paper. IUBMB) to classify enzyme function systematically. The EC The authors declare no conflict of interest. classification is the most widely used system and uses four-digit This article is a PNAS Direct Submission. identifiers known as the EC numbers describing different levels Freely available online through the PNAS open access option. of the overall chemistry being catalyzed by an enzyme. For instance, 1To whom correspondence should be addressed. Email: [email protected]. alanine racemase is an isomerase (EC 5) catalyzing the racemiza- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. tion (EC 5.1) of the amino acid (EC 5.1.1) Ala (EC 5.1.1.1). This 1073/pnas.1509494113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1509494113 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 AB Fig. 1. Analysis of the EC classification of isomerases. (A) Distribution of isomerases in six subclasses, with the type of isomerism highlighted. Different attributes of the reaction are used to divide subclasses into sub-subclasses. (B) Distribution of isomerase reactions by bond changes. The symbol “↔” indicates change of bond order. reaction center, and chemical group transferred (Fig. 1A). An For instance, all reactions in EC 5.1 are only C(R/S), except the approach using a combination of manual analysis informed by an conversion of L-phenylalanine into D-phenylalanine, where automatic comparison and clustering of reactions was contrasted L-phenylalanine racemase (EC 5.1.1.11) catalyzes the cleavage to the EC nomenclature to suggest key determinants involved and formation of two O–P bonds and two O–H bonds from ATP in the classification of isomerization in biology (SI Appendix, and water molecules. EC 5.2 is mainly C(E/Z), and C–Hand Fig. S1A). C–C ↔ C=C are rare. The rest of the subclasses involve a more complex combination of bond changes and reaction centers. Isomerase Reaction Data. At the time of writing, the NC-IUBMB Despite being rare, 12 bond changes (40% of the total) and 468 (the body that oversees enzyme nomenclature) listed 5,385 active reaction centers (79% of the total) are distinctive of one subclass four-digit EC numbers in the classification, 245 of which corre- (SI Appendix, Table S1). For example, the O–O bond in ring spond to isomerase EC numbers. The EC assigns an EC number systems is only broken by EC 5.3 enzymes present in the arachi- to an enzyme and, based on experimental evidence, identifies its donic acid metabolism: prostaglandin synthases D, E, and I (EC “dominant” reaction, even though the enzyme might be pro- 5.3.99.2, EC 5.3.99.3, and EC 5.3.99.4) and thromboxane-A syn- miscuous and able to catalyze many different reactions. Bi- thase (EC 5.3.99.5). These enzymes catalyze the opening of epi- ological databases, such as the Kyoto Encyclopedia of Genes and dioxy bridges in prostaglandins. On the other hand, abundant bond Genomes (KEGG; which is very widely used), rely on this so- changes, such as C(R/S), are often present in multiple subclasses. called “IUBMB reaction,” which is chosen by the KEGG as the representative reaction for the group of reactions associated with Isomerase Reactants. All isomerase reactions, as defined in the the same EC number. Only the 219 isomerase EC numbers with KEGG (15), are reversible, with both substrates and products chemical structures available for all reactants and balanced equally designated as reactants. Most reactions are unimolecular IUBMB reactions were used in this analysis (Materials and Methods). (a single substrate leads to a single product); the only exception This dataset represents the most complete compilation of is the interconversion catalyzed by L-phenylalanine racemase isomerase chemistry existing in nature that is known today (SI (discussed above). This enzyme is an ATP-hydrolyzing isomerase Appendix, Table S5).
Recommended publications
  • A Practical Approach to Chiral Separations by Liquid Chromatography
    A Practical Approach to Chiral Separations by Liquid Chromatography Edited by G. Subramanian Weinheim • New York VCH Basel • Cambridge • Tokyo Contents 1 An Introduction to Enantioseparation by Liquid Chromatography Charles A. White and Ganapathy Subramanian 1.1 Introduction 1 1.1.1 What is Chirality? 1 1.1.2 What Causes Chirality? 2 1.1.3 Why is Chirality Important? 4 1.2 Industries which Require Enantioseparations 4 1.2.1 Pharmaceutical Industry 4 1.2.2 Agrochemical Industry 5 1.2.3 Food and Drink Industry 6 1.2.4 Petrochemical Industry 6 1.3 Chiral Liquid Chromatography 7 1.3.1 Type I Chiral Phases 8 1.3.2 Type II Chiral Stationary Phases 10 1.3.3 Type III Chiral Stationary Phases 10 1.3.3.1 Microcrystalline Cellulose Triacetate and Tribenzoate 10 1.3.3.2 Cyclodextrins 11 1.3.3.3 Crown Ethers 11 1.3.3.4 Synthetic Polymers •. 12 1.3.4 Type IV Chiral Stationary Phases 13 1.3.5 Type V Chiral Stationary Phases 13 1.3.6 Mobile Phase Additives 14 1.3.6.1 Metal Complexes 14 1.3.6.2 Ion-pair Formation 15 1.3.6.3 Uncharged Chiral Additives 15 1.4 The Future 16 2 Modeling Enantiodifferentiation in Chiral Chromatography Kenny B. Lipkowitz 2.1 Introduction 19 2.2 Modeling 19 # VIII Contents 2.3 Computational Tools 22 2.3.1 Quantum Mechanics 22 2.3.2 Molecular Mechanics 23 2.3.3 Molecular Dynamics 24 2.3.4 Monte Carlo Simulations 24 2.3.5 Graphics 25 2.4 Modeling Enantioselective Binding in Chromatography 26 2.4.1 Type I CSPs 26* 2.4.2 Type II CSPs 41 2.4.3 Type III CSPs 44 2.5 Related Studies 49 2.6 Summary 50 3 Regulatory Implications and Chiral Separations Jeffrey R.
    [Show full text]
  • A Reminder… Chirality: a Type of Stereoisomerism
    A Reminder… Same molecular formula, isomers but not identical. constitutional isomers stereoisomers Different in the way their Same connectivity, but different atoms are connected. spatial arrangement. and trans-2-butene cis-2-butene are stereoisomers. Chirality: A Type of Stereoisomerism Any object that cannot be superimposed on its mirror image is chiral. Any object that can be superimposed on its mirror image is achiral. Chirality: A Type of Stereoisomerism Molecules can also be chiral or achiral. How do we know which? Example #1: Is this molecule chiral? 1. If a molecule can be superimposed on its mirror image, it is achiral. achiral. Mirror Plane of Symmetry = Achiral Example #1: Is this molecule chiral? 2. If you can find a mirror plane of symmetry in the molecule, in any achiral. conformation, it is achiral. Can subject unstable conformations to this test. ≡ achiral. Finding Chirality in Molecules Example #2: Is this molecule chiral? 1. If a molecule cannot be superimposed on its mirror image, it is chiral. chiral. The mirror image of a chiral molecule is called its enantiomer. Finding Chirality in Molecules Example #2: Is this molecule chiral? 2. If you cannot find a mirror plane of symmetry in the molecule, in any conformation, it is chiral. chiral. (Or maybe you haven’t looked hard enough.) Pharmacology of Enantiomers (+)-esomeprazole (-)-esomeprazole proton pump inhibitor inactive Prilosec: Mixture of both enantiomers. Patent to AstraZeneca expired 2002. Nexium: (+) enantiomer only. Process patent coverage to 2007. More examples at http://z.umn.edu/2301drugs. (+)-ibuprofen (-)-ibuprofen (+)-carvone (-)-carvone analgesic inactive (but is converted to spearmint oil caraway oil + enantiomer by an enzyme) Each enantiomer is recognized Advil (Wyeth) is a mixture of both enantiomers.
    [Show full text]
  • Pyrethroid Stereoisomerism: Diastereomeric and Enantiomeric Selectivity in Environmental Matrices – a Review
    Orbital: The Electronic Journal of Chemistry journal homepage: www.orbital.ufms.br e-ISSN 1984-6428 | Vol 10 | | No. 4 | | Special Issue June 2018 | REVIEW Pyrethroid Stereoisomerism: Diastereomeric and Enantiomeric Selectivity in Environmental Matrices – A Review Cláudio Ernesto Taveira Parente*, Claudio Eduardo Azevedo-Silva, Rodrigo Ornellas Meire, and Olaf Malm Laboratório de Radioisótopos, Instituto de Biofísica, Universidade Federal do Rio de Janeiro. Av. Carlos Chagas Filho s/n, bloco G, sala 60, subsolo - 21941-902. Cidade Universitária, Rio de Janeiro, RJ. Brasil. Article history: Received: 30 July 2017; revised: 10 October 2017; accepted: 08 March 2018. Available online: 11 March 2018. DOI: http://dx.doi.org/10.17807/orbital.v10i4.1057 Abstract: Pyrethroids are chiral insecticides characterized by stereoisomerism, which occurs due to the presence of one to three asymmetric (chiral) carbons, generating one or two pairs of cis/trans diastereomers, and two or four pairs of enantiomers. Diastereomers have equal chemical properties and different physical properties, while enantiomer pairs, have the same physicochemical properties, with exception by the ability to deviate the plane of polarized light to the right or to the left. However, stereoisomers exhibit different toxicities at the metabolic level, presenting enzyme and receptor selectivity in biological systems. Studies in aquatic organisms have shown that toxic effects are caused by specific enantiomers (1R-cis and 1R-trans) and that those cause potential estrogenic effects (1S-cis and 1S- trans). In this context, the same compound can have wide-ranging effects in organisms. Therefore, several studies have highlighted pyrethroid stereochemical selectivity in different environmental matrices. The analytical ability to distinguish the diastereomeric and enantiomeric patterns of these compounds is fundamental for understanding the processes of biotransformation, degradation environmental behavior and ecotoxicological impacts.
    [Show full text]
  • Chapter 5: Stereoisomerism [Sections: 5.1-5.9]
    Chapter 5: Stereoisomerism [Sections: 5.1-5.9] 1. Identifying Types of Isomers Same MolecularFormula? NO YES A B C compounds are not isomers Same Connectivity? NO YES D E Different Orientation constitutional of Substituents isomers in Space? verify by: A vs B? • have different names (parent name is different or numbering [locants] of substituents) A vs C? • nonsuperimposable C vs D? YES NO D vs E? C vs E? B vs E? stereoisomers same molecule verify by: • both must have the same name • two must be superimposable P: 5.57 2. Defining Chirality • a chiral object is any object with a non-superimposable mirror image • the mirror image of a chiral object is not identical (i.e., not superimposable) • an achiral object is any object with a superimposable mirror image • the mirror image of an achiral object is identical (i.e., superimposable) # different types of groups and/or atoms the central atom is attached to: mirror image superimposable? chiral? • molecules can also be chiral • the mirror image of a chiral molecule is non-superimposable and is therefore an isomer • since the two mirror image compounds have the same connectivity, they are NOT constitutional isomers • the two mirror image compounds are nonsuperimposable due to different orientations of substituents in space: stereoisomers • non-superimposable stereoisomers that bear a mirror-image relationship are enantiomers • stereoisomers that do NOT bear a mirror-image relationship are diastereomers stereoisomers Mirror Image Relationship? NO YES diastereomers enantiomers verify by: verify by: • names differ by cis/trans, E/Z or • names differ by by having different R and S having exactly configurations at one or more opposite R and S chirality centers (but not exactly configurations at opposite configurations from each every chirality center other) 3.
    [Show full text]
  • University of Warwick Institutional Repository
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/3994 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. STUDIES OF HEXAHELICENE BONDED PHASES FOR THE HPLC RESOLUTION OF ENANTIOMERS by AURORA DEL ALAMO A thesis submitted in partial fulfilment of the requirements for the degreeof Doctor of Philosophy at the University of Warwick Department of Chemistry University of Warwick June, 1995 CONTENTS ChaDter One Pg LITERATURE REVIEW: CHIRAL LIQUID CHROMATOGRAPHY 1.1 Introduction 1 1.2 Resolution of Enantiomers 3 1.3 Preparation of FIPLC Chiral Stationary Phases 4 1.4 Development of Commercially Available 5 Direct Chiral Resolution Phases 1.4.1 Chiral Ligand Exchange Chromatography (LEC) 6 1.4.2 Synthetic Multiple Interaction CSPs 8 1.4.3 Protein Chiral Stationary Phases 13 1.4.4 Cyclodextrin CSPs 18 1.4.5 Polysaccharide Phases 31 1.4.6 Synthetic Polymer CSPs 36 1.4.7 Chiral Crown Ethers 40 Chapter Two LITERATURE REVIEW: SOME ASPECTS OF THE CHEMISTRY AND PROPERTIES OF HELICENES % 2.1 Helicenes 45 2.2 Synthesesof Hexahelicenes: Methods and their Problems 46 2.2.1 Non-Photochemical Syntheses 46 2.2.2 Photochemical Syntheses 48 2.2.3 Asymmetric Synthesesof Helicenes: 56 2.2.3.1 Asymmetric Synthesis
    [Show full text]
  • Stereoisomerism and Chirality Atin Shanker
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 14, Issue 6 Ser. I (June 2021), PP 10-12 www.iosrjournals.org Stereoisomerism and Chirality Atin Shanker Abstract The purpose of this study is to give a basic introduction to stereoisomerism and chirality. In this paper I discuss about the mechanisms involved behind their formation and their types. Chiral compounds play an important role in daily organic working. Homochirality, a controversial topic, is also discussed by showcasing its unconventional occurrence and results from a computer stimulated study by Chen Y, Ma W. Types of stereoisomers and how they occur in nature has also been discussed. This review will give you a basic idea about the opticality involved inorganic compounds specifically stereoisomers and its subsidiaries. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 14-06-2021 Date of Acceptance: 28-06-2021 --------------------------------------------------------------------------------------------------------------------------------------- I. Introduction Stereochemistry, Term originated c. 1878 by Viktor Meyer (1848–97) for the study of stereoisomers (see isomer). Louis Pasteur had shown in 1848 that tartaric acid has optical activity and that this depends on molecular asymmetry, and Jacobus H. van‟t Hoff and Joseph-Achille Le Bel (1847–1930) had independently explained in 1874 how a molecule with a carbon atom bonded to four different groups has two mirror-image forms. Stereochemistry deals with stereoisomers and with asymmetric synthesis. John Cornforth (b. 1917) and Vladimir Prelog (1906–98) shared a 1975 Nobel Prize for work on stereochemistry and stereoisomerism of alkaloids, enzymes, antibiotics, and other natural compounds. Beginning early in the 19th century, developments in crystallography, optics, and chemistry in France set the stage for the discovery of molecular chirality by Louis Pasteur in 1848.
    [Show full text]
  • Exploring the Chemistry and Evolution of the Isomerases
    Exploring the chemistry and evolution of the isomerases Sergio Martínez Cuestaa, Syed Asad Rahmana, and Janet M. Thorntona,1 aEuropean Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved January 12, 2016 (received for review May 14, 2015) Isomerization reactions are fundamental in biology, and isomers identifier serves as a bridge between biochemical data and ge- usually differ in their biological role and pharmacological effects. nomic sequences allowing the assignment of enzymatic activity to In this study, we have cataloged the isomerization reactions known genes and proteins in the functional annotation of genomes. to occur in biology using a combination of manual and computa- Isomerases represent one of the six EC classes and are subdivided tional approaches. This method provides a robust basis for compar- into six subclasses, 17 sub-subclasses, and 245 EC numbers cor- A ison and clustering of the reactions into classes. Comparing our responding to around 300 biochemical reactions (Fig. 1 ). results with the Enzyme Commission (EC) classification, the standard Although the catalytic mechanisms of isomerases have already approach to represent enzyme function on the basis of the overall been partially investigated (3, 12, 13), with the flood of new data, an integrated overview of the chemistry of isomerization in bi- chemistry of the catalyzed reaction, expands our understanding of ology is timely. This study combines manual examination of the the biochemistry of isomerization. The grouping of reactions in- chemistry and structures of isomerases with recent developments volving stereoisomerism is straightforward with two distinct types cis-trans in the automatic search and comparison of reactions.
    [Show full text]
  • Application of Chiral Sulfoxides in Asymmetric Synthesis
    MOJ Bioorganic & Organic Chemistry Review Article Open Access Application of chiral sulfoxides in asymmetric synthesis Abstract Volume 2 Issue 2 - 2018 Chiral sulfoxides are used as a toolbox for the synthesis of enantiomeric/diastereomeric compounds, which are used as precursors for the pharmaceutically/chemically Ganapathy Subramanian Sankaran,1 important molecules. The current review focuses on applying these chiral sulfoxides Srinivasan Arumugan,2 Sivaraman towards the synthesis of the compounds having stereogenic center. In general, the 3 stereogenic center induced by the sulfoxide is able to direct the stereochemistry of Balasubramaniam 1University of Massachusetts Medical School, USA further transformation necessary to complete the total synthesis of bioactive molecules. 2Department of Science and Humanity (Chemistry), Karunya The nature of the reactive conformation of the sulfoxide is strongly dependent on the Institute of Technology and Sciences, India nature of the substituents at C-α and/or C-β. 3Indian Institute of Technology Madras, Chennai, India Correspondence: Sivaraman Balasubramaniam, Senior Research Scientist, Indian Institute of Technology Madras, Chennai, India, Tel +9177 1880 5113, Email [email protected] Received: March 07, 2018 | Published: March 29, 2018 Introduction occurred in a further oxidation step of one of the sulfinyl enantiomer to sulfone.13 The titanium-binaphthol complex catalyzes not only the Over the last three decades, the sulfinyl group has received asymmetric oxidation but also the kinetic
    [Show full text]
  • A Review on Chiral Chromatography and Its Application to the Pharmaceutical Industry
    Chemsearch Journal 2(1): 8 - 11 Publication of Chemical Society of Nigeria, Kano Chapter CHIRAL CHROMATOGRAPHY AND ITS APPLICATION TO THE PHARMACEUTICAL INDUSTRY: A REVIEW Mudi, S. Y. and *Muhammad, A. Department of Pure and Industrial Chemistry, Bayero University, PMB 3011, Kano. *Correspondence author: [email protected] ABSTRACT Chiral chromatographic enantioseparation has been in practice by researchers. There has been a considerable interest in the synthesis and separation of enantiomers of organic compounds especially because of their importance in the biochemical and pharmaceutical industries. Often, these compounds are purified rather than being produced by chiral-specific synthesis. We herein present a general discussion that focuses on the chromatographic enantioseparation, which we hope will be useful to chromatographic and pharmaceutical industries. Keywords: Chiral chromatography, enantioseparation, pharmaceutical industry. INTRODUCTION giving differing affinities between the analytes Chromatography is the collective term for a set of (Schreier et al., 1995). laboratory techniques for the separation of mixtures. It The main goal of this review is to provide a brief involves passing a mixture dissolved in a "mobile overview of chiral separations to researchers who phase" through a “stationary phase”, which separates are versed in the area of analytical separations but the analyte from other compounds in the mixture unfamiliar with chiral separations. This review based on differential partitioning between the mobile highlights significant issues of the chiral and stationary phases. Subtle differences in a separations and provides salient examples from compound's partition coefficient result in differential specific classes of chiral selectors where retention on the stationary phase and thus effecting appropriate. the separation (Laurence and Christopher, 1989; Pascal et al., 2000).
    [Show full text]
  • Nonlinear Effects in Enantioselective Organometallic Catalysis H
    Nonlinear Effects in Enantioselective Organometallic Catalysis H. B. Kagan To cite this version: H. B. Kagan. Nonlinear Effects in Enantioselective Organometallic Catalysis. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2007, 62 (6), pp.731-738. 10.2516/ogst:2007051. hal-02005764 HAL Id: hal-02005764 https://hal.archives-ouvertes.fr/hal-02005764 Submitted on 4 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 07021_O_Kagan 28/11/07 11:10 Page 731 Oil & Gas Science and Technology – Rev. IFP, Vol. 62 (2007), No. 6, pp. 731-738 Copyright © 2007, Institut français du pétrole DOI: 10.2516/ogst:2007051 Dossier Special Issue in Honour of Yves Chauvin Numéro spécial en l’honneur de Yves Chauvin Nonlinear Effects in Enantioselective Organometallic Catalysis* H.B. Kagan Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris-Sud, 91405 Orsay - France e-mail: [email protected] *Dedicated to Yves Chauvin for his outstanding contributions to catalysis Ce manuscrit est dédié à Yves Chauvin pour ses contributions exceptionnelles à la catalyse Résumé — Effets nonlinéaires dans la catalyse organométallique énantiosélective — L’historique de la catalyse organométallique énantiosélective est rappelé en introduction.
    [Show full text]
  • SI Appendix Index 1
    SI Appendix Index Calculating chemical attributes using EC-BLAST ................................................................................ 2 Chemical attributes in isomerase reactions ............................................................................................ 3 Bond changes …..................................................................................................................................... 3 Reaction centres …................................................................................................................................. 5 Substrates and products …..................................................................................................................... 6 Comparative analysis …........................................................................................................................ 7 Racemases and epimerases (EC 5.1) ….................................................................................................. 7 Intramolecular oxidoreductases (EC 5.3) …........................................................................................... 8 Intramolecular transferases (EC 5.4) ….................................................................................................. 9 Supporting references …....................................................................................................................... 10 Fig. S1. Overview …............................................................................................................................
    [Show full text]
  • 1 the Historical Development of Asymmetric Hydrogenation
    1 1 The Historical Development of Asymmetric Hydrogenation John M. Brown Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK 1.1 Introduction How did chemists gain the current levels of knowledge and expertise for control- ling molecular chirality through hydrogenation or otherwise? The desirability of asymmetric synthesis was recognized in the 1880s by Emil Fischer and others, but practical solutions only arose more than 80 years later. The key reasons are explored here. This brief review has five main Sections 1.2–1.6, covering first the development of ideas underpinning our understanding of asymmetry, then the initial applications to asymmetric synthesis, and also the development of asymmetric heterogeneous hydrogenation of alkenes. The final sections on asymmetric homogeneous hydro- genation of alkenes are limited to work published in or before the early 1980s, in advance of extensive developments, and thus excluding the important inputs of irid- ium catalysts and more recently early transition metals. 1.2 Early Work on the Recognition of Molecular Asymmetry Chemistry was an emerging science by the beginning of the nineteenth century with many opportunities for fundamental discovery. At that time scientists crossed dis- ciplines easily; optics and mineralogy played important roles because of the ready accessibility and verifiable purity of solid substances. Malus had invented the first polarimeter in 1808, enabling measurement of both the sense and magnitude of rota- tion of plane-polarized light [4]. Following this, work by Arago and others on the interaction of polarized light with minerals intensified in the following decade [5]. Haüy had earlier concluded that each type of crystal has a fundamental primitive, nucleus or “integrant molecule” of a particular shape, that could not be broken fur- ther without destroying both the physical and chemical nature of the crystal.
    [Show full text]