Linux and Realtime
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Industrial Control Via Application Containers: Migrating from Bare-Metal to IAAS
Industrial Control via Application Containers: Migrating from Bare-Metal to IAAS Florian Hofer, Student Member, IEEE Martin A. Sehr Antonio Iannopollo, Member, IEEE Faculty of Computer Science Corporate Technology EECS Department Free University of Bolzano-Bozen Siemens Corporation University of California Bolzano, Italy Berkeley, CA 94704, USA Berkeley, CA 94720, USA fl[email protected] [email protected] [email protected] Ines Ugalde Alberto Sangiovanni-Vincentelli, Fellow, IEEE Barbara Russo Corporate Technology EECS Department Faculty of Computer Science Siemens Corporation University of California Free University of Bolzano-Bozen Berkeley, CA 94704, USA Berkeley, CA 94720, USA Bolzano, Italy [email protected] [email protected] [email protected] Abstract—We explore the challenges and opportunities of control design full authority over the environment in which shifting industrial control software from dedicated hardware to its software will run, it is not straightforward to determine bare-metal servers or cloud computing platforms using off the under what conditions the software can be executed on cloud shelf technologies. In particular, we demonstrate that executing time-critical applications on cloud platforms is viable based on computing platforms due to resource virtualization. Yet, we a series of dedicated latency tests targeting relevant real-time believe that the principles of Industry 4.0 present a unique configurations. opportunity to explore complementing traditional automation Index Terms—Industrial Control Systems, Real-Time, IAAS, components with a novel control architecture [3]. Containers, Determinism We believe that modern virtualization techniques such as application containerization [3]–[5] are essential for adequate I. INTRODUCTION utilization of cloud computing resources in industrial con- Emerging technologies such as the Internet of Things and trol systems. -
Linux Scheduler Documentation
Linux Scheduler Documentation The kernel development community Jul 14, 2020 CONTENTS i ii CHAPTER ONE COMPLETIONS - “WAIT FOR COMPLETION”BARRIER APIS 1.1 Introduction: If you have one or more threads that must wait for some kernel activity to have reached a point or a specific state, completions can provide a race-free solution to this problem. Semantically they are somewhat like a pthread_barrier() and have similar use-cases. Completions are a code synchronization mechanism which is preferable to any misuse of locks/semaphores and busy-loops. Any time you think of using yield() or some quirky msleep(1) loop to allow something else to proceed, you probably want to look into using one of the wait_for_completion*() calls and complete() instead. The advantage of using completions is that they have a well defined, focused pur- pose which makes it very easy to see the intent of the code, but they also result in more efficient code as all threads can continue execution until the result isactually needed, and both the waiting and the signalling is highly efficient using low level scheduler sleep/wakeup facilities. Completions are built on top of the waitqueue and wakeup infrastructure of the Linux scheduler. The event the threads on the waitqueue are waiting for is reduced to a simple flag in ‘struct completion’, appropriately called “done”. As completions are scheduling related, the code can be found in ker- nel/sched/completion.c. 1.2 Usage: There are three main parts to using completions: • the initialization of the ‘struct completion’synchronization object • the waiting part through a call to one of the variants of wait_for_completion(), • the signaling side through a call to complete() or complete_all(). -
RTAI-Lab Tutorial: Scicoslab, Comedi, and Real-Time Control
RTAI-Lab tutorial: Scicoslab, Comedi, and real-time control Roberto Bucher 1 Simone Mannori Thomas Netter 2 May 24, 2010 Summary RTAI-Lab is a tool chain for real-time software and control system development. This tutorial shows how to install the various components: the RTAI real-time Linux kernel, the Comedi interface for control and measurement hardware, the Scicoslab GUI-based CACSD modeling software and associated RTAI-Lab blocks, and the xrtailab interactive oscilloscope. RTAI-Lab’s Scicos blocks are detailed and examples show how to develop elementary block diagrams, automatically generate real-time executables, and add custom elements. 1Main RTAI-Lab developer, person to contact for technical questions: roberto.bucher at supsi.ch, see page 46 Contents 1 Introduction 4 1.1 RTAI-Lab tool chain . .4 1.2 Commercial software . .4 2 Installation 5 2.1 Requirements . .5 2.1.1 Hardware requirements . .5 2.1.2 Software requirements . .6 2.2 Mesa library . .7 2.3 EFLTK library . .7 2.4 Linux kernel and RTAI patch . .7 2.5 Comedilib . .8 2.6 RTAI (1st pass) . .8 2.7 RTAI tests . .9 2.8 Comedi . .9 2.9 RTAI (2nd pass) . 10 2.10 ScicosLab . 11 2.11 RTAI-Lab add-ons to Scicoslab-4.4 . 11 2.12 User configuration for scicoslab-4.4 . 11 2.13 Load the modules . 11 3 Development with RTAI-Lab 13 3.1 Boot Linux-RTAI . 13 3.2 Start Scicos . 13 3.3 RTAI-Lib palette . 14 3.4 Real-time sinewave: step by step . 16 3.4.1 Create block diagram . -
Advances in Mobile Cloud Computing and Big Data in the 5G Era Studies in Big Data
Studies in Big Data 22 Constandinos X. Mavromoustakis George Mastorakis Ciprian Dobre Editors Advances in Mobile Cloud Computing and Big Data in the 5G Era Studies in Big Data Volume 22 Series editor Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] About this Series The series “Studies in Big Data” (SBD) publishes new developments and advances in the various areas of Big Data-quickly and with a high quality. The intent is to cover the theory, research, development, and applications of Big Data, as embedded in the fields of engineering, computer science, physics, economics and life sciences. The books of the series refer to the analysis and understanding of large, complex, and/or distributed data sets generated from recent digital sources coming from sensors or other physical instruments as well as simulations, crowd sourcing, social networks or other internet transactions, such as emails or video click streams and other. The series contains monographs, lecture notes and edited volumes in Big Data spanning the areas of computational intelligence incl. neural networks, evolutionary computation, soft computing, fuzzy systems, as well as artificial intelligence, data mining, modern statistics and Operations research, as well as self-organizing systems. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution, which enable both wide and rapid dissemination of research output. More information about this series at http://www.springer.com/series/11970 Constandinos X. Mavromoustakis George Mastorakis ⋅ Ciprian Dobre Editors Advances in Mobile Cloud Computing and Big Data in the 5G Era 123 Editors Constandinos X. -
On the Defectiveness of SCHED DEADLINE W.R.T. Tardiness and Afinities, and a Partial Fix Stephen Tang Luca Abeni James H
On the Defectiveness of SCHED_DEADLINE w.r.t. Tardiness and Afinities, and a Partial Fix Stephen Tang Luca Abeni James H. Anderson [email protected] {sytang,anderson}@cs.unc.edu Scuola Superiore Sant’Anna University of North Carolina at Chapel Hill Pisa, Italy Chapel Hill, USA ABSTRACT create new DL tasks until existing DL tasks reduce their bandwidth SCHED_DEADLINE (DL for short) is an Earliest-Deadline-First consumption. Note that preventing over-utilization is only a neces- sary condition for guaranteeing that tasks meet deadlines. (EDF) scheduler included in the Linux kernel. A question motivated Instead of guaranteeing that deadlines will be met, AC satisfes by DL is how EDF should be implemented in the presence of CPU afnities to maintain optimal bounded tardiness guarantees. Recent two goals [3]. The frst goal is to provide performance guarantees. works have shown that under arbitrary afnities, DL does not main- Specifcally, AC guarantees to each DL task that its long-run con- tain such guarantees. Such works have also shown that repairing sumption of CPU bandwidth remains within a bounded margin DL to maintain these guarantees would likely require an impractical of error from a requested rate. The second goal is to avoid the overhaul of the existing code. In this work, we show that for the starvation of lower-priority non-DL workloads. Specifcally, AC special case where afnities are semi-partitioned, DL can be modi- guarantees that some user-specifed amount of CPU bandwidth fed to maintain tardiness guarantees with minor changes. We also will remain for the execution of non-DL workloads. -
Xtratum User Manual
XtratuM Hypervisor for LEON4 Volume 2: XtratuM User Manual Miguel Masmano, Alfons Crespo, Javier Coronel November, 2012 Reference: xm-4-usermanual-047d This page is intentionally left blank. iii/134 DOCUMENT CONTROL PAGE TITLE: XtratuM Hypervisor for LEON4: Volume 2: XtratuM User Manual AUTHOR/S: Miguel Masmano, Alfons Crespo, Javier Coronel LAST PAGE NUMBER: 134 VERSION OF SOURCE CODE: XtratuM 4 for LEON3 () REFERENCE ID: xm-4-usermanual-047d SUMMARY: This guide describes the fundamental concepts and the features provided by the API of the XtratuM hypervisor. DISCLAIMER: This documentation is currently under active development. Therefore, there are no explicit or implied warranties regarding any properties, including, but not limited to, correctness and fitness for purpose. Contributions to this documentation (new material, suggestions or corrections) are welcome. REFERENCING THIS DOCUMENT: @techreport fxm-4-usermanual-047d, title = fXtratuM Hypervisor for LEON4: Volume 2: XtratuM User Manualg, author = f Miguel Masmano and Alfons Crespo and Javier Coronelg, institution = fUniversidad Polit´ecnicade Valenciag, number = fxm-4-usermanual-047dg, year=fNovember, 2012g, g Copyright c November, 2012 Miguel Masmano, Alfons Crespo, Javier Coronel Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU Free Documentation License”. Changes: Version Date Comments 0.1 November, 2011 [xm-4-usermanual-047] Initial document 0.2 March, 2012 [xm-4-usermanual-047b] IOMMU included. -
RTEMS C User Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (Built 15Th February 2018)
RTEMS C User Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (built 15th February 2018) CONTENTS I RTEMS C User’s Guide1 1 Preface 5 2 Overview 9 2.1 Introduction...................................... 10 2.2 Real-time Application Systems............................ 11 2.3 Real-time Executive.................................. 12 2.4 RTEMS Application Architecture........................... 13 2.5 RTEMS Internal Architecture............................. 14 2.6 User Customization and Extensibility......................... 15 2.7 Portability....................................... 16 2.8 Memory Requirements................................. 17 2.9 Audience........................................ 18 2.10 Conventions...................................... 19 2.11 Manual Organization................................. 20 3 Key Concepts 23 3.1 Introduction...................................... 24 3.2 Objects......................................... 25 3.2.1 Object Names................................. 25 3.2.2 Object IDs................................... 25 3.2.2.1 Thirty-Two Object ID Format.................... 25 3.2.2.2 Sixteen Bit Object ID Format.................... 26 3.2.3 Object ID Description............................. 26 3.3 Communication and Synchronization........................ 27 3.4 Time.......................................... 28 3.5 Memory Management................................. 29 4 RTEMS Data Types 31 4.1 Introduction...................................... 32 4.2 List of Data Types.................................. -
TECOM Project Results Leaflet
Project Results TECOM (ITEA2 ~ 06038) Delivering trust in embedded ••••••••••••••• systems n Partners Offering secure and dependable solutions Atego EADS DS for a wide range of applications Fagor ••••••••••••••••••••••••••••••••••••• Ikerlan Technicolor Technikon The TECOM (Trusted Embedded ABSTRACT ARCHITECTURES Trialog Computing) project has developed TECOM focused on the growing demand Universidad Politécnica de Madrid architectures and solutions combining for execution platforms in embedded Universidad Politécnica de Valencia embedded trust services and trusted systems that address both integrity and Visual Tools operating system technologies to security concerns. It developed abstract ensure security and dependability in architectures based on generic modules a wide range of complex and dynamic involving on one side an embedded trust n Countries involved embedded systems. The project focused services layer offering hardware security, on enabling multiple applications to and on the other trusted operating Austria be run safely on the same systems system technology involving system and France and processors while acting totally middleware space. The result can be Spain independently of each other. customised to a specific application. Applications range from protecting film rights in video-on-demand applications The state-of-the art approach to trust at n Project start to ensuring bug-free software upgrades systems level, close to the processor, is September 2007 in domestic appliances. some form of hypervisor or virtualisation application for securely partitioning the n Project end Industry and society are increasingly applications. While this has already been August 2010 dependent on embedded systems that are developed for use on PCs where it was becoming ever more complex, dynamic and possible to run two windows independently open, while interacting with progressively at the same time, it has not been available more demanding and heterogeneous for embedded systems. -
Enabling Mobile Service Continuity Across Orchestrated Edge Networks
This is a postprint version of the following published document: Abdullaziz, O. I., Wang, L. C., Chundrigar, S. B. y Huang, K. L. (2019). Enabling Mobile Service Continuity across Orchestrated Edge Networks. IEEE Transactions on Network Science and Engineering, 7(3), pp. 1774-1787. DOI: https://doi.org/10.1109/TNSE.2019.2953129 © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Enabling Mobile Service Continuity across Orchestrated Edge Networks Osamah Ibrahiem Abdullaziz, Student Member, IEEE, Li-Chun Wang, Fellow, IEEE, Shahzoob Bilal Chundrigar and Kuei-Li Huang Abstract—Edge networking has become an important technology for providing low-latency services to end users. However, deploying an edge network does not guarantee continuous service for mobile users. Mobility can cause frequent interruptions and network delays as users leave the initial serving edge. In this paper, we propose a solution to provide transparent service continuity for mobile users in large-scale WiFi networks. The contribution of this work has three parts. First, we propose ARNAB architecture to achieve mobile service continuity. The term ARNAB means rabbit in Arabic, which represents an Architecture for Transparent Service Continuity via Double-tier Migration. The first tier migrates user connectivity, while the second tier migrates user containerized applications. ARNAB provides mobile services just like rabbits hop through the WiFi infrastructure. -
Spatial Isolation Refers to the System Ability to Detect and Avoid the Possibility That a Partition Can Access to Another Partition for Reading Or Writing
Virtualización Apolinar González Alfons Crespo OUTLINE Introduction Virtualisation techniques Hypervisors and real-time TSP Roles and functions Scheduling issues Case study: XtratuM 2 Conceptos previos Máquina virtual (VM): software que implementa una máquina (computadora) como el comportamiento real. Hipervisor (también virtual machine monitor VMM) es una capa de software (o combinación de software/hardware) que permite ejecutar varios entornos de ejecución independientes o particiones en un computador. Partición: Entorno de ejecución de programas. Ejemplos: Linux + aplicaciones; un sistema operativo de tiempo real + tareas; … 3 Conceptos previos Partition Hypervisor 4 INTRODUCTION: Isolation Temporal isolation refers to the system ability to execute several executable partitions guaranteeing: • the timing constraints of the partition tasks • the execution of each partition does not depend on the temporal behaviour of other partitions. The temporal isolation enforcement is achieved by means of a scheduling policy: • Cyclic scheduling, the ARINC 653 • Periodic Priority Server • EDF Server • Priority 5 PARTITIONED SYSTEMS Temporal Isolation: duration Origin relative to MAF Slot (temporal window) P1P1 P2P2 P1P1 P3P3 P2P2 P2P2 P2P2 MAF (Major Frame) SlotP1P1 id = 3 start = 400ms duration = 100 partition: P1 Execution MAF 1 MAF 2 MAF 3 MAF 4 6 INTRODUCTION: Isolation Spatial isolation refers to the system ability to detect and avoid the possibility that a partition can access to another partition for reading or writing. The hardware -
Hugo Gonzálezgonzález
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ HugoHugo GonzálezGonzález @hugo_glez http://atit.upslp.edu.mx/~hugo/ Linux en sistemas de tiempo realLinux en sistemas de tiempo real Hugo Francisco González Robledo [email protected] presenta: Sistema Operativo de Tiempo Real ● Un sistema operativo de tiempo real (SOTR o RTOS Real Time Operating System en inglés), ha sido desarrollado para aplicaciones de tiempo real. Se le exige corrección en sus respuestas bajo ciertas restricciones de tiempo. Para garantizar el comportamiento correcto en el tiempo requerido se necesita que el sistema sea predecible (determinista). 1 [1] Fuente: Wikipedia. http://es.wikipedia.org/wiki/Sistemas_operativos_de_tiempo_real ¿Qué es tiempo real ? ● Tiempo real en los sistemas operativos: ● La habilidad del sistema operativo para proveer un determinado nivel de servicio bajo un tiempo de respuesta definido.2 [2] POSIX Standard 1003.1 Catacterísticas ● Usado típicamente para aplicaciones integradas, normalmente tiene las siguientes características: – No utiliza mucha memoria – Cualquier evento en el soporte físico puede hacer que se ejecute una tarea – Multiarquitectura (puertos de código para otro tipo de CPU) – Muchos tienen tiempos de respuesta predecibles para eventos electrónicos Características deseables 3 ● Multithreaded y preemptible ● Thread priority has to exist because no deadline driven -
Virtualization Technologies Overview Course: CS 490 by Mendel
Virtualization technologies overview Course: CS 490 by Mendel Rosenblum Name Can boot USB GUI Live 3D Snaps Live an OS on mem acceleration hot of migration another ory runnin disk alloc g partition ation system as guest Bochs partially partially Yes No Container s Cooperati Yes[1] Yes No No ve Linux (supporte d through X11 over networkin g) Denali DOSBox Partial (the Yes No No host OS can provide DOSBox services with USB devices) DOSEMU No No No FreeVPS GXemul No No Hercules Hyper-V iCore Yes Yes No Yes No Virtual Accounts Imperas Yes Yes Yes Yes OVP (Eclipse) Tools Integrity Yes No Yes Yes No Yes (HP-UX Virtual (Integrity guests only, Machines Virtual Linux and Machine Windows 2K3 Manager in near future) (add-on) Jail No Yes partially Yes No No No KVM Yes [3] Yes Yes [4] Yes Supported Yes [5] with VMGL [6] Linux- VServer LynxSec ure Mac-on- Yes Yes No No Linux Mac-on- No No Mac OpenVZ Yes Yes Yes Yes No Yes (using Xvnc and/or XDMCP) Oracle Yes Yes Yes Yes Yes VM (manage d by Oracle VM Manager) OVPsim Yes Yes Yes Yes (Eclipse) Padded Yes Yes Yes Cell for x86 (Green Hills Software) Padded Yes Yes Yes No Cell for PowerPC (Green Hills Software) Parallels Yes, if Boot Yes Yes Yes DirectX 9 Desktop Camp is and for Mac installed OpenGL 2.0 Parallels No Yes Yes No partially Workstati on PearPC POWER Yes Yes No Yes No Yes (on Hypervis POWER 6- or (PHYP) based systems, requires PowerVM Enterprise Licensing) QEMU Yes Yes Yes [4] Some code Yes done [7]; Also supported with VMGL [6] QEMU w/ Yes Yes Yes Some code Yes kqemu done [7]; Also module supported