The Pennsylvania State University the Graduate School

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School The Pennsylvania State University The Graduate School QUANTUM COMPUTING: A CRYPTOGRAPHIC PERSPECTIVE A Dissertation in Computer Science and Engineering by Fang Song c 2013 Fang Song Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Fang Song was reviewed and approved∗ by the following: Sean Hallgren Associate Professor of Computer Science and Engineering Department Dissertation Advisor, Chair of Committee Adam Smith Associate Professor of Computer Science and Engineering Department Piotr Berman Associate Professor of Computer Science and Engineering Department Jason Morton Assistant Professor of Mathematics and Statistics Lee Coraor Associate Professor of Computer Science and Engineering Department Graduate Officer ∗Signatures are on file in the Graduate School. Abstract Quantum computing provides a new computational model that is only restricted by the laws of quantum physics. It has caused fundamental changes in many scientific fields. This thesis studies the strengths and limits of quantum computing from a cryptographic perspective. Our main focus is on investigating how secure computation, a central subject in classical cryptography, changes in a quantum world. In another endeavor, we also examine the potential of efficient quantum algorithms for solving some computational problems, which are regarded hard classically and are used in cryptographic constructions. Secure computation allows a group of players to jointly perform a computa- tional task on their private inputs without revealing more information about their inputs beyond what the output values imply. There are secure protocols that can realize any poly-time computation task under various conditions [Yao86, GMW87, CLOS02, Kil88]. However, these classical protocols may become insecure in pres- ence of quantum attacks. First of all, quantum algorithms, e.g., Shor's quantum factoring algorithm [?], can solve some computational problems efficiently, which are otherwise assumed hard classically to construct cryptographic protocols. Even if we assume some problems are also hard for quantum computers, classically se- cure protocols based on them can still be broken by a quantum attacker without solving the hard problem necessarily. On the other hand, we can also exploit quan- tum computing capability in a positive way. For example, Bennett et al. [BBCS91] constructed a quantum protocol for oblivious transfer (OT) that is secure against unbounded attackers, assuming existence of an ideal commitment protocol. Re- markably, such a goal is unattainable using purely classical protocols. In view of these challenges and opportunities, we make two major contribu- tions in the realm of secure computation: first we prove that there are classical protocols for computing any poly-time function securely against poly-time quan- tum attackers and show that a large family of classical protocols can be made iii secure against quantum attackers. This means that the classical feasibility pic- ture largely remains unchanged in the presence of quantum attacks. Second, we construct a quantum OT protocol assuming a task called 2-bit cut-and-choose is al- ready realized, which gives another demonstration of separation between quantum and classical protocols in the flavor of [BBCS91]. Along the way we also develop new tools that are useful when analyzing quantum cryptographic protocols. As an application of our two-fold investigation into secure computation in a quan- tum world, we are able to give an almost thorough categorization of an important class of two-party secure computation tasks. Very roughly speaking, if we consider quantum poly-time attackers, there is a zero-one law, analogous to the classical setting [MPR10]: every task is either feasible or it can be used to realize any other task. Whereas in the presence of unbounded attackers, every task belongs into one of three mutually exclusive subclasses, in contrast with the more complicated classical picture [MPR09, KMQ11]. As we have seen, certain computational assumptions can be broken by effi- cient quantum algorithms. It is thus crucial to understand which problems are easy or hard for quantum computers. In this direction, we show evidence that an important number-theoretical problem can by solved by an efficient quantum algorithm. Specifically, we show that finding the group of units in a number field of arbitrary degree (Unit-Finding) can be reduced to an hidden subgroup problem (HSP). The best classical algorithm requires super-polynomial time to compute the units. Therefore it has also been used to as a candidate of hardness assumption for cryptographic constructions. However, our result indicates that finding units is potentially easy on a quantum computer, as the HSP instance to which we reduce is a natural generalization of the HSP instances for which there exist efficient quan- tum algorithms (e.g., HSP over finite Abelien groups and over constant-dimension real spaces). Thus we have made the first substantial step towards a complete quantum algorithm solving Unit-Finding. iv Acknowledgments First of all, my deep appreciation goes to my advisor, Sean Hallgren, a great advisor and a great person. He led me into the fascinating field of quantum computing and has guided me throughout the past five years towards being an independent researcher. He was always available for questions I had, and was always willing to help me improve my oral presentation and my writing. I have learned from him what critical thinking means, and, not at all obvious as it may first appear, what research means. His patience, encouragement and support, especially during the hard times I had, have been and will continue motivating me. Beside a guide in research, he is also a good friend in life, from whom I got to know many interesting facets of the American culture. I would like to thank Adam Smith for his enormous help in various aspects of my research. His intriguing course on cryptography helped me lay my research interest on the inter-discipline of cryptography in a quantum world. In collabora- tion with him, I benefited a lot from his broad knowledge and invaluable insights in cryptography. His intuitive explanation to my questions was often enlightening. He helped me polish my bad writings and practice my conference and job talks. He was always full of energy, and his enthusiasm and devotion into research always gave me a boost. I am grateful to the other two committee members: Piotr Berman and Jason Morton. Piotr, with his unique way of reasoning, was often able to raise the right questions through which I benefited with new perspectives and new insights on problems. In addition, biking with him around the mountains in Happy Valley area, in a random-walk fashion, has been a lot fun. Jason carefully proofread the thesis and provided very useful feedback from a mathematician's perspective. Discussions with him often gave me the opportunity to think in a more abstract view. I was fortunate to know and have enjoyable discussions with other peer scholars (friends too): Kai-Min Chung, Xiaodi Wu and Hong-Sheng Zhou. They selflessly brought me into interesting research questions they encounter and shared their v experiences and reflections in research. I want to thank other collaborators of mine. Jon Katz always responded quickly on my questions, and he also showed me what a concise scientific writing should look like. Sergh Fehr can always explain technical puzzles in a crystal-clear way and kindly shared with me job opportunities. I learned from Vassilis Zikas that hard working and enjoying life do not necessarily conflict. I took math courses under and collaborated with Kirsten Eisentr¨ager.Her deep understanding in algebra and number theory often amazed me. Alexei Kitaev, during his short visit, shared with us his unique and illuminating view on quantum algorithms. My PhD career benefited from other professors in our theoretical computer science group as well. Sofya Raskhodnikova demonstrated me in her computational complexity course what good teaching is and opened my eye to the interesting area. This interest was further expanded in an advanced course offered by Martin F¨urer. I want to thank other theory students as well. Life in State College would never be the same without discussions, chatting and laughters with you guys. Many thanks to my friends. The basketball nights, party nights, and trips on the roads and on the campgrounds always recharged me. Your support of all kinds will never be forgotten. Finally, my parents, Wanlin Song and Qiaoyun Wang, nothing can express my gratefulness to you. My sister, Ting Song, your optimism can cure anything. Sining Wang, my little kid and my sunshine, thanks for everything you did for me. vi Table of Contents Acknowledgments v Chapter 1 Introduction 1 Chapter 2 Preliminaries 9 2.1 Notations and Basic Definitions . 9 2.2 Distinguishing Quantum States and Quantum Machines . 11 2.3 A (partial) List of Cryptographic Functionalities . 14 Chapter 3 Modeling Security in Presence of Quantum Attacks 18 3.1 A General Quantum Stand-Alone Security Model . 18 3.1.1 The Model . 20 3.1.2 Modular Composition Theorem . 25 3.1.3 Proof of Modular Composition Theorem . 26 3.2 Variants of Quantum Stand-Alone Models: A Unified Framework . 28 3.2.1 Z1 takes quantum advice . 30 3.2.2 Z1 does not take quantum advice . 37 3.2.3 A special constraint: Markov Condition . 38 3.3 Quantum UC Model: An Overview . 41 Chapter 4 Secure Computation against Quantum Attacks: Computational Setting 44 4.1 Founding Quantum UC Secure Computation on FZK . 45 vii 4.1.1 Simple Hybrid Argument. 46 4.1.2 Lifting CLOS to Quantum UC Security. 48 4.2 Realizing FZK with Stand-alone Security . 50 4.3 Putting It Together . 57 Chapter 5 Secure Computation against Quantum Attacks: Statistical Set- ting 59 5.1 Founding Q-SUC Secure Comp. on FOT and FCOM . 60 5.2 Founding Q-SUC Secure Comp.
Recommended publications
  • Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing 234 Able Quantity
    Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing 234 able quantity. Only a limited number of previous works which can provide a natural and interpretable guide- [29, 34, 35] have investigated the question of how to line for selecting proper privacy parameters by system select a proper value of ǫ, but these approaches ei- designers and researchers. Furthermore, we extend our ther require complicated economic models or lack the analysis on unbounded DP to bounded DP and the ap- analysis of adversaries with arbitrary auxiliary informa- proximate (ǫ, δ)-DP. tion (see Section 2.3 for more details). Our work is in- Impact of Auxiliary Information. The conjecture spired by the interpretation of differential privacy via that auxiliary information can influence the design of hypothesis testing, initially introduced by Wasserman DP mechanisms has been made in prior work [8, 28, 32, and Zhou [27, 30, 60]. However, this interpretation has 33, 39, 65]. We therefore investigate the adversary’s ca- not been systematically investigated before in the con- pability based on hypothesis testing under three types text of our research objective, i.e., reasoning about the of auxiliary information: the prior distribution of the in- choice of the privacy parameter ǫ (see Section 2.4 for put record, the correlation across records, and the corre- more details). lation across time. Our analysis demonstrates that the We consider hypothesis testing [2, 45, 61] as the tool auxiliary information indeed influences the appropriate used by the adversary to infer sensitive information of selection of ǫ. The results suggest that, when possible an individual record (e.g., the presence or absence of and available, the practitioners of DP should explicitly a record in the database for unbounded DP) from the incorporate adversary’s auxiliary information into the outputs of privacy mechanisms.
    [Show full text]
  • 2008 Annual Report
    2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century.
    [Show full text]
  • Digital Communication Systems 2.2 Optimal Source Coding
    Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L.
    [Show full text]
  • An Economic Analysis of Privacy Protection and Statistical Accuracy As Social Choices
    An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices John M. Abowd and Ian M. Schmutte August 15, 2018 Forthcoming in American Economic Review Abowd: U.S. Census Bureau HQ 8H120, 4600 Silver Hill Rd., Washington, DC 20233, and Cornell University, (email: [email protected]); Schmutte: Department of Eco- nomics, University of Georgia, B408 Amos Hall, Athens, GA 30602 (email: [email protected]). Abowd and Schmutte acknowledge the support of Alfred P. Sloan Foundation Grant G-2015-13903 and NSF Grant SES-1131848. Abowd acknowledges direct support from NSF Grants BCS-0941226, TC-1012593. Any opinions and conclusions are those of the authors and do not represent the views of the Census Bureau, NSF, or the Sloan Foundation. We thank the Center for Labor Economics at UC–Berkeley and Isaac Newton Institute for Mathematical Sciences, Cambridge (EPSRC grant no. EP/K032208/1) for support and hospitality. We are extremely grateful for very valuable com- ments and guidance from the editor, Pinelopi Goldberg, and six anonymous referees. We acknowl- edge helpful comments from Robin Bachman, Nick Bloom, Larry Blume, David Card, Michael Castro, Jennifer Childs, Melissa Creech, Cynthia Dwork, Casey Eggleston, John Eltinge, Stephen Fienberg, Mark Kutzbach, Ron Jarmin, Christa Jones, Dan Kifer, Ashwin Machanavajjhala, Frank McSherry, Gerome Miklau, Kobbi Nissim, Paul Oyer, Mallesh Pai, Jerry Reiter, Eric Slud, Adam Smith, Bruce Spencer, Sara Sullivan, Salil Vadhan, Lars Vilhuber, Glen Weyl, and Nellie Zhao along with seminar and conference participants at the U.S. Census Bureau, Cornell, CREST, George Ma- son, Georgetown, Microsoft Research–NYC, University of Washington Evans School, and SOLE.
    [Show full text]
  • Calibrating Noise to Sensitivity in Private Data Analysis
    Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f = P i g(xi), where xi denotes the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard devi- ation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive.
    [Show full text]
  • Magic Adversaries Versus Individual Reduction: Science Wins Either Way ?
    Magic Adversaries Versus Individual Reduction: Science Wins Either Way ? Yi Deng1;2 1 SKLOIS, Institute of Information Engineering, CAS, Beijing, P.R.China 2 State Key Laboratory of Cryptology, P. O. Box 5159, Beijing ,100878,China [email protected] Abstract. We prove that, assuming there exists an injective one-way function f, at least one of the following statements is true: – (Infinitely-often) Non-uniform public-key encryption and key agreement exist; – The Feige-Shamir protocol instantiated with f is distributional concurrent zero knowledge for a large class of distributions over any OR NP-relations with small distinguishability gap. The questions of whether we can achieve these goals are known to be subject to black-box lim- itations. Our win-win result also establishes an unexpected connection between the complexity of public-key encryption and the round-complexity of concurrent zero knowledge. As the main technical contribution, we introduce a dissection procedure for concurrent ad- versaries, which enables us to transform a magic concurrent adversary that breaks the distribu- tional concurrent zero knowledge of the Feige-Shamir protocol into non-black-box construc- tions of (infinitely-often) public-key encryption and key agreement. This dissection of complex algorithms gives insight into the fundamental gap between the known universal security reductions/simulations, in which a single reduction algorithm or simu- lator works for all adversaries, and the natural security definitions (that are sufficient for almost all cryptographic primitives/protocols), which switch the order of qualifiers and only require that for every adversary there exists an individual reduction or simulator. 1 Introduction The seminal work of Impagliazzo and Rudich [IR89] provides a methodology for studying the lim- itations of black-box reductions.
    [Show full text]
  • Calibrating Noise to Sensitivity in Private Data Analysis
    Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. P Previous work focused on the case of noisy sums, in which f = i g(xi), where xi denotes the ith row of the database and g maps data- base rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speak- ing, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive.
    [Show full text]
  • Cpsc 210/310 & Plsc
    CPSC 310 and CPSC 210 // PLSC 369: Syllabus v1 Joan Feigenbaum Steven Wilkinson www.cs.yale.edu/homes/jf/ campuspress.yale.edu/steveniwilkinson/ Twenty-first century societies are faced with both threats and opportunities that combine sophisticated computation with politics and international relations in critical ways. Examples include cyber warfare; cyber espionage; cyber crime; the role of social media in democratic self-governance, authoritarian control, and election "hacking"; cryptocurrencies; and mass surveillance. CPSC 310 and CPSC 210 // PLSC 3691 examine some of the political challenges wrought by massive increases in the power of information and communication technologies and the potential for citizens and governments to harness those technologies to solve problems. They are co-taught by Professors Joan Feigenbaum (Computer Science) and Steven Wilkinson (Political Science). The two courses will have common lectures but separate sections. The CPSC 310 section is aimed at STEM students and has CPSC 223 or the equivalent as a prerequisite. The CPSC 210 // PLSC 369 section is aimed at social-science students and has no formal course prerequisites (but assumes Internet literacy). Students may earn credit for CPSC 310 or for CPSC 210 // PLSC 369 but not both. The TF for CPSC 310 is Samuel Judson (CPSC) [email protected], and the TF for ​ ​ ​ CPSC 210 // PLSC 369 is John Ternovski (PLSC) [email protected]. ​ ​ The two courses will have common reading assignments. There will also be four written homework assignments, each worth 15% of the course grade, two due before mid-term break and two due after. In CPSC 310, the homework assignments will be problem sets, and, in CPSC 210 // PLSC 369, they will be short response papers based on the reading.
    [Show full text]
  • David Donoho COMMENTARY 52 Cliff Ord J
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society January 2018 Volume 65, Number 1 JMM 2018 Lecture Sampler page 6 Taking Mathematics to Heart y e n r a page 19 h C th T Ru a Columbus Meeting l i t h i page 90 a W il lia m s r e lk a W ca G Eri u n n a r C a rl ss on l l a d n a R na Da J i ll C . P ip her s e v e N ré F And e d e r i c o A rd ila s n e k c i M . E d al Ron Notices of the American Mathematical Society January 2018 FEATURED 6684 19 26 29 JMM 2018 Lecture Taking Mathematics to Graduate Student Section Sampler Heart Interview with Sharon Arroyo Conducted by Melinda Lanius Talithia Williams, Gunnar Carlsson, Alfi o Quarteroni Jill C. Pipher, Federico Ardila, Ruth WHAT IS...an Acylindrical Group Action? Charney, Erica Walker, Dana Randall, by omas Koberda André Neves, and Ronald E. Mickens AMS Graduate Student Blog All of us, wherever we are, can celebrate together here in this issue of Notices the San Diego Joint Mathematics Meetings. Our lecture sampler includes for the first time the AMS-MAA-SIAM Hrabowski-Gates-Tapia-McBay Lecture, this year by Talithia Williams on the new PBS series NOVA Wonders. After the sampler, other articles describe modeling the heart, Dürer's unfolding problem (which remains open), gerrymandering after the fall Supreme Court decision, a story for Congress about how geometry has advanced MRI, “My Father André Weil” (2018 is the 20th anniversary of his death), and a profile on Donald Knuth and native script by former Notices Senior Writer and Deputy Editor Allyn Jackson.
    [Show full text]
  • Chicago Journal of Theoretical Computer Science the MIT Press
    Chicago Journal of Theoretical Computer Science The MIT Press Volume 1997, Article 2 3 June 1997 ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142-1493 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://www-mitpress.mit.edu/jrnls-catalog/chicago.html • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Kann et al. Hardness of Approximating Max k-Cut (Info) The Chicago Journal of Theoretical Computer Science is abstracted or in- R R R dexed in Research Alert, SciSearch, Current Contents /Engineering Com- R puting & Technology, and CompuMath Citation Index. c 1997 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting
    [Show full text]
  • Verifiable Random Functions
    Verifiable Random Functions y z Silvio Micali Michael Rabin Salil Vadhan Abstract random string of the proper length. The possibility thus ex- ists that, if it so suits him, the party knowing the seed s may We efficiently combine unpredictability and verifiability by declare that the value of his pseudorandom oracle at some x f x extending the Goldreich–Goldwasser–Micali construction point is other than s without fear of being detected. It f s of pseudorandom functions s from a secret seed , so that is for this reason that we refer to these objects as “pseudo- s f knowledge of not only enables one to evaluate s at any random oracles” rather than using the standard terminology f x x NP point , but also to provide an -proof that the value “pseudorandom functions” — the values s come “out f x s is indeed correct without compromising the unpre- of the blue,” as if from an oracle, and the receiver must sim- s f dictability of s at any other point for which no such a proof ply trust that they are computed correctly from the seed . was provided. Therefore, though quite large, the applicability of pseu- dorandom oracles is limited: for instance, to settings in which (1) the “seed owner”, and thus the one evaluating 1Introduction the pseudorandom oracle, is totally trusted; or (2) it is to the seed-owner’s advantage to evaluate his pseudorandom oracle correctly; or (3) there is absolutely nothing for the PSEUDORANDOM ORACLES. Goldreich, Goldwasser, and seed-owner to gain from being dishonest. Micali [GGM86] show how to simulate a random ora- f x One efficient way of enabling anyone to verify that s b cle from a-bit strings to -bit strings by means of a con- f x really is the value of pseudorandom oracle s at point struction using a seed, that is, a secret and short random clearly consists of publicizing the seed s.However,this string.
    [Show full text]
  • Quantification of Integrity
    Quantification of Integrity Michael R. Clarkson Department of Computer Science The George Washington University [email protected] Fred B. Schneider Department of Computer Science Cornell University [email protected] Computing and Information Science Technical Report http://hdl.handle.net/1813/22012 January 2011 revised January 2012 Quantification of Integrity∗ Michael R. Clarkson Fred B. Schneider Department of Computer Science Department of Computer Science The George Washington University Cornell University [email protected] [email protected] January 1, 2012 Abstract Three integrity measures are introduced: contamination, channel suppression, and program suppression. Contamination is a measure of how much untrusted information reaches trusted outputs; it is the dual of leakage, which is a measure of information- flow confidentiality. Channel suppression is a measure of how much information about inputs to a noisy channel is missing from the channel outputs. And program suppres- sion is a measure of how much information about the correct output of a program is lost because of attacker influence and implementation errors. Program and channel suppression do not have interesting confidentiality duals. As a case study, a quantita- tive relationship between integrity, confidentiality, and database privacy is examined. 1 Introduction Many integrity requirements for computer systems are qualitative, but quantitative require- ments can also be valuable. For example, a system might be permitted to combine data from trusted and untrusted sensors if the untrusted sensors cannot corrupt the result too much. And noise could be added to a database, thereby hiding sensitive information, if the resulting anonymized database still contains enough uncorrupted information to be use- ful for statistical analysis.
    [Show full text]