Installation and Maintenance Guide for the LS-DYNA Environment Software from Oasys Ltd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reverse Engineering Power Management on NVIDIA Gpus - Anatomy of an Autonomic-Ready System Martin Peres
Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System Martin Peres To cite this version: Martin Peres. Reverse Engineering Power Management on NVIDIA GPUs - Anatomy of an Autonomic-ready System. ECRTS, Operating Systems Platforms for Embedded Real-Time appli- cations 2013, Jul 2013, Paris, France. hal-00853849 HAL Id: hal-00853849 https://hal.archives-ouvertes.fr/hal-00853849 Submitted on 23 Aug 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reverse engineering power management on NVIDIA GPUs - Anatomy of an autonomic-ready system Martin Peres Ph.D. student at LaBRI University of Bordeaux Hobbyist Linux/Nouveau Developer Email: [email protected] Abstract—Research in power management is currently limited supported nor documented by NVIDIA. As GPUs are leading by the fact that companies do not release enough documentation the market in terms of performance-per-Watt [3], they are or interfaces to fully exploit the potential found in modern a good candidate for a reverse engineering effort of their processors. This problem is even more present in GPUs despite power management features. The choice of reverse engineering having the highest performance-per-Watt ratio found in today’s NVIDIA’s power management features makes sense as they processors. -
High Speed Visualization in the Jetos Aviation Operating System Using Hardware Acceleration*
High Speed Visualization in the JetOS Aviation Operating System Using Hardware Acceleration* Boris Barladian[0000-0002-2391-2067], Nikolay Deryabin[0000-0003-1248-6047], Alexey Voloboy[0000-0003-1252-8294], Vladimir Galaktionov[0000-0001-6460-7539], and Lev Shapiro[0000-0002-6350-851X] The Keldysh Institute of the Applied Mathematics of RAS, Moscow, Russia [email protected],{voloboy, vlgal, pls}@gin.keldysh.ru Abstract. The paper discusses details of the pilot display visualization that uses the hardware acceleration capabilities of the Vivante graphics processor in the JetOS aviation operating system. Previously the OpenGL Safety Critical library was implemented without hardware acceleration. This was done in such a way because software library is easier to certify in accordance with the avionics re- quirements. But usage of the software OpenGL does not provide acceptable visualization speed for modern Flight Display and 3D relief applications. So more complex visualization approach utilized the GPU acceleration capabilities was elaborated. Although the OpenGL library was implemented for a specific GPU and took into account its specificity, the described approach to adapt the MESA open source library can be used for other GPUs. An effective algorithm for multi-window visualization using the implemented library with hardware acceleration is present. The described approach allows you to achieve the visu- alization speed acceptable for the pilot display of the aircraft. Keywords: Pilot Display, Embedded Systems, Real-time Operating System, OpenGL Safety Critical, Multi-windowing. 1 Introduction In [1] requirements were formulated for a real-time operating system (RTOS) de- signed to work with integrated modular avionics. In particular, the RTOS should comply with the ARINC 653 standard [2]. -
The Interplay of Compile-Time and Run-Time Options for Performance Prediction Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel
The Interplay of Compile-time and Run-time Options for Performance Prediction Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel To cite this version: Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel. The Interplay of Compile-time and Run-time Options for Performance Prediction. SPLC 2021 - 25th ACM Inter- national Systems and Software Product Line Conference - Volume A, Sep 2021, Leicester, United Kingdom. pp.1-12, 10.1145/3461001.3471149. hal-03286127 HAL Id: hal-03286127 https://hal.archives-ouvertes.fr/hal-03286127 Submitted on 15 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Interplay of Compile-time and Run-time Options for Performance Prediction Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, Jean-Marc Jézéquel Univ Rennes, INSA Rennes, CNRS, Inria, IRISA Rennes, France [email protected] ABSTRACT Both compile-time and run-time options can be configured to reach Many software projects are configurable through compile-time op- specific functional and performance goals. tions (e.g., using ./configure) and also through run-time options (e.g., Existing studies consider either compile-time or run-time op- command-line parameters, fed to the software at execution time). -
Vectorcast Installation Guide for Vectorcast 2021
New editions of this guide incorporate all material added or changed since the previous edition. Update packages may be used between editions. The manual printing date changes when a new edition is printed. The contents and format of this manual are subject to change without notice. Generated: 7/25/2021, 8:48 PM Rev: 33d0493 Part Number: VectorCAST Installation Guide for VectorCAST 2021 VectorCAST is a trademark of Vector Informatik, GmbH © Copyright 2021, Vector Informatik, GmbH All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any informational storage and retrieval system, without written permission from the copyright owner. U.S. Government Restricted Rights This computer software and related documentation are provided with Restricted Rights. Use, duplication or disclosure by the Government is subject to restrictions as set forth in the governing Rights in Technical Data and Computer Software clause of DFARS 252.227-7015 (June 1995) and DFARS 227.7202-3(b). Manufacturer is Vector North America, Inc. East Greenwich RI 02818, USA. Vector Informatik reserves the right to make changes in specifications and other information contained in this document without prior notice. Contact Vector Informatik to determine whether such changes have been made. Third-Party copyright notices are contained in the file: 3rdPartyLicenses.txt, located in the VectorCAST installation directory. 2 TABLE OF -
Mashup Architecture for Connecting Graphical Linux Applications Using a Software Bus Mohamed-Ikbel Boulabiar, Gilles Coppin, Franck Poirier
Mashup Architecture for Connecting Graphical Linux Applications Using a Software Bus Mohamed-Ikbel Boulabiar, Gilles Coppin, Franck Poirier To cite this version: Mohamed-Ikbel Boulabiar, Gilles Coppin, Franck Poirier. Mashup Architecture for Connecting Graph- ical Linux Applications Using a Software Bus. Interacción’14, Sep 2014, Puerto de la Cruz. Tenerife, Spain. 10.1145/2662253.2662298. hal-01141934 HAL Id: hal-01141934 https://hal.archives-ouvertes.fr/hal-01141934 Submitted on 14 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mashup Architecture for Connecting Graphical Linux Applications Using a Software Bus Mohamed-Ikbel Gilles Coppin Franck Poirier Boulabiar Lab-STICC Lab-STICC Lab-STICC Telecom Bretagne, France University of Bretagne-Sud, Telecom Bretagne, France gilles.coppin France mohamed.boulabiar @telecom-bretagne.eu franck.poirier @telecom-bretagne.eu @univ-ubs.fr ABSTRACT functionalities and with different and redundant implemen- Although UNIX commands are simple, they can be com- tations that forced special users as designers to use a huge bined to accomplish complex tasks by piping the output of list of tools in order to accomplish a bigger task. In this one command, into another's input. -
Modeling of Hardware and Software for Specifying Hardware Abstraction
Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, Pierre Moreau, Samuel Rochet To cite this version: Yves Bernard, Cédric Gava, Cédrik Besseyre, Bertrand Crouzet, Laurent Marliere, et al.. Modeling of Hardware and Software for specifying Hardware Abstraction Layers. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. hal-02272457 HAL Id: hal-02272457 https://hal.archives-ouvertes.fr/hal-02272457 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Modeling of Hardware and Software for specifying Hardware Abstraction Layers Yves BERNARD1, Cédric GAVA2, Cédrik BESSEYRE1, Bertrand CROUZET1, Laurent MARLIERE1, Pierre MOREAU1, Samuel ROCHET2 (1) Airbus Operations SAS (2) Subcontractor for Airbus Operations SAS Abstract In this paper we describe a practical approach for modeling low level interfaces between software and hardware parts based on SysML operations. This method is intended to be applied for the development of drivers involved on what is classically called the “hardware abstraction layer” or the “basic software” which provide high level services for resources management on the top of a bare hardware platform. -
Flexnet Server
FlexNet Server Administration Guide Copyright Copyright © 2019 CAXperts GmbH. All Rights Reserved. Including software, file formats, and audio-visual displays; may be used pursuant to applicable software licence agreement; contains confidential and proprietary information of CAXperts and/or third parties which is protected by copyright law, trade secret law, and international treaty, and may not be provided or otherwise made available without proper authorisation. Restricted Rights Legend Rights reserved under the copyright laws of the Federal Republic of Germany. Warranties and Liabilities All warranties given by CAXperts about equipment or software are set forth in your purchase contract, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such warranties. CAXperts believes the information in this publication is accurate as of its publication date. The information and the software discussed in this document are subject to change without notice and are subject to applicable technical product descriptions. CAXperts is not responsible for any error that may appear in this document. The software discussed in this document is furnished under a licence and may be used or copied only in accordance with the terms of this licence. THE USER OF THE SOFTWARE IS EXPECTED TO MAKE THE FINAL EVALUATION AS TO THE USEFULNESS OF THE SOFTWARE IN HIS OWN ENVIRONMENT. Trademarks CAXperts is a registered trademark of CAXperts GmbH. Intergraph, the Intergraph logo, SmartSketch, FrameWorks, SmartPlant, INtools, MARIAN, PDS, IGDS, RIS and IntelliShip are registered trademarks of Intergraph Corporation. IGDS file formats ©1987-1994 Intergraph Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. -
The Linux Graphics Stack Attributions
I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions Introduction to GPUs and to the Linux Graphics Stack Martin Peres CC By-SA 3.0 Nouveau developer Ph.D. student at LaBRI November 26, 2012 1 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview Outline 1 I - Hardware : Anatomy of a GPU General overview Driving screens Host < − > GPU communication 2 II - Host : The Linux graphics stack General overview DRM and libdrm Mesa X11 Wayland X11 vs Wayland 3 Attributions Attributions 2 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview General overview of a modern GPU's functions Display content on a screen Accelerate 2D operations Accelerate 3D operations Decode videos Accelerate scientific calculations 3 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview CPU Clock Front-side Graphics Generator bus card slot Chipset Memory Slots High-speed graphics bus (AGP or PCI Northbridge Memory Express) bus (memory controller hub) Internal Bus PCI Bus Onboard Southbridge graphics PCI (I/O controller controller Bus hub) IDE SATA USB Cables and Ethernet ports leading Audio Codec CMOS Memory off-board PCI Slots LPC Bus Super I/O Serial Port Parallel Port Flash ROM Floppy Disk Keyboard (BIOS) Mouse 4 / 36 I - Hardware : Anatomy of a GPU II - Host : The Linux graphics stack Attributions General overview Hardware architecture GPU: Where all the calculations are made VRAM: Stores -
Release Notes for X11R7.5 the X.Org Foundation 1
Release Notes for X11R7.5 The X.Org Foundation 1 October 2009 These release notes contains information about features and their status in the X.Org Foundation X11R7.5 release. Table of Contents Introduction to the X11R7.5 Release.................................................................................3 Summary of new features in X11R7.5...............................................................................3 Overview of X11R7.5............................................................................................................4 Details of X11R7.5 components..........................................................................................5 Build changes and issues..................................................................................................10 Miscellaneous......................................................................................................................11 Deprecated components and removal plans.................................................................12 Attributions/Acknowledgements/Credits......................................................................13 Introduction to the X11R7.5 Release This release is the sixth modular release of the X Window System. The next full release will be X11R7.6 and is expected in 2010. Unlike X11R1 through X11R6.9, X11R7.x releases are not built from one monolithic source tree, but many individual modules. These modules are distributed as individ- ual source code releases, and each one is released when it is ready, instead -
Thread Scheduling in Multi-Core Operating Systems Redha Gouicem
Thread Scheduling in Multi-core Operating Systems Redha Gouicem To cite this version: Redha Gouicem. Thread Scheduling in Multi-core Operating Systems. Computer Science [cs]. Sor- bonne Université, 2020. English. tel-02977242 HAL Id: tel-02977242 https://hal.archives-ouvertes.fr/tel-02977242 Submitted on 24 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ph.D thesis in Computer Science Thread Scheduling in Multi-core Operating Systems How to Understand, Improve and Fix your Scheduler Redha GOUICEM Sorbonne Université Laboratoire d’Informatique de Paris 6 Inria Whisper Team PH.D.DEFENSE: 23 October 2020, Paris, France JURYMEMBERS: Mr. Pascal Felber, Full Professor, Université de Neuchâtel Reviewer Mr. Vivien Quéma, Full Professor, Grenoble INP (ENSIMAG) Reviewer Mr. Rachid Guerraoui, Full Professor, École Polytechnique Fédérale de Lausanne Examiner Ms. Karine Heydemann, Associate Professor, Sorbonne Université Examiner Mr. Etienne Rivière, Full Professor, University of Louvain Examiner Mr. Gilles Muller, Senior Research Scientist, Inria Advisor Mr. Julien Sopena, Associate Professor, Sorbonne Université Advisor ABSTRACT In this thesis, we address the problem of schedulers for multi-core architectures from several perspectives: design (simplicity and correct- ness), performance improvement and the development of application- specific schedulers. -
Foot Prints Feel the Freedom of Fedora!
The Fedora Project: Foot Prints Feel The Freedom of Fedora! RRaahhuull SSuunnddaarraamm SSuunnddaarraamm@@ffeeddoorraapprroojjeecctt..oorrgg FFrreeee ((aass iinn ssppeeeecchh aanndd bbeeeerr)) AAddvviiccee 101011:: KKeeeepp iitt iinntteerraaccttiivvee!! Credit: Based on previous Fedora presentations from Red Hat and various community members. Using the age old wisdom and Indian, Free software tradition of standing on the shoulders of giants. Who the heck is Rahul? ( my favorite part of this presentation) ✔ Self elected Fedora project monkey and noisemaker ✔ Fedora Project Board Member ✔ Fedora Ambassadors steering committee member. ✔ Fedora Ambassador for India.. ✔ Editor for Fedora weekly reports. ✔ Fedora Websites, Documentation and Bug Triaging projects volunteer and miscellaneous few grunt work. Agenda ● Red Hat Linux to Fedora & RHEL - Why? ● What is Fedora ? ● What is the Fedora Project ? ● Who is behind the Fedora Project ? ● Primary Principles. ● What are the Fedora projects? ● Features, Future – Fedora Core 5 ... The beginning: Red Hat Linux 1994-2003 ● Released about every 6 months ● More stable “ .2” releases about every 18 months ● Rapid innovation ● Problems with retail channel sales model ● Impossible to support long-term ● Community Participation: ● Upstream Projects ● Beta Team / Bug Reporting The big split: Fedora and RHEL Red Hat had two separate, irreconcilable goals: ● To innovate rapidly. To provide stability for the long-term ● Red Hat Enterprise Linux (RHEL) ● Stable and supported for 7 years plus. A platform for 3rd party standardization ● Free as in speech ● Fedora Project / Fedora Core ● Rapid releases of Fedora Core, every 6 months ● Space to innovate. Fedora Core in the tradition of Red Hat Linux (“ FC1 == RHL10” ) Free as in speech, free as in beer, free as in community support ● Built and sponsored by Red Hat ● ...with increased community contributions. -
Mechdyne-TGX-2.1-Installation-Guide
TGX Install Guide Version 2.1.3 Mechdyne Corporation March 2021 TGX INSTALL GUIDE VERSION 2.1.3 Copyright© 2021 Mechdyne Corporation All Rights Reserved. Purchasers of TGX licenses are given limited permission to reproduce this manual, provided the copies are for their use only and are not sold or distributed to third parties. All such copies must contain the title page and this notice page in their entirety. The TGX software program and accompanying documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license agreement. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non- infringement. Any Mechdyne Corporation publication may include inaccuracies or typographical errors. Changes are periodically made to these publications, and changes may be incorporated in new editions. Mechdyne may improve or change its products described in any publication at any time without notice. Mechdyne assumes no responsibility for and disclaims all liability for any errors or omissions in this publication. Some jurisdictions do not allow the exclusion of implied warranties, so the above exclusion may not apply. TGX is a trademark of Mechdyne Corporation. Windows® is registered trademarks of Microsoft Corporation. Linux® is registered trademark of Linus Torvalds.