Disappearing Hardware

Total Page:16

File Type:pdf, Size:1020Kb

Disappearing Hardware REACHING FOR WEISER’S VISION Disappearing Hardware In Mark Weiser’s vision of ubiquitous computing, computers disappear from conscious thought. From a hardware perspective, the authors examine how far we’ve succeeded in implementing this vision and how far we have to go. or many tasks today, the use of comput- (such as spell checkers, calculators, electronic trans- ers is not entirely satisfactory. The inter- lators, electronic books, and Web pads). These actions take effort and are often difficult. devices have a specialized interface and address the The traditional, and still prevalent, com- desired goal of ease of use. In contrast, a PC is a gen- puting experience is sitting in front of a eralized machine, which makes it attractive to pur- Fbox, our attention completely absorbed in the dia- chase—the one-time investment having the potential log required to complete the details of a greater task. for many different uses. However, in other ways it Putting this in perspective, the real objective is the adds a level of complexity and formalism that hin- task’s completion, not the interaction with the tools ders the casual user. we use to perform it. Mark Weiser wanted to explore whether we could To illustrate the point further, if somebody asks design radically new kinds of computer systems. you for an electric drill, do they want to use a drill, These systems would allow the orchestration of or do they really want a hole? The answer is prob- devices with nontraditional form factors that lend ably the latter—but computers are currently very themselves to more natural, tacit interaction. They much a drill, requiring knowl- would take into account the space in which people 1 Roy Want and Trevor Pering edge, training, effort, and skill to worked, allowing positional and manipulative — Intel Research, Santa Clara use correctly. Creating a hole is rather than just keyboard and mouse—interactions. relatively simple, and many hid- Along with specialization and the use of embedded Gaetano Borriello den computers invisibly accom- computers, support for mobile computing and wire- University of Washington and plish what seem to be simple less data networks is an important facet of this Intel Research, Seattle tasks, such as regulating our cars’ vision—in other words, invisible connectivity. A goal Keith I. Farkas brakes. But unlike other inani- of this exploration is that we would learn to build Compaq Western Research mate objects, a computer system computer systems that do not distract the user; ide- Laboratory might be able to infer the result ally, the user might even forget the hardware is pres- autonomously and affect the ent.2 In essence, Weiser was proposing that well- desired outcome, increasing both designed computer systems would become invisible its potential and end-user complexity. Realizing this to the user and that our conscious notion of com- potential while managing the complexity is the fun- puter hardware would begin to disappear. Some damental challenge facing computer system years later, Don Norman popularized this concept researchers. in his book The Invisible Computer.3 An important trend over the last decade is the In this article, we survey the progress toward emergence of specialized, task-specific hardware Weiser’s vision from a hardware viewpoint. Where 36 PERVASIVEcomputing 1536-1268/02/$17.00 © 2002 IEEE Figure 1. Hardware improvement over the last decade: (a) the Xerox ParcTab, the first context-sensitive computer (1992). The design shows the limited display available at that time—a 128- × 64-pixel, monochrome LCD. (b) a typical PDA available today with a color 240- × 320-pixel VGA (transreflective) screen. have we been, where are we, and where are we headed? What characteristics will make hardware disappear from our conscious- ness, and what will it take to achieve them? Where we’ve been The research community embraced Weiser’s call to explore ubiquitous com- puting. For example, his vision inspired the work at the Xerox Palo Alto Research (a) (b) Center (PARC) in the early 1990s and such projects as ParcTab,4 Mpad,5 and Liveboard.6 Olivetti Research’s Active a pen and paper. Most of these products use: if we notice it’s there, it’s distracting Badge7 and Berkeley’s InfoPad8 projects have fallen by the wayside: Momenta and us from our real task. For example, if we also embraced this research direction, as EO, IBM’s early ThinkPad, and later the notice that we are using a slow wireless net- did other notable centers of excellence, Apple Newton, the Casio Zoomer, and Gen- work connection instead of just editing our such as at Carnegie Mellon University, eral Magic’s pad. For these designs, the ben- files, then the action of accessing the files is IBM, Rutgers University, Georgia Tech, efit-to-cost ratio was just not large enough. getting in the way of the real task, which is and the University of Washington. Unfor- To be successful, these new devices had to contained in the files themselves. If the link tunately, many of the early systems were either be better than the traditional pencil- is fast and robust, we will not notice it and based on technologies that were barely and-paper technology they were replacing can focus on the content. Likewise, if a dis- adequate for the task, so they fell short of or provide desired new functionality. The play can present only a poor representa- designer expectations. physical hardware was the dominating fac- tion of a high-quality underlying image, we Figures 1a and 1b illustrate the extent tor, and almost every design aspect affected see a bad display. A high-quality display of hardware improvement over the last acceptance: size, weight, power consump- suspends our belief that the image is only decade. In 1990, no Wireless Local Area tion, computation speed, richness of inter- a representation. Network standards existed; the processors face, and simplicity of design. The four most notable improvements in suitable for mobile devices operated at only We started to cross the acceptability hardware technology during the last decade a few megahertz, while PCs were typically threshold only in the latter half of the that directly affected ubiquitous comput- shipping with up to 50-MHz processors. decade with the Palm Pilot. It was smaller ing are wireless networking, processing The early electronic organizers (pen-based and lighter, focused on simple applications, capability, storage capacity, and high-qual- PDAs had not been invented) proudly and incorporated a novel one-button ity displays. Furthermore, the current pop- claimed 128 Kbytes of memory, while PCs approach to data synchronization. Finally, ular adoption of emerging technology, such shipped with 30-Mbyte disks. The displays an electronic organizer was useful for a sig- as cell phones and PDAs, strongly indicates were also quite crude: laptops used mono- nificant number of people and had real that the market is generally ready for chrome VGA, and the few handheld advantages over the more traditional paper advanced new technology. This adoption, devices available mainly used character- products such as Day-Timers. The com- however, requires common standards based displays. puter industry was beginning to move in across many products and locales. Industry soon responded to the challenge the right direction. with a tighter focus on mobile computing. Wireless networking A flurry of early products hit the market, Where we are Although progress in wireless connec- particularly in the tablet style, that tried to For hardware to disappear from our tivity was initially slow, it has increased. make using computers feel more like using consciousness, we require transparency of This area has witnessed two distinct devel- JANUARY–MARCH 2002 PERVASIVEcomputing 37 REACHING FOR WEISER’ S VISION opment trends. The first is in short-range The emergence of the latter IEEE wire- means that we can operate these devices at connectivity standards, such as Bluetooth less standards allows for communication higher speeds, increasing their effective per- (IEEE 802.15) and the IrDA (Infrared Data cells that span many hundreds of feet with formance. Additionally, reduced transistor Association) standards, which are primar- sufficient bandwidth to make us feel as if sizes decrease power consumption, allevi- ily for simple device-to-device communi- we were connected to a wired LAN, but ating some of the perpetual problems sur- cation. Bluetooth, which will get its first without a physical connection’s con- rounding energy storage technologies. real test in the marketplace in 2002, was straints. IEEE 802.11b has already been The combination of more transistors on designed as a short-range cable replace- widely adopted, and 802.11a is expected a given area of silicon and a reduced power ment, allowing for proximate interaction to follow with higher bandwidths. Next- budget has brought us the capabilities of and the discovery of resources in the user’s generation digital cellular networks such mid-1980’s desktop computers in today’s locality. IrDA had a similar aim. But as 2.5G (for example, General Packet battery-operated, handheld PDAs. Two because infrared signaling requires a line Radio Service and NTT’s DoCoMo—with examples are the Motorola Dragonball of sight, users had to physically place greater than 24 million users) and the com- and Intel StrongARM processors, the most devices next to each other, often an incon- ing 3G networks will extend these capa- common processors used by today’s PDAs. venience. This technology, which predates bilities to cover entire metropolitan areas. Besides providing low power consumption Bluetooth by many years, has been con- The wireless networking of today and and high performance, these processors sidered a market failure. (The sidebar lists the immediate future thus enables portable integrate their DRAM and LCD con- URLs for Bluetooth, IrDA, and other areas ubiquitous hardware that remains con- trollers and a host of other interface I/O of interest in this article.) nected to the global infrastructure.
Recommended publications
  • Building Blocks for Tomorrow's Mobile App Store
    Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Abstract (0984) Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Copyright c 2012 by Justin G. Manweiler All rights reserved Abstract In our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely “exciting;” it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations. This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate exist- ing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains.
    [Show full text]
  • English Version
    Deloitte Perspective Deloitte Can the Punch Bowl Really Be Taken Away? The Future of Shared Mobility in China Perspective Gradual Reform Across the Value Chain 2018 (Volume VII) 2018 (Volume VII) 2018 (Volume About Deloitte Global Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not provide services to clients. Please see www.deloitte.com/about to learn more about our global network of member firms. Deloitte provides audit & assurance, consulting, financial advisory, risk advisory, tax and related services to public and private clients spanning multiple industries. Deloitte serves nearly 80 percent of the Fortune Global 500® companies through a globally connected network of member firms in more than 150 countries and territories bringing world-class capabilities, insights, and high-quality service to address clients’ most complex business challenges. To learn more about how Deloitte’s approximately 263,900 professionals make an impact that matters, please connect with us on Facebook, LinkedIn, or Twitter. About Deloitte China The Deloitte brand first came to China in 1917 when a Deloitte office was opened in Shanghai. Now the Deloitte China network of firms, backed by the global Deloitte network, deliver a full range of audit & assurance, consulting, financial advisory, risk advisory and tax services to local, multinational and growth enterprise clients in China. We have considerable experience in China and have been a significant contributor to the development of China's accounting standards, taxation system and local professional accountants.
    [Show full text]
  • Toward Building a Safe, Secure, and Easy-To-Use Internet of Things
    IOT CONNECTION Toward Building a Safe, Secure, and Easy-to-Use Sal glances at the display near her office door and sees that her next meeting is in 10 Internet of Things minutes. One participant is out of town and the other two people are running late, but the meeting room is still occupied Infrastructure by several people. The display also suggests it might be a Yuvraj Agarwal and Anind K. Dey, Carnegie Mellon University good time to get coffee because the lines are short at the cafe downstairs. Her good friend Joe Carnegie Mellon University is leading a happens to be at the cafe, too. multi-institutional effort to build an open Sal checks an app she recently built and sees that the coffee is infrastructure to support the Internet of Things. freshly brewed. “That simplifies things,” she thinks to herself as she heads toward the cafe. safe and secure world enabled by the Inter- This is the unique promise of a successful IoT, and is net of Things (IoT) promises to lead to truly what we are aiming for with GIoTTO, the IoT program connected environments, where people and at Carnegie Mellon University (CMU) named after the things collaborate to improve the overall famous Renaissance painter. qualityA of life. The IoT will give us actionable informa- tion at our fingertips, without us having to ask for it or NEED FOR AN OPEN INFRASTRUCTURE even recognizing that it might be needed. Consider this Although numerous commercial and academic programs example that combines many simple uses of the IoT to cu- focus on building IoT systems, it’s clear that for any IoT mulatively form an omnipotent assistant: stack to be widely adopted, it must be open—without a 40 COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY 0018-9162/16/$33.00 © 2016 IEEE EDITOR ROY WANT Google; [email protected] singular organization claiming own- ership.
    [Show full text]
  • Passing the Torch
    From the Editor in Chief Editor in Chief: M. Satyanarayanan ■ Carnegie Mellon University ■ [email protected] Passing the Torch M. Satyanarayanan his issue marks the end of my sec- a highly portable information appliance LOOKING BACK, T ond two-year term as editor in that transforms nearby displays and LOOKING FORWARD chief. I am delighted to introduce my input devices into a transient personal- In August 2001, 10 years after the successor, Roy Want of Intel Research, computing environment. Roy has pub- publication of Mark Weiser’s seminal who will begin his term on 1 January lished extensively over his research career paper introducing the concept of ubiq- 2006. I will continue to serve as active and has over 50 patents to his credit. uitous computing,1 I summarized the editor in chief until that time and will It is hard to imagine a person more field’s progress and reflected on the work closely with Roy to ensure a qualified than Roy to be the next editor challenges ahead in a paper entitled smooth and efficient transition. My in chief of IEEE Pervasive Computing. “Pervasive Computing: Vision and involvement with this publication will In 2001, he was part of the founding edi- Challenges.”2 Looking back, it is grat- continue even after I step down, as I will torial board that created this publication ifying to see how much progress has remain on the editorial board. occurred in just four short years. Many forces have converged to make IN GOOD HANDS It is hard to this progress possible, one of which was Roy received his PhD from Cambridge imagine a substantial industry investment in prod- University in 1988, under the supervision person more uct development relevant to mobile and of Roger Needham.
    [Show full text]
  • (CBCGS-H 2019) Proposed Syllabus Under Autonomy Scheme
    B.E. Semester –VIII Choice Based Credit Grading Scheme with Holistic Student Development (CBCGS-H 2019) Proposed Syllabus under Autonomy Scheme B.E.( Information Technology ) B.E.(SEM : VIII) Course Name : Big Data Analytics Course Code : ITC801 Teaching Scheme (Program Specific) Examination Scheme (Formative/ Summative) Modes of Teaching / Learning / Weightage Modes of Continuous Assessment / Evaluation Hours Per Week Theory Practical/Oral Term Work Total (100) (25) (25) Theory Tutorial Practical Contact Credits IA ESE OR TW Hours 4 - 2 6 5 20 80 25 25 150 IA: In-Semester Assessment- Paper Duration – 1Hours ESE : End Semester Examination- Paper Duration - 3 Hours Total weightage of marks for continuous evaluation of Term work/Report: Formative (40%), Timely Completion of Practical (40%) and Attendance /Learning Attitude (20%). Prerequisite: Database Management System, Data Mining & Business Intelligence Course Objective: The course intends to provide an overview of an exciting growing field of big data analytics and equip the students with programming skills to solve complex real world problems using big data technologies. Course Outcomes: Upon completion of the course student will be able to: S. Course Outcomes Cognitive levels of No. attainment as per Bloom’s Taxonomy 1 Explain the motivation for big data systems and identify the main sources of Big Data in L1, L2 the real world. 2 Demonstrate an ability to use frameworks like Hadoop, NOSQL to efficiently store L2,L3 retrieve and process Big Data for Analytics. 3 Implement several Data Intensive tasks using the Map Reduce Paradigm L4,L5 4 Apply several newer algorithms for Clustering Classifying and finding associations in L4,L5 Big Data 5 Design algorithms to analyze Big data like streams, Web Graphs and Social Media data.
    [Show full text]
  • Curriculum Vitae: Roy Want
    Curriculum Vitae: Roy Want E-mail: roywant AT google.com ; roywant AT acm.org Google Inc, Mail-Stop: US-MTV-B43 1600 Amphitheatre Parkway Mountain View, CA 94043, USA Office/Cell: (650) 691 3600 Date: January, 2019 Up-to-date CV: http://www.roywant.com/cv/vita.htm Research Interests Mobile & ubiquitous computing, location & context-aware systems, electronic tagging(RFID/NFC/BLE), hardware design, electronic commerce, smart cards, distributed systems, multimedia systems, cellular automata, novel UI, and MEMS. Professional ACM Fellow: 2005, and ACM (Association of Computer Machinery) member since 1996. IEEE Fellow: 2005 and IEEE (Institute for Electrical and Electronic Engineers) member since 1991. Lillian Gilbreth lectureship, National Academy of Engineering (NAE), Washington DC, Oct 12th, 2003 Education Ph.D. Cambridge University UK, Churchill College, Computer Science, Advisor: Roger Needham, 1983-88 o Thesis title: "Reliable Management of Voice in a Distributed System" BA hons. Cambridge University UK, Churchill College, Nat. Science/Computer Science, Tutor: Frank King, 1980-83 o Dissertation title: “A Local Area Network (LAN) Based on the Domestic Mains Supply” High School: William Ellis Grammar School, London UK, 1972-79 Experience Google Inc. (2011-present) o Senior Research Scientist: Google Research and Android Location & Context Team Intel Corporation (2001-2011) o Senior Principal Engineer (SPE) 2008-2011 -Assoc. Director: ILSC (2009-10) & Director (NPL) 2010-11 o Principal Engineer (PE) 2000-2007 Xerox - Palo Alto Research Center (PARC). Computer Science Laboratory (CSL). 1991 - 2001 (reporting to Mark Weiser, Laboratory Manager for CSL; CTO) o Principal Scientist 2000-2001 o Area Manager for Embedded Systems Area 1992-1999 o Member of Research Staff II 1991-1992.
    [Show full text]
  • Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs
    Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy (Computer Science) by Erin Griffiths December 2019 © 2019 Erin Griffiths Approval Sheet This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) Erin Griffiths This dissertation has been read and approved by the Examining Committee: Kamin Whitehouse, Adviser Jack Stankovic, Committee Chair Mary Lou Soffa A.J. Brush John Lach Accepted for the School of Engineering and Applied Science: Dean, School of Engineering and Applied Science December 2019 i To everyone who has helped me along the way. ii Abstract In the world today there exists a large number of problems that are of great societal concern, but suffer from a problem called the tragedy of the commons where there isn`t enough individual incentive for people to change their behavior to benefit the whole. One of the biggest examples of this is in energy consumption where research has shown that we can reduce 20-50% of the energy used in buildings if people would consistently modify their behavior. However, consistent behavior modification to meet societal goals that are often low priority on a personal level is often prohibitively difficult in the long term. Even systems design to assist in meeting these needs may be unused or disabled if they require too much effort, infringe on privacy, or are frustratingly inaccurate.
    [Show full text]
  • Redefine Work: the Untapped Opportunity for Expanding Value
    A report from the Deloitte Center for the Edge Redefine work The untapped opportunity for expanding value Deloitte Consulting LLP’s Human Capital practice focuses on optimizing and sustaining organiza- tional performance through their most important asset: their workforce. We do this by advising our clients on a core set of issues including: how to successfully navigate the transition to the future of work; how to create the “simply irresistible” experience; how to activate the digital orga- nization by instilling a digital mindset—and optimizing their human capital balance sheet, often the largest part of the overall P&L. The practice’s work centers on transforming the organization, workforce, and HR function through a comprehensive set of services, products, and world-class Bersin research enabled by our proprietary Human Capital Platform. The untapped opportunity for expanding value Contents Introduction: Opportunity awaits—down a different path | 2 A broader view of value | 4 Redefining work everywhere: What does the future of human work look like? | 6 Breaking from routine: Work that draws on human capabilities | 11 Focusing on value for others | 18 Making work context-specific | 21 Giving and exercising latitude | 25 How do we get started? | 31 Endnotes | 34 1 Redefine work Introduction: Opportunity awaits—down a different path Underneath the understandable anxiety about the future of work lies a significant missed opportunity. That opportunity is to return to the most basic question of all: What is work? If we come up with a creative answer to that, we have the potential to create significant new value for the enterprise.
    [Show full text]
  • SOUL: an Edge-Cloud System for Mobile Applications in a Sensor-Rich World
    2016 IEEE/ACM Symposium on Edge Computing SOUL: An Edge-cloud System for Mobile Applications in a Sensor-rich World Minsung Jang∗, HyunJong Lee†, Karsten Schwan‡, Ketan Bhardwaj‡ ∗AT&T Labs - Research, [email protected] †University of Michigan, [email protected] ‡Georgia Institute of Technology, {karsten, ketanbj}@gatech.edu Abstract—With the Internet of Things, sensors are becoming In order for such apps to efficiently interact with and ever more ubiquitous, but interacting with them continues manage the dynamic sets of currently accessible sensors with to present numerous challenges, particularly for applications the associated actuators and software services, SOUL (Sensors running on resource-constrained devices like smartphones. The Of Ubiquitous Life) SOUL abstractions in this paper address two issues faced • by such applications: (1) access to sensors with the levels of externalizes sensor & actuator interactions and process- convenience needed for their ubiquitous, dynamic use, and only ing from the resource-constrained device to edge- and by parties authorized to do so, and (2) scalability in sensor remote-cloud resources, to leverage their computational and access, given today’s multitude of sensors. Toward this end, storage abilities for running the complex sensor processing SOUL, first, introduces a new abstraction for the applications to functionality; transparently and uniformly access both on-device and ambient • sensors with associated actuators. Second, potentially expensive automates reconfiguration of these interactions when sensor-related processing needs not just occur on smartphones, better-matched sensors and actuators become physically but can also leverage edge- and remote-cloud resources. Finally, available; SOUL provides access control methods that permit users to easily • supports existing sensor-based applications allowing define access permissions for sensors, which leverages users’ social ties and captures the context in which access requests them to use SOUL’s capabilities without requiring modi- are made.
    [Show full text]
  • Ambient Intelligence
    Ambient intelligence Ambient intelligence is closely related to the long term vision of an intelligent service system in which technolo- gies are able to automate a platform embedding the re- quired devices for powering context aware, personalized, adaptive and anticipatory services. Where in other me- dia environment the interface is clearly distinct, in an ubiquitous environment 'content' differs. Artur Lugmayr defined such a smart environment by describing it as ambient media. It is constituted of the communication of information in ubiquitous and pervasive environments. The concept of ambient media relates to ambient media form, ambient media content, and ambient media tech- nology. Its principles have been established by Artur Lug- mayr and are manifestation, morphing, intelligence, and experience.[1][2] An (expected) evolution of computing from 1960–2010. A typical context of ambient intelligence environment is In computing, ambient intelligence (AmI) refers to a Home environment (Bieliková & Krajcovic 2001). electronic environments that are sensitive and respon- sive to the presence of people. Ambient intelligence is a vision on the future of consumer electronics, 1 Overview telecommunications and computing that was originally developed in the late 1990s for the time frame 2010– 2020. In an ambient intelligence world, devices work in More and more people make decisions based on the effect concert to support people in carrying out their everyday their actions will have on their own inner, mental world. life activities, tasks and rituals in an easy, natural way us- This experience-driven way of acting is a change from ing information and intelligence that is hidden in the net- the past when people were primarily concerned about the work connecting these devices (see Internet of Things).
    [Show full text]
  • Design for Use
    Research-Technology Management ISSN: 0895-6308 (Print) 1930-0166 (Online) Journal homepage: http://www.tandfonline.com/loi/urtm20 Design for Use Don Norman & Jim Euchner To cite this article: Don Norman & Jim Euchner (2016) Design for Use, Research-Technology Management, 59:1, 15-20 To link to this article: http://dx.doi.org/10.1080/08956308.2016.1117315 Published online: 08 Jan 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=urtm20 Download by: [Donald Norman] Date: 10 January 2016, At: 13:57 CONVERSATIONS Design for Use An Interview with Don Norman Don Norman talks with Jim Euchner about the design of useful things, from everyday objects to autonomous vehicles. Don Norman and Jim Euchner Don Norman has studied everything from refrigerator the people we’re designing for not only don’t know about thermostats to autonomous vehicles. In the process, he all of these nuances; they don’t care. They don’t care how has derived a set of principles that govern what makes much effort we put into it, or the kind of choices we made, designed objects usable. In this interview, he discusses some or the wonderful technology behind it all. They simply care of those principles, how design can be effectively integrated that it makes their lives better. This requires us to do a into technical organizations, and how designers can work design quite differently than has traditionally been the case. as part of product development teams.
    [Show full text]
  • Getmobile MOBILE COMPUTING & COMMUNICATIONS REVIEW
    GetMobile MOBILE COMPUTING & COMMUNICATIONS REVIEW Volume 21, Issue 2 • June 2017 CONTENTS 3 Message from the Editor-in-Chief 16 22 (ALMOST) UNPUBLISHABLE HIGHLIGHTS 5 RESULTS 22 EmotionCheck: A Wearable Device 16 Experiences Deploying an to Regulate Anxiety through False EXPERIMENTAL METHODS Always-On Farm Network Heart Rate Feedback 5 How Do You Know If 85% Accuracy Is Good Enough for Your Application? 26 9 31 26 HemaApp: Noninvasive Blood Screening of Hemoglobin Using Smartphone Cameras MOBILE PLATFORMS 9 Beyond Reality: Head-Mounted 31 Who Are the Smartphone Users? Displays for Mobile Systems Identifying User Groups with Researchers Apps Usage Behaviors 35 Interpretable Machine Learning for Mobile Notification Management: An Overview of PrefMiner 35 2 GetMobile June 2017 | Volume 21, Issue 2 MESSAGE FROM THE EDITOR-IN-CHIEF CONTRIBUTORS EDITOR-IN-CHIEF IN THIS ISSUE, we highlight four papers Eyal de Lara, University of Toronto from ACM UbiComp 2016. MANAGING EDITOR Donna Paris “EmotionCheck: A Wearable Device DESIGNER JoAnn McHardy to Regulate Anxiety through False Heart SENIOR ADVISORS (Past Editors-in-Chief) Rate Feedback,” by Jean Costa, Alexander Paramvir Bahl, Microsoft Research T. Adams, Malte F. Jung, François Suman Banerjee, University of Wisconsin, Madison Guimbretière, and Tanzeem Choudhury, Srikanth Krishnamurthy, University of California, Riverside describes a device that generates subtle Jason Redi, BBN Technologies vibrations on the wrist to resemble a pulse, Mani Srivastava, University of California, Los Angeles which helps users regulate their anxiety Eyal de Lara Nitin Vaidya, University of Illinois, Urbana-Champaign through false feedback of a slow heart rate. SECTION EDITORS In “HemaApp: Noninvasive Blood Screening of Hemoglobin Ardalan Amiri Sami, University of California, Irvine Using Smartphone Cameras,” Edward Jay Wang, William Li, Doug Aruna Balasubramanian, Stony Brook University Nilanjan Banerjee, University of Maryland, Hawkins, Terry Gernsheimer, Colette Norby-Slycord, and Shwetak N.
    [Show full text]