Geochemical Data for Selected Rivers, Lake Waters, Hydrothermal Vents, and L Subaerial Geysers in Yellowstone National Park, Wyoming and Vicinity, 1996–2004

Total Page:16

File Type:pdf, Size:1020Kb

Geochemical Data for Selected Rivers, Lake Waters, Hydrothermal Vents, and L Subaerial Geysers in Yellowstone National Park, Wyoming and Vicinity, 1996–2004 Geochemical Data for Selected Rivers, Lake Waters, Hydrothermal Vents, and L Subaerial Geysers in Yellowstone National Park, Wyoming and Vicinity, 1996–2004 By Pamela A. Gemery-Hill, Wayne C. Shanks, III, Laurie S. Balistrieri, and Gregory K. Lee Chapter L of Integrated Geoscience Studies in the Greater Yellowstone Area— Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem Edited by Lisa A. Morgan Professional Paper 1717 U.S. Department of the Interior U.S. Geological Survey Contents Abstract .......................................................................................................................................................367 Introduction.................................................................................................................................................367 Study Area...................................................................................................................................................368 Methods.......................................................................................................................................................368 Field Methods ....................................................................................................................................368 Laboratory Methods .........................................................................................................................371 Results .........................................................................................................................................................373 Summary......................................................................................................................................................377 Acknowledgments .....................................................................................................................................379 References Cited .......................................................................................................................................379 Figures 1. Map showing Yellowstone National Park with sampling areas .......................................369 2. Detailed map of Yellowstone Lake with sample locations .................................................370 3–6. Maps showing sample locations in: 3. Norris Geyser Basin ..........................................................................................................375 4. Heart Lake Geyser Basin ..................................................................................................376 5. Gibbon and Monument Geyser Basins area .................................................................377 6. Turbid Lake area ................................................................................................................378 Table 1. Analytical methods ...................................................................................................................372 Appendixes 1. Creeks and water-column profiles .........................................................................................382 2. Hydrothermal vents in Yellowstone Lake ..............................................................................398 3. 1999 mixing experiments .........................................................................................................409 4. Subaerial hydrothermal features ...........................................................................................419 Geochemical Data for Selected Rivers, Lake Waters, Hydrothermal Vents, and Subaerial Geysers in Yellowstone National Park, Wyoming and Vicinity, 1996–2004 By Pamela A. Gemery-Hill,1 Wayne C. Shanks, III,1 Laurie S. Balistrieri,2 and Gregory K. Lee1 Abstract The data reported in this paper clearly show the influence of hydrothermal processes on waters within Analyses of more than 400 water samples collected Yellowstone National Park. Yellowstone Lake hydrothermal- indicator elements (As, B, Cl, Cs, Cu, Ge, Hg, Li, Mo, Sb, from creeks and rivers draining into Yellowstone Lake, and W) as defined by Balistrieri and others (this volume) hydrothermal vents and water-column profiles within delineate areas of hydrothermal influx. The differences in Yellowstone Lake, and subaerial hot springs and geysers the levels of these elements between the creek data and throughout Yellowstone National Park (the Park) are water-column profiles indicate an influx of hydrothermal reported. The samples were collected from 1996 to 2004. water within Yellowstone Lake. The water-column All of the water samples were collected and analyzed as samples have higher values of the hydrothermal-indicator part of the USGS Mineral Resources Program Project, elements than the creeks flowing into the lake; therefore Integrated Geoscience Studies of the Greater Yellowstone significant input of hydrothermal-indicator elements from Area. Goals of this study are to provide state-of-the-art the hydrothermal vents within the lake is indicated. chemical determinations of more than 45 elements and There are large variations in the values of the indicator species to help understand the influences of hydrothermal elements among vents in Yellowstone Lake. The values of processes within Yellowstone National Park. the hydrothermal-indicator elements are elevated for all Hydrothermal vents within Yellowstone Lake were of the vent samples, but a group of the West Thumb vents sampled during 1996–2004. Sampling of creeks contrib- contain the highest values. This could indicate more active uting to Yellowstone Lake began in 1997 and continued vents and (or) less mixing with lake water during sampling through 1999. Four water-column profiles were collected or during ascent to the lake floor. The subaerial features within Yellowstone Lake in both 1997 and 1998. Water in the Park also show considerable variations in the values samples were collected from subaerial geysers and hot of the indicator elements. Some thermal features in the springs throughout Yellowstone National Park during Park, such as Porkchop and Green Dragon Geysers in 1998–2002. Norris Geyser Basin, have highly elevated hydrothermal- In 1999, mixing experiments were conducted using indicator-element values, while other features have water samples collected from four subaerial hot springs: values similar to Yellowstone Lake water, which is 99 three in Norris Geyser Basin and one at West Thumb percent meteoric water. These differences must reflect Geyser Basin. These thermal-water samples were mixed with varying amounts of hydrothermal activity and input in Yellowstone Lake water to simulate processes at sublacus- these areas. trine vents and to evaluate conservative–nonconservative behavior of elements during mixing. The results of these experiments are discussed in Balistrieri and others (this Introduction volume), and the full data sets are presented here. Yellowstone National Park (the Park) was first desig- 1U.S. Geological Survey, Box 25046, MS 973, Denver Federal Center, nated as a National Park in 1872 for its scenic beauty and Denver, CO 80225. spectacular hydrothermal activity. Ten thousand thermal 2U.S. Geological Survey, University of Washington, School of Oceanogra- features and 300 geysers in the more than 2-million-acre phy, Box 357940, Seattle, WA 98195. park represent over half of the Earth’s known hydrothermal 368 Integrated Geoscience Studies in the Greater Yellowstone Area features and provide unique opportunities for research. Methods Gooch and Whitfield (1888) were the first to carry out chemical analyses of thermal and surficial waters, and Allen and Day (1935) did the first extensive work. Field Methods Beginning in the 1960s, the intensity of aqueous geochemical studies in Yellowstone has steadily increased Because very few water-quality data or discharge measurements were available for surface water flow into (Ball, Nordstrom, Cunningham, and others, 1998; Ball, Yellowstone Lake, samples were collected during July Nordstrom, Jenne, and Vivit, 1998; Ball and others, 2001, 1997, August–September 1998, and July 1999 from the 2002; Balistrieri and others, this volume; Fournier, 1989; major streams that enter the lake (fig. 2). Locations were Kharaka and others, 1991, 2000; Thompson and others, obtained by global positioning satellite (GPS), and the 1975; Thompson and Yadav, 1979; Thompson and temperature and pH of the water were determined at each DeMonge, 1996; White and others, 1970, 1971, 1988). site. Point-source or integrated water samples were However, the development and widespread use of collected in 500-mL polyethylene bottles and brought to inductively coupled plasma (ICP) spectrographic methods a field-based laboratory for processing. The bottles had in the late 1980s and early 1990s has led to a renaissance in been acid-washed and well rinsed with distilled, deionized trace-element geochemistry, with many more elements water before use. determined than by previous methods. For example, Estimates of stream discharge were made by timing Balistrieri and others (this volume) have clearly shown floats and determining the cross-sectional area of the that Mo and W are important geothermal elements, stream (in 1998) or by measuring the flow rate at 1 to 20 whereas most previous studies did not analyze for these locations in a cross section of the stream using a velocity elements. Balistrieri and others (this volume) conclude meter (in 1999). The accuracy of the flow estimates varied that As, B, Cl, Cs, Cu, Ge, Hg,
Recommended publications
  • Coastal Circulation and Water-Column Properties in The
    Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey FRONT COVER: Left: Photograph showing the impact of intentionally set wildfires on the land surface of War in the Pacific National Historical Park. Right: Underwater photograph of some of the healthy coral reefs in War in the Pacific National Historical Park. Coastal Circulation and Water-Column Properties in the War in the Pacific National Historical Park, Guam— Measurements and Modeling of Waves, Currents, Temperature, Salinity, and Turbidity, April–August 2012 By Curt D. Storlazzi, Olivia M. Cheriton, Jamie M.R. Lescinski, and Joshua B. Logan Open-File Report 2014–1130 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Suggested citation: Storlazzi, C.D., Cheriton, O.M., Lescinski, J.M.R., and Logan, J.B., 2014, Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam—Measurements and modeling of waves, currents, temperature, salinity, and turbidity, April–August 2012: U.S.
    [Show full text]
  • Hydrothermal Vent Fields and Chemosynthetic Biota on the World's
    ARTICLE Received 13 Jul 2011 | Accepted 7 Dec 2011 | Published 10 Jan 2012 DOI: 10.1038/ncomms1636 Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre Douglas P. Connelly1,*, Jonathan T. Copley2,*, Bramley J. Murton1, Kate Stansfield2, Paul A. Tyler2, Christopher R. German3, Cindy L. Van Dover4, Diva Amon2, Maaten Furlong1, Nancy Grindlay5, Nicholas Hayman6, Veit Hühnerbach1, Maria Judge7, Tim Le Bas1, Stephen McPhail1, Alexandra Meier2, Ko-ichi Nakamura8, Verity Nye2, Miles Pebody1, Rolf B. Pedersen9, Sophie Plouviez4, Carla Sands1, Roger C. Searle10, Peter Stevenson1, Sarah Taws2 & Sally Wilcox11 The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on theM id-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. 1 National Oceanography Centre, Southampton, UK.
    [Show full text]
  • Part 3. Oceanic Carbon and Nutrient Cycling
    OCN 401 Biogeochemical Systems (11.03.11) (Schlesinger: Chapter 9) Part 3. Oceanic Carbon and Nutrient Cycling Lecture Outline 1. Models of Carbon in the Ocean 2. Nutrient Cycling in the Ocean Atmospheric-Ocean CO2 Exchange • CO2 dissolves in seawater as a function of [CO2] in the overlying atmosphere (PCO2), according to Henry’s Law: [CO2]aq = k*PCO2 (2.7) where k = the solubility constant • CO2 dissolution rate increases with: - increasing wind speed and turbulence - decreasing temperature - increasing pressure • CO2 enters the deep ocean with downward flux of cold water at polar latitudes - water upwelling today formed 300-500 years ago, when atmospheric [CO2] was 280 ppm, versus 360 ppm today • Although in theory ocean surface waters should be in equilibrium with atmospheric CO2, in practice large areas are undersaturated due to photosythetic C-removal: CO2 + H2O --> CH2O + O2 The Biological Pump • Sinking photosynthetic material, POM, remove C from the surface ocean • CO2 stripped from surface waters is replaced by dissolution of new CO2 from the atmosphere • This is known as the Biological Pump, the removal of inorganic carbon (CO2) from surface waters to organic carbon in deep waters - very little is buried with sediments (<<1% in the pelagic ocean) -most CO2 will ultimately be re-released to the atmosphere in zones of upwelling - in the absence of the biological pump, atmospheric CO2 would be much higher - a more active biological pump is one explanation for lower atmospheric CO2 during the last glacial epoch The Role of DOC and
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Interactive Comment on “Impacts of UV Radiation on Plankton Community Metabolism Along the Humboldt Current System” by N
    Biogeosciences Discuss., 8, C2596–C2611, 2011 Biogeosciences www.biogeosciences-discuss.net/8/C2596/2011/ Discussions © Author(s) 2011. This work is distributed under the Creative Commons Attribute 3.0 License. Interactive comment on “Impacts of UV radiation on plankton community metabolism along the Humboldt Current System” by N. Godoy et al. Anonymous Referee #3 Received and published: 23 August 2011 Review Impacts of UV radiation on plankton community metabolism along the Hum- boldt Current System by N. Godoy, A. Canepa, S. Lasternas, E. Mayol, S. RuÄsz-´ Halpern, S. AgustÄs,´ J. C. Castilla, and C. M. Duarte. Biogeosciences Discuss., 8, 5827–5848, 2011 General Comment This article reports experimental estimates of community metabolism assessed at 8 stations in the eastern south Pacific conducted during the Humboldt-2009 cruise on board RV Hesperides from 5 to 15 March 2009. An experimental evaluation of the ef- fect of UVB radiation on community metabolism is conducted. From few experiments the authors claim that UVB radiation suppressed net community production, result- ing in a dominance of heterotrophic communities in surface waters, compared to the C2596 prevalence of autotrophic communities inferred when materials, excluding UVB radia- tion, are used for incubation. They also claim that their results show that UVB radiation, which has increased greatly in the study area, may have suppressed net community production of the plankton communities, possibly driving plankton communities in the Southwest Pacific towards CO2 sources. The evidence provided in the manuscript is not sufficient to support the conclusions. The sampling is clearly too limited, both spatially and temporally, to extrapolate their results to the Humboldt Current System.
    [Show full text]
  • Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems
    sustainability Article Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems Zhujun Zhang 1, Wei Fan 1, Weicheng Bao 1, Chen-Tung A Chen 2, Shuo Liu 1,3 and Yong Cai 3,* 1 Ocean College, Zhejiang University, Zhoushan 316000, China; [email protected] (Z.Z.); [email protected] (W.F.); [email protected] (W.B.); [email protected] (S.L.) 2 Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; [email protected] 3 Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China * Correspondence: [email protected] Received: 21 August 2020; Accepted: 29 October 2020; Published: 2 November 2020 Abstract: A hydrothermal vent system is one of the most unique marine environments on Earth. The cycling hydrothermal fluid hosts favorable conditions for unique life forms and novel mineralization mechanisms, which have attracted the interests of researchers in fields of biological, chemical and geological studies. Shallow-water hydrothermal vents located in coastal areas are suitable for hydrothermal studies due to their close relationship with human activities. This paper presents a summary of the developments in exploration and detection methods for shallow-water hydrothermal systems. Mapping and measuring approaches of vents, together with newly developed equipment, including sensors, measuring systems and water samplers, are included. These techniques provide scientists with improved accuracy, efficiency or even extended data types while studying shallow-water hydrothermal systems. Further development of these techniques may provide new potential for hydrothermal studies and relevant studies in fields of geology, origins of life and astrobiology.
    [Show full text]
  • Upper Ocean Hydrology of the Northern Humboldt Current System
    Progress in Oceanography 165 (2018) 123–144 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Upper ocean hydrology of the Northern Humboldt Current System at T seasonal, interannual and interdecadal scales ⁎ Carmen Gradosa, , Alexis Chaigneaub, Vincent Echevinc, Noel Domingueza a Instituto del MAR de PErú (IMARPE), Callao, Peru b Laboratoire d'Études en Géophysique et Océanographie Spatiale (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France c Laboratoire d'Océanographie et de Climatologie: Expérimentation et Analyse Numérique (LOCEAN), LOCEAN-IPSL, IRD/CNRS/Sorbonnes Universités (UPMC)/MNHN, UMR 7159, Paris, France ARTICLE INFO ABSTRACT Keywords: Since the 1960s, the Instituto del Mar del Perú (IMARPE) collected tens of thousands of in-situ temperature and North Humboldt Current System salinity profiles in the Northern Humboldt Current System (NHCS). In this study, we blend this unique database Hydrology with the historical in-situ profiles available from the World Ocean Database for the period 1960–2014 and apply Water masses a four-dimensional interpolation scheme to construct a seasonal climatology of temperature and salinity of the Seasonal variations NHCS. The resulting interpolated temperature and salinity fields are gridded at a high spatial resolution Geostrophic currents (0.1° × 0.1° in latitude/longitude) between the surface and 1000 m depth, providing a detailed view of the ENSO Interdecadal variability hydrology and geostrophic circulation of this region. In particular, the mean distribution and characteristics of the main water-masses in the upper ocean of the NHCS are described, as well as their seasonal variations be- tween austral summer and winter.
    [Show full text]
  • Primary Production and Community Respiration in the Humboldt Current System Off Chile and Associated Oceanic Areas
    MARINE ECOLOGY PROGRESS SERIES Published May 12 Mar Ecol bog Ser Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas Giovanni Daneril-: Victor Dellarossa2, Renato ~uinones~,Barbara Jacob', Paulina ~ontero',Osvaldo Ulloa4 '~entrode Ciencias y Ecologia Aplicada (CEA), Universidad del Mar. Campus Valparaiso, Carmen 446, Placeres, Valparaiso. Chile 'Departamento de Boanica, 3~epartamentode OceanograKa and 'Programs Regional de Oceanografia Fisica y Clima. Universidad de Concepcion, Casilla 2407, Concepcion, Chile ABSTRACT: The hlgh biological productivity of the Hurnboldt Current System (HCS) off Chile sup- ports an annual fish catch of over 7 mill~ont. The area is also important biogeochemically, because the outgassing of recently upwelled water is modulated by contrasting degrees of biolopcal activity. How- ever, very few field measurements of primary production and planktonic respiration have been under- taken within the Eastern Boundary Current (EBC)system off Chile. In this study an estimate of primary production (PP) and surface planktonic commun~tyrespiration is presented from several research cruises in the HCS and adjacent oceanlc areas. The highest production levels were found near the coast correlating closely with known upwelling areas. Both gross primary production (GPP) and community respiration (CR) showed important spatial and temporal fluctuations. The highest water column inte- grated GPP was measured in the southern and central fishing area (19.9 g C m-2 d-l) and off the Anto- fagasta upwelling ecosystem (9.3 g C m-' d-'). The range of GPP agrees well with values reported for Peni (0.05 to ll.? g C m'2 d").
    [Show full text]
  • Shaping the Beach, One Wave at a Time New Research Is Deciphering How Currents, Waves, and Sands Change Our Shorelines
    http://oceanusmag.whoi.edu/v43n1/raubenheimer.html Shaping the Beach, One Wave at a Time New research is deciphering how currents, waves, and sands change our shorelines By Britt Raubenheimer, Associate Scientist nearshore region—the stretch of sand, for a beach to erode or build up. Applied Ocean Physics & Engineering Dept. rock, and water between the dry land be- Understanding beaches and the adja- Woods Hole Oceanographic Institution hind the beach and the beginning of deep cent nearshore ocean is critical because or years, scientists who study the water far from shore. To comprehend and nearly half of the U.S. population lives Fshoreline have wondered at the appar- predict how shorelines will change from within a day’s drive of a coast. Shoreline ent fickleness of storms, which can dev- day to day and year to year, we have to: recreation is also a significant part of the astate one part of a coastline, yet leave an • decipher how waves evolve; economy of many states. adjacent part untouched. One beach may • determine where currents will form For more than a decade, I have been wash away, with houses tumbling into the and why; working with WHOI Senior Scientist Steve sea, while a nearby beach weathers a storm • learn where sand comes from and Elgar and colleagues across the coun- without a scratch. How can this be? where it goes; try to decipher patterns and processes in The answers lie in the physics of the • understand when conditions are right this environment. Most of our work takes A Mess of Physics Near the Shore Many forces intersect and interact in the surf and swash zones of the coastal ocean, pushing sand and water up, down, and along the coast.
    [Show full text]
  • 3. Characterizing the Physical Oceanography of Coastal Waters
    Ocean Special Area Management Plan 3. Characterizing the Physical Oceanography of Coastal Waters Off Rhode Island, Part 2: New Observations of Water Properties, Currents, and Waves Prepared for the Rhode Island Ocean Special Area Management Plan 2010 By David S. Ullman and Daniel L. Codiga University of Rhode Island, December 21, 2010 December 21, 2010 Technical Report Page 1 of 111 Ocean Special Area Management Plan Executive Summary This report, Part 2 of the physical oceanography characterization, complements Part 1 by presenting new field observations to improve understanding of under-sampled system attributes. Vessel-based surveys spanning the region (Block Island Sound (BIS), Rhode Island Sound (RIS), and offshore) each season capture three-dimensional structure of water properties (temperature, salinity, oxygen, chlorophyll, turbidity) and geographic variations in euphotic depth. Moored instruments reveal temporal variability in water column temperature, salinity, and velocity on timescales from hours to months at four sites: south and southeast of Block Island, on the offshore portion of Cox Ledge at the southern RIS boundary, and in central RIS. A suite of wave parameters measured at those sites, and a fifth site farther offshore, quantifies wave conditions. Temperature and salinity surveys corroborate the main seasonal and geographic patterns deduced in Part 1. Central RIS stratification undergoes the widest seasonal swings: a sharp mid- depth thermocline due to solar insolation in summer, and homogenous conditions in winter due to surface cooling and wind mixing. In central BIS stronger tidal currents limit peak stratification in the summer, but during winter and spring estuarine exchange with Long Island Sound sustains stronger stratification than in RIS.
    [Show full text]
  • YELLOWSTONE NATIONAL PARK R N C Hard-Sided Camping Units Only C E Perc an Ez Pelic N See Detail Map Above PE L LICAN
    Services and Facilities Mammoth Hot Springs Old Faithful Canyon Village West Thumb Fishing Bridge, Lake Village 6239ft 1902m 7365ft 2254m 7734ft 2357m and Grant Village 7733ft 2357m and Bridge Bay 7784ft 2373m 0 0.1 0.5 Km To Gardiner To Madison To Tower-Roosevelt To Lake Village 0 0.5 Km To Canyon Emergencies Check the park news- Mammoth Hot Springs Hotel Grand Geyser Amphitheater For medical or other emer- paper for seasonal dates Fi Duck 0 0.1 Mi 0.5 Post Amphitheater re To Norris 0 0.5 Mi h gencies contact a ranger or of services and facilities. Office o Lake Fishing Bridge le West Thumb Ice Visitor Education call 307-344-7381 or 911. Geyser Amphitheater Hill West Thumb Castle Center Showers-Laundry Ranger station To Geyser Basin Geyser Ri Old Ice Upper Terrace Drive: Park ve Canyon Lodge Medical clinic r Faithful Visitor Headquarters no buses, RVs, or trailers; y Information Station Campground a closed in winter Center To East HISTORIC w Bookstore - Showers Entrance Winter road closures FORT e n Laundry YELLOWSTONE o YELLOWSTONE From early November to Lodging Lake Village Post early May most park roads LOWER Office Lake Lodge UPPER TERRACES Chapel Old Faithful Inn Old Faithful LAKE are closed. The exception Food service TERRACES AREA Geyser Lower Falls is the road in the park AREA Old 308ft Upper Lookout between the North one-way Faithful Falls 94m Fishing Bridge Picnic area To Point Amphitheater North Lodge View Grand Recreational Vehicle Park Entrance and Cooke City. Inspiration hard-sided camping units only Entrance Post Office View Point It is open all year.
    [Show full text]
  • 408 1941 Boathouse (Lake)
    Index 45th Parallel Pullout 33 Arch Park 29, 270, 326, 331 1926 Boathouse (Lake) 408 Arnica Bypass 1941 Boathouse (Lake) 408 See Natural Bridge Service Rd 1998 Concessions Management Arnica Creek 125, 135, 136, 202 Improvement Act 485 Artemisia Geyser 172, 435, 456 Artemisia Trail 172 A Arthur, Chester A. 401 Artist Paint Pots 209, 215 Abiathar Peak 57 Artist Point 93, 280, 283 Absaroka Mountain Range Ash, Jennie 309, 311, 355 58, 60, 108, 125, 127 Ashton (ID) 300 Administration Building 345 Aspen Dormitory 259, 354 Africa Lake 250 Aspen Turnouts 67 Albright, Horace Asta Spring 174 21, 175, 205, 259 270, 338 Astringent Creek 117 Albright Visitor Center 259, 338, 348 Avalanche Peak Trail 110 Altitude Sickness 7 Avenue A 41 Alum Creek 95, 97, 185 Avenue B American Bison Turnout 98 See Mammoth to Tower Jct American Eden Turnout 63 Avenue C See Officer’s Row Amfac 323, 445 See also Xanterra Avenue of Travel Turnout 204 Amfac Parks and Resorts See Amfac Amphitheater Creek 59 B Amphitheater Springs Thermal Area 238, 239 Bachelor Officer’s Quarters 259 Amphitheater Valley 72, 79 Back Basin 218, 221 Anderson, Ole 309, 311, 364 Bacon Rind Creek 264 Angel Terrace 299 Bacon Rind Creek Trail 264 Antelope Creek 78 Bannock Ford 40, 78 Antelope Creek Picnic Area 78 Bannock Indians 47 Antelope Creek Valley Bannock Indian Trail 39, 45, 47, 48 See Amphitheater Valley 242 Antler Peak 245 Barn’s Hole Road 196, 198, 311 Aphrodite Terrace 299 Baronette Peak 58 Apollinaris Spring 241 Baronette Ski Trail 58 Apollinaris Spring Picnic Area Baronett, John H.
    [Show full text]