Astrotalk: Behind the News Headlines of May 2013

Total Page:16

File Type:pdf, Size:1020Kb

Astrotalk: Behind the News Headlines of May 2013 AstroTalk: Behind the news headlines of May 2013 Richard de Grijs (何锐思) (Kavli Institute for Astronomy and Astrophysics, Peking University) Dramatic developments in the hunt for Earth-like planets Tuesday 14 May 2013 will likely long be remembered by professional “planet hunters” as the day when their dreams were put on hold. Until 1995, the entire known population of planets in the Universe consisted of the nine planets we had discovered in our own solar system, from Mercury close to the Sun to Pluto in the outer regions. In the mean time, in 2006, that number was reduced to eight, when the International Astronomical Union decided to downgrade Pluto to a “dwarf planet”, along with a handful of other rocky bodies in our immediate solar system neighbourhood. Then, when in 1995 Michel Mayor and Didier Queloz of Geneva Observatory (Switzerland) discovered the first planet orbiting a star other than our Sun, they had little idea that their achievement would open up the now immensely popular field of extrasolar planetary science. Exoplanet discovery and follow-up studies are a mainstay of current professional astronomy (it’s fashionable!), most prominently facilitated by the 2009 launch of the Kepler space telescope, whose key aim was a search for Earth-like planets. So far, Kepler has discovered 132 genuine planets—whose nature has been verified by later observations with other telescopes and follow-up scientific analysis— and spotted 2,740 potential planets. About 230 are the size of the Earth, and 820 others are probably rocky worlds similar to our own but roughly twice as big. The satellite’s mission was supposed to have ended by now, but in 2012 the US space agency NASA agreed to keep Kepler running through 2016, at a cost of some US$20 million a year. That is, until that fateful date of 14 May 2013. News headlines the following few days attempted to outdo each other to cover the unfolding drama of the telescope’s failure; “Breakdown Imperils NASA’s Hunt for Other Earths” claimed The New York Times, “NASA’s Kepler Spacecraft May Be Finished” said Top News Today, and many other news outlets led with “NASA’s Kepler spacecraft is critically damaged”. You get the point: NASA’s planet-hunting Kepler telescope is broken, potentially jeopardizing the search for other worlds where life could exist outside our solar system. In January, one of the reaction wheels that keep the spacecraft oriented in space (similar to a flywheel) experienced too much friction. Kepler’s engineers shut down the telescope for a few weeks to give it a rest, in the hope that the wheel’s lubricant might spread out and solve the problem. but it didn’t, although this didn’t really affect the observations either. However, on 14 May, the spacecraft went into a “safe mode”, because the reaction wheel had stopped operating completely. Kepler is equipped with four reaction wheels, but one already failed last year, after showing signs of erratic friction. Three operational wheels are required to keep the spacecraft aimed properly and precisely, but at present only two are available. With only two working wheels left, the spacecraft can’t point at stars with the precision required to search for Earth-like planets. Project managers hope to remedy the situation by rocking the wheel that failed this month back and forth, finding a workaround, or perhaps by resurrecting the wheel that failed last year. This will probably take several months, according to Kepler’s deputy project manager, Charles Sobeck. If engineers can’t find a fix, the failure could mean an end to the US$600 million mission, although NASA remains optimistic. “I wouldn’t call Kepler down-and-out just yet,” said John Grunsfeld, associate administrator of the Science Mission Directorate at NASA Headquarters in Washington, DC (USA). In orbit around the sun, 65 million kilometers from Earth, Kepler is too far away to send astronauts on a repair mission like the expedition that fixed a mirror on the Hubble Space Telescope in the mid-1990s. For John Grunsfeld, who acted as mechanic to the Hubble Space Telescope during several lengthy spacewalks, the Kepler malfunction is particularly frustrating. “Unfortunately, it’s not in a place where I can go and fix it,” he said. The telescope could be used for other purposes, even if it can no longer track down planets. Figuring out how to continue Kepler’s operations in this scenario will also take some time to sort out. While ground-based telescopes can hunt for planets outside our solar system, Kepler is much more advanced. For the past four years, Kepler has focused its telescope on a distant patch of the Milky Way containing more than 150,000 stars, recording slight dips in brightness—a sign of a planet passing in front of the star. When a planet candidate transits, or passes in front of the star from the spacecraft’s vantage point, a percentage of light from the star is blocked. The resulting dip in the brightness of the starlight reveals the transiting planet’s size relative to its star. Now “we can’t point where we need to point. We can’t gather data,” Charles Sobeck said. Scientists who have no role in the Kepler mission also mourned the news. They said that the latest loss means the spacecraft may not be able to determine how many Earth-size planets are located in the so-called “Goldilocks zone” (or “habitable zone”), where it is not too hot or too cold for water to exist in liquid form on the surface. And while they praised the data collected by Kepler so far, they said several more years of observations are needed to nail down that number. “This is one of the saddest days in my life. A crippled Kepler may be able to do other things, but it cannot do the one thing it was designed to do,” according to Alan boss of the Carnegie Institution of Washington. Scientists said there is a backlog of data that they still need to analyse even if Kepler stopped looking for planets. “I think the most interesting, exciting discoveries are coming in the next two years. The mission is not over,” said chief scientist and Kepler’s principal investigator William borucki at the NASA Ames Research Center in California (USA), which manages the mission. Scientists have only begun to dig through its vast trove of data, where proof of another Earth- like planet may be hiding. “The signals are there, in the data we have now—we have to search for them,” said Borucki. The Kepler project has been a tremendous success, changing our view of the Universe. Before Kepler, we knew little about other solar systems in our own galaxy, the Milky Way. Now we have a huge inventory. The mission has taught us that planets orbit virtually every star in the sky. Early in the mission, the Kepler telescope mostly found large, gaseous giants in very close orbits to their stars. Known as “hot Jupiters,” these are easier to detect owing to their size and very short orbital periods. Earth would take three years to accomplish the three transits required to be accepted as a planet candidate. So far, Kepler’s first 22 months of data have revealed planets that are quite obvious, but most are in the wrong neighbourhoods to sustain life—either too close, or too far away, from their stars. Or they are very big and gaseous, like Jupiter or Saturn. The telescope has found the largest tally of planets credited to a single telescope yet, but only two so far are the best candidates for habitable planets. Just last month, Kepler scientists announced the discovery of a distant pair of planets that seem like ideal places for some sort of life to have evolved. Most recently, it revealed some planets circling in the "habitable zone around stars Kepler 62 and 69. The Kepler-62 system has five planets; Kepler-62b, 62c, 62d, 62e, and 62f. The Kepler-69 system has two planets; Kepler-69b and 69c. Kepler-62e, 62f, and 69c are super-Earth-sized planets. Two of the newly discovered planets orbit a star that is smaller and cooler than our Sun. Kepler-62f is only 40% larger than Earth: it is the exoplanet closest to the size of our planet known in the habitable zone of another star. Kepler-62f is likely to have a rocky composition. Kepler-62e orbits on the inner edge of the habitable zone and is roughly 60% larger than Earth. The third planet, Kepler-69c, is 70% larger than the Earth, and orbits in the habitable zone of a star similar to our Sun. Scientists are uncertain about the composition of Kepler-69c, but its orbit of 242 days around a Sun-like star resembles that of Venus in our own solar system. Scientists do not know whether life could exist on the newfound planets, but their discovery signals that we are another step closer to finding a world similar to the Earth orbiting a star like our Sun. “The Kepler spacecraft has certainly turned out to be a rock star of science,” said John Grunsfeld. “The discovery of these rocky planets in the habitable zone brings us a bit closer to finding a place like home. It is only a matter of time before we know if the galaxy is home to a multitude of planets like Earth, or if we are a rarity.” Orbiting its star every 122 days, Kepler-62e was the first of the habitable zone planets identified.
Recommended publications
  • Composition and Accretion of the Terrestrial Planets
    Lunar and Planetary Science XXXI 1546.pdf COMPOSITION AND ACCRETION OF THE TERRESTRIAL PLANETS. Edward R. D. Scott and G. Jeffrey Taylor, Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, Univer- sity of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA; [email protected] Abstract: Compositional variations among the spread gravitational mixing of the embryos and their four terrestrial planets are generally attributed to giant 20 impacts [1] rather than to primordial chemical varia- Fig. 2 tions among planetesimals [e.g., 2]. This is largely be- Mars cause modeling suggests that each terrestrial planet ac- 15 creted material from the whole of the inner solar sys- tem [1], and because Mercury’s high density is attrib- 10 Venus Earth uted to mantle stripping in a giant impact [3] and not to its position as the innermost planet [4]. However, Mer- Mercury cury’s high concentration of metallic iron and low con- 5 centration of oxidized iron are comparable to those in recently discovered metal-rich chondrites [5-7]. Since E 0 chondrites are linked isotopically with the Earth, we 0 0.5 1 1.5 2 suggest that Mercury may have formed from metal-rich chondritic material. Venus and Earth have similar con- Semi-major Axis (AU) centrations of metallic and oxidized iron that are inter- fragments, which ensured that each terrestrial planet mediate between those of Mercury and Mars consistent formed from material originally located throughout the with wide, overlapping accretion zones [1]. However, inner solar system (0.5 to 2.5 AU).
    [Show full text]
  • POSSIBLE STRUCTURE MODELS for the TRANSITING SUPER-EARTHS:KEPLER-10B and 11B
    43rd Lunar and Planetary Science Conference (2012) 1290.pdf POSSIBLE STRUCTURE MODELS FOR THE TRANSITING SUPER-EARTHS:KEPLER-10b AND 11b. P. Futó1 1 Department of Physical Geography, University of West Hungary, Szombathely, Károlyi Gáspár tér, H- 9700, Hungary ([email protected]) Introduction:Up to january of 2012,10 super- The planet Kepler-11b has a large radius (1.97 R⊕) for Earths have been announced by Kepler-mission [1] its mass (4.3 M⊕),therefore this planet must have a that is designed to detect hundreds of transiting exo- spherical shell that is composed of low-density materi- planets.Kepler was launched on 6th March,2009 and the als.Considering the planet's average density,it must primary purpose of its scientific program is to search have a metallic core with different possible fractional for terrestrial-sized planets in the habitable zone of mass.Accordinghly,I have made a possible structure Solar-like stars.For the case of high number of discov- model for Kepler-11b in which the selected core mass eries we will be able to estimate the frequency of fraction is 32.59% (similarly to that of Earth) and the Earth-sized planets in our galaxy.Results of the Kepler- water ice layer has a relatively great fractional 's measurements show that the small-sized planets are volume.For case of the selected composition, the icy frequent in the spiral galaxies.A catalog of planetary surface sublimated to form a water vapor as the planet candidates,including objects with small-sized candidate moved inward the central star during its migration.
    [Show full text]
  • Planetary Science
    Scientific Research National Aeronautics and Space Administration Planetary Science MSFC planetary scientists are active in Peering into the history The centerpiece of the Marshall efforts is research at Marshall, building on a long history of the solar system the Marshall Noble Gas Research Laboratory of scientific support to NASA’s human explo- (MNGRL), a unique facility within NASA. Noble- ration program planning, whether focused Marshall planetary scientists use multiple anal- gas isotopes are a well-established technique on the Moon, asteroids, or Mars. Research ysis techniques to understand the formation, for providing detailed temperature-time histories areas of expertise include planetary sample modification, and age of planetary materials of rocks and meteorites. The MNGRL lab uses analysis, planetary interior modeling, and to learn about their parent planets. Sample Ar-Ar and I-Xe radioactive dating to find the planetary atmosphere observations. Scientists analysis of this type is well-aligned with the formation age of rocks and meteorites, and at Marshall are involved in several ongoing priorities for scientific research and analysis Ar/Kr/Ne cosmic-ray exposure ages to under- planetary science missions, including the Mars in NASA’s Planetary Science Division. Multiple stand when the meteorites were launched from Exploration Rovers, the Cassini mission to future missions are poised to provide new their parent planets. Saturn, and the Gravity Recovery and Interior sample-analysis opportunities. Laboratory (GRAIL) mission to the Moon. Marshall is the center for program manage- ment for the Agency’s Discovery and New Frontiers programs, providing programmatic oversight into a variety of missions to various planetary science destinations throughout the solar system, from MESSENGER’s investiga- tions of Mercury to New Frontiers’ forthcoming examination of the Pluto system.
    [Show full text]
  • On the Use of Planetary Science Data for Studying Extrasolar Planets a Science Frontier White Paper Submitted to the Astronomy & Astrophysics 2020 Decadal Survey
    On the Use of Planetary Science Data for Studying Extrasolar Planets A science frontier white paper submitted to the Astronomy & Astrophysics 2020 Decadal Survey Thematic Area: Planetary Systems Principal Author Daniel J. Crichton Jet Propulsion Laboratory, California Institute of Technology [email protected] 818-354-9155 Co-Authors: J. Steve Hughes, Gael Roudier, Robert West, Jeffrey Jewell, Geoffrey Bryden, Mark Swain, T. Joseph W. Lazio (Jet Propulsion Laboratory, California Institute of Technology) There is an opportunity to advance both solar system and extrasolar planetary studies that does not require the construction of new telescopes or new missions but better use and access to inter-disciplinary data sets. This approach leverages significant investment from NASA and international space agencies in exploring this solar system and using those discoveries as “ground truth” for the study of extrasolar planets. This white paper illustrates the potential, using phase curves and atmospheric modeling as specific examples. A key advance required to realize this potential is to enable seamless discovery and access within and between planetary science and astronomical data sets. Further, seamless data discovery and access also expands the availability of science, allowing researchers and students at a variety of institutions, equipped only with Internet access and a decent computer to conduct cutting-edge research. © 2019 California Institute of Technology. Government sponsorship acknowledged. Pre-decisional - For planning
    [Show full text]
  • PDF— Granite-Greenstone Belts Separated by Porcupine-Destor
    C G E S NT N A ER S e B EC w o TIO ok N Vol. 8, No. 10 October 1998 es st t or INSIDE Rel e • 1999 Section Meetings ea GSA TODAY Rocky Mountain, p. 25 ses North-Central, p. 27 A Publication of the Geological Society of America • Honorary Fellows, p. 8 Lithoprobe Leads to New Perspectives on 70˚ -140˚ 70˚ Continental Evolution -40˚ Ron M. Clowes, Lithoprobe, University -120˚ of British Columbia, 6339 Stores Road, -60˚ -100˚ -80˚ Vancouver, BC V6T 1Z4, Canada, 60˚ Wopmay 60˚ [email protected] Slave SNORCLE Fred A. Cook, Department of Geology & Thelon Rae Geophysics, University of Calgary, Calgary, Nain Province AB T2N 1N4, Canada 50˚ ECSOOT John N. Ludden, Centre de Recherches Hearne Pétrographiques et Géochimiques, Taltson Vandoeuvre-les-Nancy, Cedex, France AB Trans-Hudson Orogen SC THOT LE WS Superior Province ABSTRACT Cordillera AG Lithoprobe, Canada’s national earth KSZ o MRS 40 40 science research project, was established o Grenville Province in 1984 to develop a comprehensive Wyoming Penokean GL -60˚ understanding of the evolution of the -120˚ Yavapai Province Orogen Appalachians northern North American continent. With rocks representing 4 b.y. of Earth -100˚ -80˚ history, the Canadian landmass and off- Phanerozoic Proterozoic Archean shore margins provide an exceptional 200 Ma - present 1100 Ma 3200 - 2650 Ma opportunity to gain new perspectives on continental evolution. Lithoprobe’s 470 - 275 Ma 1300 - 1000 Ma 3400 - 2600 Ma 10 study areas span the country and 1800 - 1600 Ma 3800 - 2800 Ma geological time. A pan-Lithoprobe syn- 1900 - 1800 Ma 4000 - 2500 Ma thesis will bring the project to a formal conclusion in 2003.
    [Show full text]
  • Download This Article in PDF Format
    A&A 539, A28 (2012) Astronomy DOI: 10.1051/0004-6361/201118309 & c ESO 2012 Astrophysics Improved precision on the radius of the nearby super-Earth 55 Cnc e M. Gillon1, B.-O. Demory2, B. Benneke2, D. Valencia2,D.Deming3, S. Seager2, Ch. Lovis4, M. Mayor4,F.Pepe4,D.Queloz4, D. Ségransan4,andS.Udry4 1 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bˆat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 3 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 4 Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland Received 21 October 2011 / Accepted 28 December 2011 ABSTRACT We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 μm. An individual analysis . +0.15 of these new data leads to a planet radius of 2 21−0.16 R⊕, which agrees well with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 μmto2.20 ± 0.12 R⊕. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing.
    [Show full text]
  • Earth and Planetary Sciences
    WHAT CAN I DO WITH A MAJOR IN …Earth and Planetary Sciences OCCUPATIONAL OVERVIEW: According to the UNM Earth and Planetary website (2013), “Many of the grand challenges for present and future generations’ concern issues deeply imbedded within the Earth Sciences. The human capacity for environmental stewardship, and societal needs for understanding the availability and development of key resources require an understanding of the depth of geologic time and the Earth processes that affect rock, air, and water. Education and the scientific investigation of the Earth, the atmosphere, the hydrosphere, other planetary bodies, and the solar system are central to the activities within the Department of Earth and Planetary Sciences at the University of New Mexico.” EMPLOYMENT REQUIREMENTS: Extensive job preparation is needed. A bachelor's degree is the minimum formal education required and is excellent preparation for entering graduate school or variety of diverse occupations that require excellent writing skills and competency in research However, depending upon the student’s career interests, some occupations may require a graduate degree (Master’s, Ph.D., J.D.). Consult O*Net for more information on the specific KSAs (Knowledge, Skill, Ability) that are required for this career. THE UNIVERSITY OF NEW MEXICO: The UNM Earth and Planetary Sciences Department offers many degree options. According to the UNM Earth and Planetary website (2013), “The Department offers a large and expanding variety of introductory and intermediate courses for undergraduate students who are interested in learning about how our fascinating planet works (including an option for a Minor in Earth Sciences). Undergraduate programs emphasize a solid foundation in a broad range of Earth and Planetary Science disciplines, with research opportunities for advanced undergraduates in particular fields.
    [Show full text]
  • Comparative Habitability of Transiting Exoplanets
    Draft version October 1, 2015 A Preprint typeset using LTEX style emulateapj v. 04/17/13 COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS Rory Barnes1,2,3, Victoria S. Meadows1,2, Nicole Evans1,2 Draft version October 1, 2015 ABSTRACT Exoplanet habitability is traditionally assessed by comparing a planet’s semi-major axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler Objects of Interest and find that planets that receive between 60–90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable.
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
    EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the
    [Show full text]
  • Pluto's Lower Atmosphere and Pressure Evolution from Ground
    Astronomy & Astrophysics manuscript no. Meza_Sicardy_etal c ESO 2019 March 7, 2019 Pluto’s lower atmosphere and pressure evolution from ground-based stellar occultations, 1988-2016 E. Meza1,?, B. Sicardy1, M. Assafin2; 3, J. L. Ortiz4, T. Bertrand5, E. Lellouch1, J. Desmars1, F. Forget6, D. Bérard1, A. Doressoundiram1, J. Lecacheux1, J. Marques Oliveira1, F. Roques1, T. Widemann1, F. Colas7, F. Vachier7, S. Renner7; 8, R. Leiva9, F. Braga-Ribas1; 3; 10, G. Benedetti-Rossi3, J. I. B. Camargo3, A. Dias-Oliveira3, B. Morgado3, A. R. Gomes-Júnior3, R. Vieira-Martins3, R. Behrend11, A. Castro Tirado4, R. Duffard4, N. Morales4, P. Santos-Sanz4, M. Jelínek12, R. Cunniffe13, R. Querel14, M. Harnisch15; 16, R. Jansen15; 16, A. Pennell15; 16, S. Todd15; 16, V. D. Ivanov17, C. Opitom17, M. Gillon18, E. Jehin18, J. Manfroid18, J. Pollock19, D. E. Reichart20, J. B. Haislip20, K. M. Ivarsen20, A. P. LaCluyze21, A. Maury22, R. Gil-Hutton23, V. Dhillon24; 25, S. Littlefair24, T. Marsh26, C. Veillet27, K.-L. Bath28; 29, W. Beisker28; 29, H.-J. Bode28; 29,??, M. Kretlow28; 29, D. Herald15; 30; 31, D. Gault15; 32; 33, S. Kerr15; 34, H. Pavlov30, O. Faragó29,???, O. Klös29, E. Frappa35, M. Lavayssière35, A. A. Cole36, A. B. Giles36, J. G. Greenhill36,????, K. M. Hill36, M. W. Buie9, C. B. Olkin9, E. F. Young9, L. A. Young9, L. H. Wasserman37, M. Devogèle37, R. G. French38, F. B. Bianco39; 40; 41; 42, F. Marchis1; 43, N. Brosch44, S. Kaspi44, D. Polishook45, I. Manulis45, M. Ait Moulay Larbi46, Z. Benkhaldoun46, A. Daassou46, Y. El Azhari46, Y. Moulane18; 46, J. Broughton15, J. Milner15, T.
    [Show full text]
  • Early Mars As a Key to Understanding Planetary Habitability
    Early Mars as a Key to Understanding Planetary Habitability Bethany Ehlmann Professor of Planetary Science, Geological & Planetary Sciences Research Scientist, Jet Propulsion Laboratory California Institute of Technology July 13, 2017 | Midterm Review Planetary Decadal Survey Outline: Early Mars as a Key to Understanding Planetary Habitability • What we have learned and what we can learn about early Mars [15 min] • Suggested exploration plans [5 min] • Questions/Discussion [10 min] Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, Ancient rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water [see also Byrne talk, next] • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates [see Jakosky talk, next] Modern See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Finding since V&V: Modern Mars is active (methane, geomorphology, ice, water) Bridges et al., 2011; 2012 Mass wasting of the N.
    [Show full text]