Downloads.Php]

Total Page:16

File Type:pdf, Size:1020Kb

Downloads.Php] Strazewski Journal of Systems Chemistry 2010, 1:11 http://www.jsystchem.com/content/1/1/11 PERSPECTIVES Open Access The relationship between difference and ratio and a proposal: Equivalence of temperature and time, and the first spontaneous symmetry breaking Peter Strazewski Abstract The mathematical form of the energy-entropy relationship is that of the relationship between the difference and the ratio of any two ‘entities’ x and y creating a geometrical 3D projection x = y · z, i.e., a surface of the shape of a hyperbolic paraboloid being a particular form of a quadric. The significance of this relationship is discussed here in a realm beyond thermodynamics. Somewhat intuitively, yet still in strict mathematical analogy to the relation between its most fundamental state variables, I propose for any isolated universe the cosmological state variables, absolute temperature and absolute time, to be equivalent much in the same way as energy and entropy are equivalent for an isolated ensemble of similar objects. According to this principle, the cosmological constant is inversely proportional to the squared product of absolute time and absolute temperature. The spontaneous symmetry breaking into a time component and a temperature component of the universe takes place when the first de facto irreversible movement occurs owing to a growing accessed total volume. For any element aa there is an inverse element –1 : The relationship between difference and ratio in (G3) mathematics and physics aa ––1 = a11 ae= In mathematics the concept of ‘agroup’ is used to for- mulate, in a most general way, any kind of mathematical Any pair of elements ab and are commutative : operation, for example, addition, multiplication or rota- (G4) = tion. Generally, a mathematical group consists of ‘ele- ab ba ’ ments a, b, c, ... and an instruction that attributes to The mathematical operationofadditioninconjunc- each pair of elements, say a and b, a new element ab tion with elements that are integers, {a, b, c, ...} Î ℤ,is in such a way that three group axioms G1, G2 and G3 an abelian group. To specify, replace the above general strictly apply. Abelian groups are commutative for formalism with a specific one, i.e., replace with +, e – which group axiom G4 applies as well: with 0, and a 1 with –a. The mathematical operation of For any three elements ab,: and c associativity applies multiplication in conjunction with elements that (G1) are positive real numbers, {a, b, c,...}Î R+,isalso (()ab ca= () bc − an abelian group: :,:=⋅e =1 , and aa1 :/=1 . Note that, whereas the addition of real numbers is an abelian For any element ae there is an identity element : group, axiom G3 usually does not apply to the multipli- (G2) + ea== ae a cation of positive integers {a, b, c, ...} Î ℤ because gen- – – – erally {a 1, b 1, c 1,...}∉ ℤ. Most commonly, mathematical groups are used to describe geometrical symmetries; the vast majority of mathematical groups are non-abelian (axiom G4 does not apply), in particu- Correspondence: [email protected] lar, when the parameter space is higher than 2D (two- Laboratoire de Synthèse de Biomolécules, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (CNRS UMR 5246), Université Claude dimensional). Bernard Lyon 1, Université de Lyon, 43 bvd du 11 novembre 1918, F - 69622, Villeurbanne, France © 2010 Strazewski; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Strazewski Journal of Systems Chemistry 2010, 1:11 Page 2 of 7 http://www.jsystchem.com/content/1/1/11 In physics and physical cosmology this formalism is generalised fashion the relationship between difference u extremely useful for the description of spontaneous and ratio x/y as depicted in Figure 1. Note that v is the symmetry breaking into different fundamental forces root of the function in equation 2. through the application of gauge theories, such as in To analyse more readily, a set of 2D projections of the Quantum Electrodynamics (QED) or Quantum Chromo- same function is depicted in Figure 2 where u is dynamics (QCD) being the basis of the Standard Model. sampled over a representative range of numerical values A gauge theory is a type of field theory in which the for x and y. Note that, trivially, x/y requires for v >0 Lagrangian is invariant under a certain continuous the root to lie in the quadrants where both x and y have group of local transformations. The Lagrangian of a thesamesign(righthalfof the 2D plot), whereas a dynamical system is a function that summarises the negative value for v places the root in the quadrants of dynamics of the system. Common to all these theories opposite signs for x and y (reflection of the hyperbles is the utilization of Legendre transformations. The through x/y = 0, not shown). Legendre transformation can be generalized to the In special relativity the relationship between difference Legendre-Fenchel transformation. It is commonly used and ratio immediately visualises how the shape of in thermodynamics and in the Hamiltonian formulation squared distance differentials in spacetime ds2 (ordinate of classical mechanics, for example, to describe various in the above 2D plot) relates to the ratio of squared thermodynamic potentials in classical thermodynamics, spatial distance differentials over squared time differen- 2 2 2 to derive partition functions from a state equation in sta- tials d/dxti for v =c (abscissa). In thermodynamics tistical thermodynamics, to link Lagrange (classical) the above relationship shows how changes in Gibbs free mechanics with Hamiltonian (quantum) mechanics, to energy ΔGT relate to the temperature at which ΔG formulate QED and QCD, and more. In a thermody- vanishes, T = ΔH/ΔS for ΔCp = 0, or in a differential namic context the linking of energy with entropy through form for infinitesimal state changes: dGT vs. T =dH/dS. a quantified similarity argument, as described in group It was shown that the ΔH and ΔS values of similar thermodynamics [1], may be viewed as a Legendre trans- objects at their respective equilibrium temperatures are formation on a group, rather than individual, level. all linearly related to their corresponding ΔGT values Consider a mathematically general relationship [1]. These realised experimental values of similar objects between difference and ratio (quotient) being the opera- gather linearly, in the above plot, close to the root of tional results obtained from, respectively, the substrac- the function at {x – v · y =0,x/y = v}, i.e., close to the tion and division of the same elements, say, x and y saddle point. Physics imposes positive v values in both (eqns. 1 and 2): special-relativity and thermodynamics, since there is no immediate physical meaning for a negative speed of ux=−⋅ y (1) light (reaching in vacuo a maximum constant positive value c) nor negative absolute temperature, both, in xy//()=⋅ x x − u (2) accord with the Second Law. General and special relativity describe the shape of Interpret x and y as any two parameters that are and the dynamics within a spacetime where the objects needed to define the characteristics of some state and may or may not move in a reversible fashion. The main v as a mathematically independent variable. For exam- focus in relativity theory is not reversibility but rather to ple, {x, y} may be the coordinates of a point in 2D space describe objects (particles) and their ‘directed’ move- and v a force acting on one coordinate (in one direc- ments at up to relativistic speeds along geodesics in tion) but not the other. If x were to represent the spacetime being shaped by gravitational fields. Thermo- distance between two objects in Euclidian 3D space, dynamics describes the energetics of dynamic systems difference u would describe the movement of these that contain multi-component objects (‘macrostates’) objects through spacetime according to Einstein’s special able to adopt, essentially reversibly, multiple isoergonic 2 =−⋅2 22 relativity ddcdsxi twhere d = differential, s = (degenerate) ‘microstates’. Both theories are, in terms of distance in spacetime, xi = spatial Cartesian coordinates physics, quite different from one another. The former is {x, y, z}, c = vacuum speed of light, and t = time. Differ- based on Einstein’s mass-energy equivalence; in the lat- ence u could also represent the incremental change Δ in ter an energy-entropy equivalence of macrostates was free energy upon transformation of one (metastable) identified within groups of similar objects. Mathemati- macrostate into another, as expressed in the Gibbs- cally, the former is generated from applying Pythagorean ΔΔ=−⋅ Δ Δ Helmholtz equation GHTST ,where GT = rules to the coordinates of a 4D Lorentzian geometry GibbsfreeenergychangeattemperatureT, ΔH = (two sums and a difference between four positive terms: energy change at constant pressure (enthalpy change), 2 ++−⋅2 2 22 dddcdxxx1 2 3 t). The latter originates from and ΔS = entropy change. Equation 2 describes in a correlating and partitioning energy contributions Strazewski Journal of Systems Chemistry 2010, 1:11 Page 3 of 7 http://www.jsystchem.com/content/1/1/11 Figure 1 3D view of the relationship between difference and ratio. Equation 2 at v = 300. The saddle point of this hyperbolic paraboloid is {u = x – v · y =0,x =0,x/y = 300}. through Legendre transformations. In spite of this the assumption, unproven as it is, that the energy- apparent disparity, the mathematical formalism looks entropy relationship for an ensemble of similar objects alike for both theories. Lorentzian geometry and the [1] applies to the energetics of all physical changes Gibbs-Helmholtz equation are both typified through a irrespective of scale and material; actually, irrespective crucial substraction term; through the mathematical dif- of whether it is applied to normal matter, dark matter, ference viz.
Recommended publications
  • Path Integral Formulation of Loop Quantum Cosmology
    Path Integral Formulation of Loop Quantum Cosmology Adam D. Henderson Institute for Gravitation and the Cosmos Pennsylvania State University International Loop Quantum Gravity Seminar March 17 2008 Motivations 1. There have been arguments against the singularity resolution in LQC using path integrals. The canonical quantization is well understood and the singularity resolution is robust, so where do the path integral arguments break down? 2. Recent developements have allowed for the construction of new spin foam models that are more closely related to the canonical theory. It is important to make connections to spin-foams by building path integrals from the canonical theory when possible. 3. A path integral representation of Loop Quantum Cosmology will aid in studying the physics of more complicated LQC models (k = 1, Λ = 0, Bianchi). Using standard path integral techniques one can 6 argue why the effective equations are so surprisingly accurate. Introduction We construct a path integral for the exactly soluble Loop Quantum • Cosmology starting with the canonical quantum theory. The construction defines each component of the path integral. Each • has non-trivial changes from the standard path integral. We see the origin of singularity resolution in the path integral • representation of LQC. The structure of the path integral features similarities to spin foam • models. The path integral can give an argument for the surprising accuracy • of the effective equations used in more complicated models. Outline Standard Construction Exactly Soluble LQC LQC Path Integral Other Forms of Path Integral Singularity Resolution/Effective Equations Conclusion Path Integrals - Overview Path Integrals: Covariant formulation of quantum theory expressed • as a sum over paths Formally the path integral can be written as • qeiS[q]/~ or q peiS[q,p]/~ (1) D D D Z Z To define a path integral directly involves defining the components • of these formal expressions: 1.
    [Show full text]
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Synopsis of a Unified Theory for All Forces and Matter
    Synopsis of a Unified Theory for All Forces and Matter Zeng-Bing Chen National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China (Dated: December 20, 2018) Assuming the Kaluza-Klein gravity interacting with elementary matter fermions in a (9 + 1)- dimensional spacetime (M9+1), we propose an information-complete unified theory for all forces and matter. Due to entanglement-driven symmetry breaking, the SO(9, 1) symmetry of M9+1 is broken to SO(3, 1) × SO(6), where SO(3, 1) [SO(6)] is associated with gravity (gauge fields of matter fermions) in (3+1)-dimensional spacetime (M3+1). The informational completeness demands that matter fermions must appear in three families, each having 16 independent matter fermions. Meanwhile, the fermion family space is equipped with elementary SO(3) gauge fields in M9+1, giving rise to the Higgs mechanism in M3+1 through the gauge-Higgs unification. After quantum compactification of six extra dimensions, a trinity—the quantized gravity, the three-family fermions of total number 48, and their SO(6) and SO(3) gauge fields—naturally arises in an effective theory in M3+1. Possible routes of our theory to the Standard Model are briefly discussed. PACS numbers: 04.50.+h, 12.10.-g, 04.60.Pp The tendency of unifying originally distinct physical fields (together as matter), a fact called the information- subjects or phenomena has profoundly advanced modern completeness principle (ICP). The basic state-dynamics physics. Newton’s law of universal gravitation, Maxwell’s postulate [8] is that the Universe is self-created into a theory of electromagnetism, and Einstein’s relativity state |e,ω; A..., ψ...i of all physical contents (spacetime theory are among the most outstanding examples for and matter), from no spacetime and no matter, with the such a unification.
    [Show full text]
  • Prediction in Quantum Cosmology
    Prediction in Quantum Cosmology James B. Hartle Department of Physics University of California Santa Barbara, CA 93106, USA Lectures at the 1986 Carg`esesummer school publshed in Gravitation in As- trophysics ed. by J.B. Hartle and B. Carter, Plenum Press, New York (1987). In this version some references that were `to be published' in the original have been supplied, a few typos corrected, but the text is otherwise unchanged. The author's views on the quantum mechanics of cosmology have changed in important ways from those originally presented in Section 2. See, e.g. [107] J.B. Hartle, Spacetime Quantum Mechanics and the Quantum Mechan- ics of Spacetime in Gravitation and Quantizations, Proceedings of the 1992 Les Houches Summer School, ed. by B. Julia and J. Zinn-Justin, Les Houches Summer School Proceedings Vol. LVII, North Holland, Amsterdam (1995).) The general discussion and material in Sections 3 and 4 on the classical geom- etry limit and the approximation of quantum field theory in curved spacetime may still be of use. 1 Introduction As far as we know them, the fundamental laws of physics are quantum mechanical in nature. If these laws apply to the universe as a whole, then there must be a description of the universe in quantum mechancial terms. Even our present cosmological observations require such a description in principle, although in practice these observations are so limited and crude that the approximation of classical physics is entirely adequate. In the early universe, however, the classical approximation is unlikely to be valid. There, towards the big bang singularity, at curvatures characterized by the Planck length, 3 1 (¯hG=c ) 2 , quantum fluctuations become important and eventually dominant.
    [Show full text]
  • Vacuum Energy
    Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant.
    [Show full text]
  • Realism About the Wave Function
    Realism about the Wave Function Eddy Keming Chen* Forthcoming in Philosophy Compass Penultimate version of June 12, 2019 Abstract A century after the discovery of quantum mechanics, the meaning of quan- tum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are real- ists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these ques- tions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review and compare several realist interpretations of the wave function. They fall into three categories: ontological interpretations, nomological interpretations, and the sui generis interpretation. For simplicity, I will focus on non-relativistic quantum mechanics. Keywords: quantum mechanics, wave function, quantum state of the universe, sci- entific realism, measurement problem, configuration space realism, Hilbert space realism, multi-field, spacetime state realism, laws of nature Contents 1 Introduction 2 2 Background 3 2.1 The Wave Function . .3 2.2 The Quantum Measurement Problem . .6 3 Ontological Interpretations 8 3.1 A Field on a High-Dimensional Space . .8 3.2 A Multi-field on Physical Space . 10 3.3 Properties of Physical Systems . 11 3.4 A Vector in Hilbert Space . 12 *Department of Philosophy MC 0119, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0119. Website: www.eddykemingchen.net. Email: [email protected] 1 4 Nomological Interpretations 13 4.1 Strong Nomological Interpretations . 13 4.2 Weak Nomological Interpretations .
    [Show full text]
  • Spontaneous Symmetry Breaking and Mass Generation As Built-In Phenomena in Logarithmic Nonlinear Quantum Theory
    Vol. 42 (2011) ACTA PHYSICA POLONICA B No 2 SPONTANEOUS SYMMETRY BREAKING AND MASS GENERATION AS BUILT-IN PHENOMENA IN LOGARITHMIC NONLINEAR QUANTUM THEORY Konstantin G. Zloshchastiev Department of Physics and Center for Theoretical Physics University of the Witwatersrand Johannesburg, 2050, South Africa (Received September 29, 2010; revised version received November 3, 2010; final version received December 7, 2010) Our primary task is to demonstrate that the logarithmic nonlinearity in the quantum wave equation can cause the spontaneous symmetry break- ing and mass generation phenomena on its own, at least in principle. To achieve this goal, we view the physical vacuum as a kind of the funda- mental Bose–Einstein condensate embedded into the fictitious Euclidean space. The relation of such description to that of the physical (relativis- tic) observer is established via the fluid/gravity correspondence map, the related issues, such as the induced gravity and scalar field, relativistic pos- tulates, Mach’s principle and cosmology, are discussed. For estimate the values of the generated masses of the otherwise massless particles such as the photon, we propose few simple models which take into account small vacuum fluctuations. It turns out that the photon’s mass can be naturally expressed in terms of the elementary electrical charge and the extensive length parameter of the nonlinearity. Finally, we outline the topological properties of the logarithmic theory and corresponding solitonic solutions. DOI:10.5506/APhysPolB.42.261 PACS numbers: 11.15.Ex, 11.30.Qc, 04.60.Bc, 03.65.Pm 1. Introduction Current observational data in astrophysics are probing a regime of de- partures from classical relativity with sensitivities that are relevant for the study of the quantum-gravity problem [1,2].
    [Show full text]
  • Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results
    universe Article Spin Foam Vertex Amplitudes on Quantum Computer—Preliminary Results Jakub Mielczarek 1,2 1 CPT, Aix-Marseille Université, Université de Toulon, CNRS, F-13288 Marseille, France; [email protected] 2 Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland Received: 16 April 2019; Accepted: 24 July 2019; Published: 26 July 2019 Abstract: Vertex amplitudes are elementary contributions to the transition amplitudes in the spin foam models of quantum gravity. The purpose of this article is to make the first step towards computing vertex amplitudes with the use of quantum algorithms. In our studies we are focused on a vertex amplitude of 3+1 D gravity, associated with a pentagram spin network. Furthermore, all spin labels of the spin network are assumed to be equal j = 1/2, which is crucial for the introduction of the intertwiner qubits. A procedure of determining modulus squares of vertex amplitudes on universal quantum computers is proposed. Utility of the approach is tested with the use of: IBM’s ibmqx4 5-qubit quantum computer, simulator of quantum computer provided by the same company and QX quantum computer simulator. Finally, values of the vertex probability are determined employing both the QX and the IBM simulators with 20-qubit quantum register and compared with analytical predictions. Keywords: Spin networks; vertex amplitudes; quantum computing 1. Introduction The basic objective of theories of quantum gravity is to calculate transition amplitudes between configurations of the gravitational field. The most straightforward approach to the problem is provided by the Feynman’s path integral Z i (SG+Sf) hY f jYii = D[g]D[f]e } , (1) where SG and Sf are the gravitational and matter actions respectively.
    [Show full text]
  • Symmetry-Breaking and Zero-One Laws
    version 1.2 Symmetry-breaking and zero-one laws Fay Dowker Perimeter Institute, 31 Caroline Street North, Waterloo ON, N2L 2Y5 Canada and Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, UK address for email: [email protected] and Rafael D. Sorkin Perimeter Institute, 31 Caroline Street North, Waterloo ON, N2L 2Y5 Canada and Raman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore { 560 080 India and Department of Physics, Syracuse University, Syracuse, NY 13244-1130, U.S.A. address for email: [email protected] Abstract We offer further evidence that discreteness of the sort inherent in a causal set cannot, in and of itself, serve to break Poincar´einvariance. In par- ticular we prove that a Poisson sprinkling of Minkowski spacetime can- not endow spacetime with a distinguished spatial or temporal orienta- tion, or with a distinguished lattice of spacetime points, or with a distin- guished lattice of timelike directions (corresponding respectively to break- ings of reflection-invariance, translation-invariance, and Lorentz invari- ance). Along the way we provide a proof from first principles of the zero- one law on which our new arguments are based. Keywords and phrases: discreteness, symmetry breaking, zero-one law, Poisson process, causal set, quantum gravity Introduction Will a discrete structure prove to be the kinematical basis of quantum gravity and if so should we expect it to preserve the known symmetries of Minkowski spacetime, at 1 least quasi-locally? One strand of thought has tended to answer these questions with \yes" followed by \no", and has held out effects like modified dispersion relations for electromagnetic waves as promising candidates for a phenomenology of spatiotemporal discreteness.
    [Show full text]
  • On the Fate of Singularities in Quantum Gravity
    On the fate of singularities in quantum gravity Claus Kiefer Institut f¨ur Theoretische Physik Universitat¨ zu Koln¨ ½ Contents Singularities in cosmology Quantum geometrodynamics Quantum cosmology Quantum gravitational collapse Singularities in the classical theory Definition of a singularity A spacetime is singular if it is incomplete with respect to a timelike or null geodesic and if it cannot be embedded in a bigger spacetime. ◮ Energy condition ◮ Condition on the global structure ◮ Gravitation strong enough to lead to the existence of a closed trapped surface Theorem (Hawking and Penrose 1970) A spacetime M cannot satisfy causal geodesic completeness if, together with Einstein’s equations, the following four conditions hold: 1. M contains no closed timelike curves. 2. The strong energy condition is satisfied at every point. 3. The generality condition (. ) is satisfied for every causal geodesic. 4. M contains either a trapped surface, or a point p for which the convergence of all the null geodesics through p changes sign somewhere to the past of p, or a compact spacelike hypersurface Strong energy condition: ρ + p 0, ρ + p 0, i = 1, 2, 3 i i ≥ i ≥ P Cosmological singularities for homogeneous and isotropic spacetimes Classified by behaviour of scale factor a, energy density ρ, pressure p: Big Bang/Crunch a = 0 at finite proper time, ρ diverges Type I (Big Rip) a diverges in finite proper time, ρ and p diverge Type II or “sudden” (Big Brake/Big Demarrage)´ a finite, ρ finite, p diverges, Hubble parameter finite Type III (Big Freeze) a finite, both ρ and p diverge Type IV a finite, both ρ and p finite, but curvature derivatives diverge Most of these singularities occur in spite of the violation of energy conditions Relation to observations The observation of the Cosmic Microwave Background Radiation (CMB) indicates that there is enough matter on the past light-cone of our present location P to imply that the divergence of this cone changes somewhere to the past of P .
    [Show full text]
  • Propagator for the Free Relativistic Particle on Archimedean and Nonarchimedean Spaces Udc: 530.1
    FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 3, No 1, 2004, pp. 9-21 PROPAGATOR FOR THE FREE RELATIVISTIC PARTICLE ON ARCHIMEDEAN AND NONARCHIMEDEAN SPACES UDC: 530.1 D. D. Dimitrijević, G. S. Djordjević and Lj. Nešić Faculty of Science and Mathematics, P.O. Box 224, 18001 Niš, Serbia and Montenegro Abstract. We consider dynamics of a free relativistic particle at very short distances, treating space-time as archimedean as well as nonarchimedean one. Usual action for the relativistic particle is nonlinear. Meanwhile, in the real case, that system may be treated like a system with quadratic (Hamiltonian) constraint. We perform similar procedure in p -adic case, as the simplest example of a nonarchimedean space. The existence of the simplest vacuum state is considered and corresponding Green function is calculated. Similarities and differences between obtained results on both spaces are examined and possible physical implications are discussed. 1. INTRODUCTION It is generally believed that the notion of space-time as a continuous manifold should −35 break down at very short distances of the order of the Planck length λp ~ 10 m . This would arise from the process of measurement of space-time points based on quantum mechanics and gravity arguments [1]. Among many different possibilities for a mathematical background of a quantum theory on very small distances, noncommutative [2] and nonarchimedan [3] spaces appear as the most promising ones. The simplest example of a nonarchimedean space, and the most suitable mathematical machinery for describing it, comes from the theory of p-adic numbers and p-adic analysis. Since 1987, there has been an important interest in application of p -adic numbers in many branches of theoretical and mathematical physics (for a review, see [4]).
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagel† Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physical real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point arXiv:hep-th/0012253v1 28 Dec 2000 fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]