Treatment of Cancer with Phlorizin and Its Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

Treatment of Cancer with Phlorizin and Its Derivatives Europaisches Patentamt J) European Patent Office © Publication number: 0 291 151 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION (^) Application number: 88302189.1 © int.Ci.4:A61K 31/70 (§) Date of filing: 14.03.88 ©> Priority: 18.03.87 US 27413 Applicant: LeVeen, Harry H. 321 Confederate Circle @ Date of publication of application: Charleston, SC 29407(US) 17.11.88 Bulletin 88/46 Applicant: LeVeen, Robert F. © Designated Contracting States: 312 Lombard Street OE FR GB GR IT NL SE Philadelphia Pennsylvania 19147(US) Applicant: Leveen, Eric G. 141 South Battery Charleston South Carolina 29401 (US) Inventor: LeVeen, Harry H. 321 Confederate Circle Charleston, SC 29407(US) Inventor: LeVeen, Robert F. 312 Lombard Street Philadelphia Pennsylvania 19147(US) Inventor: Leveen, Eric G. 141 South Battery Charleston South Carolina 29401 (US) Representative: McCall, John Douglas et al W.P. THOMPSON & CO. Coopers Building Church Street Liverpool L1 3AB(GB) ® Treatment of cancer with phlorizin and its derivatives. © Malignant, neoplastic cells are treated by inhibit- t—ing glucose transport into the cell by administering ^one or more compounds selected from phlorizin, phloretin, phlorizin glucoronide, 4-deoxyphloretin-2- iflD-glucose, and cytochalasin-B, preferably while con- r" currently administering adjunct therapy such as heat, ^radiation or chemotherapy. In this manner, the cells Ojare prevented from growing or repairing the damage M caused by the adjunct therapy, which can be admin- Qistered in dosages that would otherwise be non- lethal if used alone. Q. Ill Xerox Copy Centre 0 291 151 TREATMENT OF CANCER WITH PHLORIZIN AND ITS DERIVATIVES The present invention relates to a method, substantiation for the latter explanation that a great- compounds and compositions for inhibiting glucose er number of receptor sites are responsible. transport across cell membranes, and more specifi- The rate of glucose transport across cells has cally to a method, compounds and compositions been shown to be directly related to the growth by which the growth of malignant neoplastic cells 5 potential of the cell. Glucose is a requirement for can be halted and such cells kept from repairing energy needs related to synthesis, as well as for and rejuvenating themselves. In a preferred form actual structural requirements in the synthesis of the invention is particularly concerned with a com- macromolecules (J Nat Can Inst. 62:3, January bined treatment whereby malignant cells are made 1979). Because malignant cells exhibit an extensive more susceptible to lethal damage from exposure w augmentation of glucose transport, they are under- to otherwise non-lethal doses of energy and anti- standably much more sensitive to drugs which tumor agents. inhibit glucose transport than are normal cells. The Researchers have long sought for a biochemi- magnitude of abnormal carbohydrate metabolism of cal difference by which malignant cells could be malignant cells increases the competition for glu- distinguished from normal cells. The work of War- 15 cose which develops between rapidly growing tu- burg in the early part of the twentieth century mors and the host's normal cells. Warburg men- (Warburg, The Metabolism of Tumors, Richard R. tions that the glycolysis of tumor cells can be so Smith & Co., New York, 1931) focused attention on rapid as to reduce the blood sugar in diabetic the differences in the way that cancer cells metab- patients. For example, the blood sugar concentra- olize glucose. Using a concept advanced by Pas- 20 tion in rats with a rapidly growing sarcoma remains teur, Warburg considered that cancer cells ferment normal until the tumor/body weight ratio increases while normal cells respire. The arguments ad- above .15. At ratios of .31 or greater, hypol- vanced by Warburg (Annual Review of Biochem- glycemia occurrs. Liver glycogen declines at high istry. 33:1, 1964) seemed to characterize the ma- tumor/body weight ratios. Gluconeogenesis from jority of rapidly growing malignant cells, and the 25 lactate increases thirty fold over autogenous occasional instance where the metabolism of the gluconeogenesis from endogenous alanine (Cancer tumor does not strictly fit Warburg's criteria is Res. 40:1699, 1980). Similar findings have been limited to very slow growing cancers which do not made in patients with rapidly progressive malignant produce death by cachexia and widespread metas- disease (Cancer Res. 39:1968, 1979; Cancer 33:66, tasis. 30 1974). Obviously, cancers sequestrate glucose and However, some recent knowledge with respect glucose utilization in cancer patients is extremely to the regulation of the energy metabolism in the high. The high potential for the malignant tumor to cell was unknown to Warburg. For instance, the metabolize glucose has even caused it to be re- Crabtree effect (inhibition of respiration by ferred to as a glucose trap (Acta Chir Scan [Suppl] glycolysis) 'is observed in practically all cells 35 498:141, 1980). (Biochema et Biophysica Acta 591:209, 1980). The This excessive glucose turnover in malignant addition of glucose to anaerobic suspensions of patients has again focused attention on the role of glucose starved malignant cells causes a burst of glucose metabolism in cancer cachexia. One con- respiration and glycolysis with lactate production sequence of the anaerobic metabolism of glucose which results in an inhibition of both respiration and 40 is the release of lactate into the circulating blood. glycolysis to values below those observed prior to The lactic acid is transported to the liver by the the addition of glucose. circulating blood. The liver converts the lactic acid The rate limiting factor in glucose metabolism to glucose thus completing the Cori cycle. The which determines the quantity of lactate formed in conversion of lactate to glucose is energy consum- the cell has been shown to be dependent upon the es ing and has been estimated to account for 10% rate at which glucose is transported across the cell increase in energy expenditure (Cancer Res. membrane. This knowledge suggests that the bio- 37:2336, 1977). The production of lactate may be chemical defect in cancer cells does not reside in so excessive in patients with cancer that with im- fermentation or respiration; but, rather, the primary pairment of liver physiology as with extensive liver defect must be the increased rate of glucose trans- so metastasis, lactic acidosis may occur (Cancer port across the cell membrane. This must be re- 47:2026, 1981). The severe carbohydrate drain lated either to an enhancement of the transport causes excessive gluconeogenesis which further mechanism or an actual increase in the receptor depletes the cancer patient (SA Med. J. 59:518, sites for glucose transport which are present in the 1981) (Ann NY Acad Sci, 72:103, 1980). membrane of the cell wall; and there is excellent Glycogen synthesized from glucose is abun- 0 291 151 dantly stored in cancer ceils (Cancer 19:98, 1966); ceptor sites. Both compounds will inhibit glucose however, the glycogen content decreases during transport but it takes a higher concentration of the exponential phase of tissue growth. Brain tu- phlorizin in non sodium dependent transfer sites. mors for example contain five times as much gly- Because of its low toxicity and the fact that cogen as small mammals brains (J. Neurochem. 5 phlorizin is more water soluble it has been the drug 29:959, 1977). This further supports the concept of choice in spite of the fact that for some transfer that increased glucose transport is a significant sites phloretin may be more active. This has also requirement for the rapidly growing cancer cell. caused the does of phlorezin to sometimes be Slow growing tumors contain more glycogen than raised beyond the dosage indicating a complete more rapidly growing tumors which utilize the glu- 10 block of glucose transfer in the kidneys. Work on cose more swiftly (Can. Res. 41:1165, 1981). phloretin indicates that more water soluble deriva- These factors support the concept that cancer cells tives of phloretin are possible without the loss of transfer glucose more swiftly than do normal cells. pharmacological activity. These energy related revelations have also These compounds are especially effective in turned attention to the glucose metabolism of grow- 75 preventing glucose transport across malignant cell ing cancer cells as a mechanism for the control of membranes, thereby suppressing the growth of cancer growth. Lonidamine has been found to be a cancer especially when used in conjunction with selective inhibitor of aerobic glycolysis in urine chemotherapy, radiation, heat or other techniques. tumor cells (J Nat Can Ins. 66:497, 1981). Dactylirin The pharmaceutical composition according to the is a new antibiotic which has a potential anticancer 20 invention comprises phlorizin, its glucuronide, effect since it influences the energy yielding car- cytochalasin-B or 4-deoxyphloretin-2-D-glucose, bohydrate mechanisms which function in malignant preferably together with a pharmaceutically accept- cells (Can Res. 39:4242, October 1979). able carrier. These compositions may be solid or In accordance with the present invention a pro- liquid and can be used in forms currently used in cess and compositions are provided for treating 25 medicine such as tablets, capsules, syrups and malignant neoplasms such as cancers and sar- injectable preparations. Because of its poor absorp- comas in mammals by inhibiting glucose entry into tion, the compositions of the invention is preferably the malignant cell to thereby render the cell more administered parenterally, dissolved in a suitable susceptible to the injurious effect of chemotherapy, carrier such as 1/2 normal saline . Orally accept- radiation, heat or anoxia and prevent repair or 30 able carriers are those currently used in medicine growth of the cell. Glucose entry into the malignant such as calcium carbonate, starch, lactose, talc, cell is inhibited by administering effective amounts magnesium stearate, gum acacia, aqueous alcohol, of phlorizin, its glucuronide, 4-deoxyphoretin-2-D- glycol or oil solutions or suspensions.
Recommended publications
  • Natural Products As Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors
    Reviews Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors Author ABSTRACT Wolfgang Blaschek Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glu- Affiliation cose absorption, gluconeogenesis, biosynthesis and mobiliza- Formerly: Institute of Pharmacy, Department of Pharmaceu- tion of glycogen, glucose consumption in all tissues and glo- tical Biology, Christian-Albrechts-University of Kiel, Kiel, merular filtration, and reabsorption of glucose in the kidneys. Germany Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the Key words family of facilitative glucose transporters (GLUTs) or to the Malus domestica, Rosaceae, Phlorizin, flavonoids, family of sodium glucose cotransporters (SGLTs). The intesti- ‑ SGLT inhibitors, gliflozins, diabetes nal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the received February 9, 2017 kidney SGLT2 and SGLT1 are responsible for reabsorption of revised March 3, 2017 filtered glucose from the primary urine, and GLUT2 and accepted March 6, 2017 GLUT1 enable the transport of glucose from epithelial cells Bibliography back into the blood stream. DOI http://dx.doi.org/10.1055/s-0043-106050 The flavonoid phlorizin was isolated from the bark of apple Published online April 10, 2017 | Planta Med 2017; 83: 985– trees and shown to cause glucosuria. Phlorizin is an inhibitor 993 © Georg Thieme Verlag KG Stuttgart · New York | of SGLT1 and SGLT2. With phlorizin as lead compound, specif- ISSN 0032‑0943 ic inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of Correspondence type 2 diabetes.
    [Show full text]
  • Myricetin Antagonizes Semen-Derived Enhancer of Viral Infection (SEVI
    Ren et al. Retrovirology (2018) 15:49 https://doi.org/10.1186/s12977-018-0432-3 Retrovirology RESEARCH Open Access Myricetin antagonizes semen‑derived enhancer of viral infection (SEVI) formation and infuences its infection‑enhancing activity Ruxia Ren1,2†, Shuwen Yin1†, Baolong Lai2, Lingzhen Ma1, Jiayong Wen1, Xuanxuan Zhang1, Fangyuan Lai1, Shuwen Liu1* and Lin Li1* Abstract Background: Semen is a critical vector for human immunodefciency virus (HIV) sexual transmission and harbors seminal amyloid fbrils that can markedly enhance HIV infection. Semen-derived enhancer of viral infection (SEVI) is one of the best-characterized seminal amyloid fbrils. Due to their highly cationic properties, SEVI fbrils can capture HIV virions, increase viral attachment to target cells, and augment viral fusion. Some studies have reported that myri- cetin antagonizes amyloid β-protein (Aβ) formation; myricetin also displays strong anti-HIV activity in vitro. Results: Here, we report that myricetin inhibits the formation of SEVI fbrils by binding to the amyloidogenic region of the SEVI precursor peptide (PAP248–286) and disrupting PAP248–286 oligomerization. In addition, myricetin was found to remodel preformed SEVI fbrils and to infuence the activity of SEVI in promoting HIV-1 infection. Moreover, myricetin showed synergistic efects against HIV-1 infection in combination with other antiretroviral drugs in semen. Conclusions: Incorporation of myricetin into a combination bifunctional microbicide with both anti-SEVI and anti- HIV activities is a highly promising approach to preventing sexual transmission of HIV. Keywords: HIV, Myricetin, Amyloid fbrils, SEVI, Synergistic antiviral efects Background in vivo because they facilitate virus attachment and inter- Since the frst cases of acquired immune defciency nalization into cells [4].
    [Show full text]
  • Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome
    Pediatr. Res. 17: 157-161 (1983) Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome M. BRIVET,"" N. MOATTI, A. CORRIAT, A. LEMONNIER, AND M. ODIEVRE Laboratoire Central de Biochimie du Centre Hospitalier de Bichre, 94270 Kremlin-Bicetre, France [M. B., A. C.]; Faculte des Sciences Pharmaceutiques et Biologiques de I'Universite Paris-Sud, 92290 Chatenay-Malabry, France [N. M., A. L.]; and Faculte de Midecine de I'Universiti Paris-Sud et Unite de Recherches d'Hepatologie Infantile, INSERM U 56, 94270 Kremlin-Bicetre. France [M. 0.1 Summary The patient's diet was supplemented with 25-OH-cholecalci- ferol, phosphorus, calcium, and bicarbonate. With this treatment, Carbohydrate metabolism was studied in a child with atypical the serum phosphate concentration increased, but remained be- glycogen storage disease and Fanconi syndrome. Massive gluco- tween 0.8 and 1.0 mmole/liter, whereas the plasma carbon dioxide suria, partial resistance to glucagon and abnormal responses to level returned to normal (18-22 mmole/liter). Rickets was only carbohydrate loads, mainly in the form of major impairment of partially controlled. galactose utilization were found, as reported in previous cases. Increased blood lactate to pyruvate ratios, observed in a few cases of idiopathic Fanconi syndrome, were not present. [l-14ClGalac- METHODS tose oxidation was normal in erythrocytes, but reduced in fresh All studies of the patient and of the subjects who served as minced liver tissue, despite normal activities of hepatic galactoki- controls were undertaken after obtaining parental or personal nase, uridyltransferase, and UDP-glucose 4epirnerase in hornog- consent. enates of frozen liver.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Sedative
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Sedative Chemical Dosage (+)-BORNYL-ISOVALERATE -- (-)-DICENTRINE LD50=187 1,8-CINEOLE -- 2-METHYLBUT-3-ENE-2-OL -- 6-GINGEROL -- 6-SHOGAOL -- ACYLSPINOSIN -- ADENOSINE -- AKUAMMIDINE -- ALPHA-PINENE -- ALPHA-TERPINEOL -- AMYL-BUTYRATE -- AMYLASE -- ANEMONIN -- ANGELIC-ACID -- ANGELICIN ED=20-80 ANISATIN 0.03 mg/kg ANNOMONTINE -- APIGENIN 30-100 mg/kg ARECOLINE 1 mg/kg ASARONE -- ASCARIDOLE -- ATHEROSPERMINE -- BAICALIN -- BALDRINAL -- BENZALDEHYDE -- BENZYL-ALCOHOL -- Chemical Dosage BERBERASTINE -- BERBERINE -- BERGENIN -- BETA-AMYRIN-PALMITATE -- BETA-EUDESMOL -- BETA-PHENYLETHANOL -- BETA-RESERCYCLIC-ACID -- BORNEOL -- BORNYL-ACETATE -- BOSWELLIC-ACID 20-55 mg/kg ipr rat BRAHMINOSIDE -- BRAHMOSIDE -- BULBOCAPNINE -- BUTYL-PHTHALIDE -- CAFFEIC-ACID 500 mg CANNABIDIOLIC-ACID -- CANNABINOL ED=200 CARPACIN -- CARVONE -- CARYOPHYLLENE -- CHELIDONINE -- CHIKUSETSUSAPONIN -- CINNAMALDEHYDE -- CITRAL ED 1-32 mg/kg CITRAL 1 mg/kg CITRONELLAL ED=1 mg/kg CITRONELLOL -- 2 Chemical Dosage CODEINE -- COLUBRIN -- COLUBRINOSIDE -- CORYDINE -- CORYNANTHEINE -- COUMARIN -- CRYOGENINE -- CRYPTOCARYALACTONE 250 mg/kg CUMINALDEHYDE -- CUSSONOSIDE-A -- CYCLOSTACHINE-A -- DAIGREMONTIANIN -- DELTA-9-THC 10 mg/orl/man/day DESERPIDINE -- DESMETHOXYANGONIN 200 mg/kg ipr DIAZEPAM 40-200 ug/lg/3-4x/day DICENTRINE LD50=187 DIDROVALTRATUM -- DIHYDROKAWAIN -- DIHYDROMETHYSTICIN 60 mg/kg ipr DIHYDROVALTRATE -- DILLAPIOL ED50=1.57 DIMETHOXYALLYLBENZENE -- DIMETHYLVINYLCARBINOL -- DIPENTENE
    [Show full text]
  • Objectives Anti-Hyperglycemic Therapeutics
    9/22/2015 Some Newer Non-Insulin Therapies for Type 2 Diabetes:Present and future Faculty/presenter disclosure Speaker’s name: Dr. Robert G. Josse SGLT2 Inhibitors Grants/research support: Astra Zeneca, BMS, Boehringer Dopamine D2 Receptor Agonist Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Roche, Bile acid sequestrant sanofi, Consulting Fees: Astra Zeneca, BMS, Eli Lilly, Janssen, Merck, Dr Robert G Josse Division of Endocrinology & Metabolism Speakers bureau: Janssen, Astra Zeneca, BMS, Merck, St. Michael’s Hospital Professor of Medicine Stocks and Shares:None University of Toronto 100-year History of Objectives Anti-hyperglycemic Therapeutics 14 Discuss the mechanism of action of SGLT2 inhibitors, SGLT-2 inhibitor 12 Bromocriptine-QR dopamine D2 receptor agonists and bile acid sequestrants Bile acid sequestrant in the management of type 2 diabetes Number of 10 DPP-4 inhibitor classes of GLP-1 receptor agonist Amylinomimetic anti- 8 Glinide Basal insulin analogue Identify the benefits and risks of the newer non-insulin hyperglycemic Thiazolidinedione agents 6 Alpha-glucosidase inhibitor treatment options Phenformin Human Rapid-acting insulin analogue 4 Sulphonylurea insulin Metformin Intermediate-acting insulin Phenformin Describe the potential uses of these therapies in the 2 withdrawn Soluble insulin treatment of type 2 diabetes 0 1920 1940 1960 1980 2000 2020 Year UGDP, DCCT and UKPDS studies. Buse, JB © 1 9/22/2015 Renal handling of glucose Collecting (180 L/day) Glomerulus duct (1000 mg/L) Proximal =180 g/day Distal tubule S1 tubule Glucose ~90% filtration SGLT2 Inhibitors ~10% S3 Glucose reabsorption Loop No/minimal of Henle glucose excretion S1 segment of proximal tubule S3 segment of proximal tubule - ~90% glucose reabsorbed - ~10% glucose reabsorbed - Facilitated by SGLT2 - Facilitated by SGLT1 SGLT = Sodium-dependent glucose transporter Adapted from: 1.
    [Show full text]
  • The Dietary Phytochemical Myricetin Induces Ros-Dependent Breast Cancer Cell Death
    THE DIETARY PHYTOCHEMICAL MYRICETIN INDUCES ROS-DEPENDENT BREAST CANCER CELL DEATH by Allison F. Knickle Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia December 2014 © Copyright by Allison F. Knickle, 2014 Table of Contents List of Figures ....................................................................................................... iv List of Tables ........................................................................................................ vi Abstract ................................................................................................................ vii List of Abbreviations and Symbols Used ............................................................. viii Acknowledgements ............................................................................................. xiii CHAPTER 1 INTRODUCTION ............................................................................. 1 1.1. Cancer ...................................................................................................................... 1 1.2 Breast Cancer ........................................................................................................... 1 1.2.1 Triple-negative breast cancer .............................................................................. 3 1.3 Cell death .................................................................................................................. 4 1.3.1 Apoptosis ............................................................................................................
    [Show full text]
  • (Lithocarpus Polystachyus Rehd.) Based Upon Location, Harvesting Time, Leaf Age
    Juan Yang et al., J.Chem.Soc.Pak., Vol. 40, No. 01, 2018 158 Identification and Quantitative Evaluation of Major Sweet Ingredients in Sweet Tea (Lithocarpus polystachyus Rehd.) Based Upon Location, Harvesting Time, Leaf Age Juan Yang, Yuyi Huang, Zhi Yang, Chao Zhou and Xujia Hu* Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China. [email protected]* (Received on 11th April 2016, accepted in revised form 13th September 2017) Summary: Lithocarpus polystachyus Rehd. (Sweet Tea) is a traditional sweet tea plant. Flavonoids are the essential sweet active constituents of Sweet Tea, and they have direct relationship with the sweet tonic beverage and traditional herb. In this work, the chemical components of the sweeteners isolated from Sweet Tea were identified as 3-hydroxy phlorizin (1), phlorizin (2), kaempferol-3-O-β-D-glucoside (3) and trilobatin (4) by ESI•-MS and NMR analyses. Quantitative analysis of the flavonoid compounds in Sweet Tea from Yunnan province of China indicated their content was influenced by harvesting time and leaf age. Phlorizin and trilobatin were identified as principal flavonoids in Sweet Tea. The highest concentration of trilobatin was in April, and the highest concentration of phlorizin was in November. The flavonoids content was the highest in young leaves and decreased at mature stage. Moreover, considerable variations of flavonoids content in Sweet Tea from three locations (Yunnan, Hunan, Jiangxi) were observed. It was concluded that the quality of Sweet Tea is greatly influenced by harvesting time, location and leaf age. Therefore, the artificial cultivation of Sweet Tea is necessary to ensure its optimal quality and suitability for specific applications.
    [Show full text]
  • Phytochemistry / Fitoquímica
    Botanical Sciences 98(4): 545-553. 2020 Received: April 20, 2020, Accepted: July 25, 2020 DOI: 10.17129/botsci.2624 On line first: October 12, 2020 Phytochemistry / Fitoquímica BIOLOGICAL ACTIVITY AND FLAVONOID PROFILE OF FIVE SPECIES OF THE BURSERA GENUS ACTIVIDAD BIOLÓGICA Y PERFIL DE FLAVONOIDES DE CINCO ESPECIES DEL GÉNERO BURSERA ID MA. BEATRIZ SÁNCHEZ-MONROY1, ID ANA MARÍA GARCÍA-BORES2, ID JOSÉ LUIS CONTRERAS-JIMÉNEZ 3, ID DAVID EDUARDO TORRES1, ID RUBÉN SAN MIGUEL-CHÁVEZ4, ID PATRICIA GUEVARA-FEFER1* 1Departamento de Ecología y Recursos Naturales. Facultad de Ciencias. Universidad Nacional Autónoma de México. Ciudad de México, Mexico. 2Laboratorio de Fitoquímica, UBIPRO, Facultad de Estudios Superiores-Iztacala. Universidad Nacional Autónoma de México, Tlalnepantla, Mexico. 3Benemérita Universidad Autónoma de Puebla, Puebla, Mexico. 4Laboratorio de Fitoquímica, Colegio de Postgraduados, Montecillo, CP 56230, Estado de México, Mexico. *Author for correspondence: [email protected] Abstract Background: The genus Bursera Jacq. ex. L. concentrates its diversity in Mexico. Among the secondary metabolites that can be isolated from organic its extracts are flavonoids and lignans. Research question: Do the biological activity of the hydroalcoholic extracts from five Bursera species studied depend on their flavonoid content? Study site: Oaxaca, Mexico. Methods: The extracts of B. aptera Ramírez, B. fagaroides (Kunth) Engl., B. schlechtendalii Engl., B. galeottiana Engl., B. morelensis Ramírez were analysed by High Resolution Liquid Chromatography (HPLC) to determine their flavonoid composition. The antiradical DPPH, anti-inflammatory, antibacterial and antifungal activities of the extracts were determined. Results: Phlorizin and quercetin were conserved in both stems and leaves of the five species studied. The phloretin was present only in the leaves of B.
    [Show full text]
  • Isolation of Kaempferol Glycosides from Ginkgo Biloba Leaves and Synthesis, Identification and Quantification of Their Major in Vivo Metabolites
    Isolation of Kaempferol Glycosides from Ginkgo biloba Leaves and Synthesis, Identification and Quantification of their major in vivo Metabolites DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER NATURWISSENSCHAFTLICHEN FAKULTÄT IV DER UNIVERSITÄT REGENSBURG vorgelegt von Daniel Bücherl aus Dieterskirchen 2013 Die vorliegende Arbeit entstand im Zeitraum vom März 2010 bis Oktober 2013 unter der Leitung von Herrn Prof. Dr. Jörg Heilmann am Lehrstuhl für Pharmazeutische Biologie am Institut für Pharmazie der Naturwissenschaflichen Fakultät IV – Chemie und Pharmazie – der Universität Regensburg. Das Promotionsgesuch wurde eingereicht im Oktober 2013 Tag der mündlichen Prüfung: 29.11.2013 Prüfungsausschuss: Prof. Dr. Gerhard Franz (Vorsitzender) Prof. Dr. Jörg Heilmann (Erstgutachter) Prof. Dr. Joachim Wegener (Zweitgutachter) Prof. Dr. Frank-Michael Matysik (Drittprüfer) Was du für den Gipfel hältst, ist nur eine Stufe. Lucius Annaeus Seneca Danksagung Ein großes Dankeschön geht an alle die mir während meiner Promotion hilfreich zur Seite gestanden haben. Besonders möchte ich danken: Prof. Dr. Jörg Heilmann für das Vertrauen und die Möglichkeit mir dieses interessante Projekt zu überlassen, für zahlreiche wertvolle Diskussionen und für die lehrreiche und schöne Zeit in seiner Arbeitsgruppe; Dr. Egon Koch und Dr. Clemens Erdelmeier der Dr. Willmar Schwabe GmbH und Co. KG, für die Mitbetreuung dieser Arbeit, ihre zahlreichen wertvollen Beiträge, die hilfreichen Diskussionen, die Bereitstellung der Flavonoidfraktionen von EGb 761®, und die Durchführung der Fütterungsexperimente an den Ratten; Dr. Willmar Schwabe GmbH und Co. KG für die grosszügige finanzielle Unterstützung dieser Arbeit; meinen Kolleginnen und Kollegen am Lehrstuhl für Pharmazeutische Biologie sowie auch allen Praktikanten, für die freundliche Aufnahme in der Gruppe, das wunderbare Arbeitsklima und ihre Hilfsbereitsschaft.
    [Show full text]
  • Coffea Arabica Bean Extract Inhibits Glucose Transport and Disaccharidase Activity in Caco‑2 Cells
    BIOMEDICAL REPORTS 15: 73, 2021 Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco‑2 cells ATCHARAPORN ONTAWONG1, ACHARAPORN DUANGJAI1 and CHUTIMA SRIMAROENG2 1Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000; 2Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand Received February 3, 2021; Accepted June 14, 2021 DOI: 10.3892/br.2021.1449 Abstract. The major constituents of Coffea arabica (coffee), or sucrase‑isomaltase cleaves the α‑glucoside bonds of including caffeine, chlorogenic acid and caffeic acid, exhibit disaccharides, including sucrose, to monosaccharides. The antihyperglycemic properties in in vitro and in vivo models. absorption of dietary monosaccharides by the intestine may However, whether Coffea arabica bean extract (CBE) regu‑ be one of the risk factors associated with diabetes mellitus (1). lates glucose uptake activity and the underlying mechanisms Glucose derived from starch or sucrose is taken up by the involved remain unclear. The aim of the present study was epithelial cells through the brush border membrane (BBM), to examine the effects of CBE on glucose absorption and predominantly by a sodium‑dependent glucose co‑transporter identify the mechanisms involved using an in vitro model. (SGLT1) (2,3). A previous study has revealed that glucose The uptake of a fluorescent glucose analog into Caco‑2 transporter 2 (GLUT2) is expressed at the BBM of enterocytes colorectal adenocarcinoma cells was determined. The expres‑ during the digestive phase and may affect circulatory glucose sion levels of sodium glucose co‑transporter 1 (SGLT1) and concentration (2). Subsequently, glucose effluxes across the baso‑ glucose transporter 2 (GLUT2) were evaluated.
    [Show full text]
  • Transport of Trans-Tiliroside (Kaempferol-3-Β-D-(6''-P-Coumaroyl
    This is a repository copy of Transport of trans-tiliroside (kaempferol-3-β-D-(6’’-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/84299/ Version: Accepted Version Article: Luo, Z, Morgan, MRA and Day, AJ (2015) Transport of trans-tiliroside (kaempferol-3-β-D-(6’’-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine. Xenobiotica: the fate of foreign compounds in biological systems. ISSN 0049-8254 https://doi.org/10.3109/00498254.2015.1007492 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Transport of trans-tiliroside (kaempferol-3--D-(6’’-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine Zijun Luo1,2, Michael R.A.
    [Show full text]
  • Brush Border Disaccharidases in Dog Kidney and Their Spatial Relationship to Glucose Transport Receptors
    Brush Border Disaccharidases in Dog Kidney and Their Spatial Relationship to Glucose Transport Receptors Melvin Silverman J Clin Invest. 1973;52(10):2486-2494. https://doi.org/10.1172/JCI107439. Research Article The localization of disaccharidases in kidney has been studied by means of the multiple indicator dilution technique. A pulse injection of a solution containing Evans blue dye (plasma marker), creatinine (extracellular marker), and a 14C- labeled disaccharide (lactose, sucrose, maltose, and αα-trehalose), is made into the renal artery of an anesthetized dog, and the outflow curves are monitored simultaneously from renal venous and urine effluents. Lactose and sucrose have an extracellular distribution. Trehalose and maltose remain extracellular from the postglomerular circulation. About 75% of filtered tracer maltose or trehalose is extracted by the luminal surface of the nephron. Thin-layer chromatography of urine samples shows that all of the excreted 14C radiolabel is in the form of the injected disaccharide. Following the administration of phlorizin, all of the filtered radioactivity is recoverable in the urine, but chromatography of the urine samples now reveals that there is a significant excretion of [14C]glucose, approximating the amount previously extracted under control conditions (in the absence of phlorizin). It has been verified that no hydrolysis of maltose or trehalose to their constituent glucose subunits occurred during the transit of tracer between the point of injection (renal artery), and the point of filtration
    [Show full text]