Low Latency Query Responses Over Heterogeneous Data Systems

Total Page:16

File Type:pdf, Size:1020Kb

Low Latency Query Responses Over Heterogeneous Data Systems Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018 Low Latency Query Responses over Heterogeneous Data Systems Manoj Muniswamaiah, Dr. Tilak Agerwala and Charles C. Tappert Seidenberg School of CSIS, Pace University, White Plains, New York individual applications or components of a single application Abstract—Organizations need to often maintain large [15]. Also, one needs to learn different query languages which heterogeneous database systems which have different are used for these data stores. Data integration methods like programming models and the datasets stored in each one of them replication or trying to fit all data in to a single storage are not varies. Financial data can be stored in relational databases, user effective solutions. Queries that work across different datasets sessions in a key-value store for faster lookup, recommendation data in a graphical database and analytical data in a columnar are often limited by the incompatibility of the systems or stores for read heavy queries. Trying to fit all datasets in a single difficulty in translating data from one system into another. database could have adverse performance effects. “One Size Does Analytical queries can cross boundaries between different data Not Fit All”. The main focus of our research is finding an adequate stores [1]. Finally, having different database systems results in solution using materialized views to improve the response time of having connectors across different systems, leading developers queries across different data systems by leveraging a common to do lot of work and adding to the cost of the organization. materialization storage technique. Index Terms—Polystore, Data Systems, Analytical Query, The above considerations led to the development polystore Materialization. systems which are built on top of different, heterogonous and integrated storage systems [2]. I. INTRODUCTION A polystore system consists of multiple systems and it is different from distributed relational databases which consists of There has been a rapid and continuous increase in the volume, replicas. In a polystore, multiple engines are accessed variety, and velocity of data being used by organizations for separately through a common interface. Federated relational decision making and improved value captured. In recent years databases are managed by individual administration team many different data management systems with different data whereas in polystore they are managed as single integrated unit models have been introduced into the marketplace: Columnar [2]. Along with polystore systems, there is a need to have a databases designed for read heavy analytical queries; OLTP unifying framework that supports the functionality of the databases becoming more main memory oriented; Numerous underlying data stores and provide s quicker query response. NoSQL data stores for horizontal scaling; HTAP system for both online transactional and analytical capabilities; and. NewSQL data systems with SQL interfaces and the scalability II. LITERATURE REVIEW of NoSQL. MATERIALIZATION: There are several techniques to improve query response time like indexing, partitioning of data The rise of data stores like key-value, graph, document and and materialization. An Index is a data structure which columnar stores have been designed for specific needs. improves the performance of data retrieval in read-intensive Specialized engines offer performance which implies that “one queries. Indexes can be used on one or more fields of the size does not fit all”. No one database performances well on all database and are like a dictionary for the lookup of the data. kinds of data. A relational database works fine on structured One of the most widely used index structure is B-tree which data but its performance decreases on other kind of datasets. keeps data sorted and allows sequential access [3]. Hence curated data is stored in different databases, structured data in to relational database, historical data in to array The use of materialized views, derived from the base table, database, relationship data in a graphical database and semi- is the most effective way to improve query response time structured data in document data store. The term polyglot Materialized views pre-compute and store the aggregated persistence summarizes this dynamic and is used to mean that results from the base tables. Consistency and freshness is when storing data, it is best to use multiple data storage maintained by updating the view whenever the base table technologies, chosen based upon the way data is being used by changes. Appropriate views needs to be selected for . D2-1 materialization, for queries to have reduced response time. A repository to store metadata information and a common materialized view can be the joins of two table or a complex materialization view for all data stores. Multiple calcite aggregate functions and consumes storage space. Freshness of adaptors have their own notion of materialized views [6]. the views needs to be maintained when they are created. Materialization requires disk storage which leads to spatial cost. BigDAWG is designed to support multiple databases and is When materialized views are created storage, query and a polystore. It consists of database engines, islands, middleware maintenance cost needs to be considered [4]. and interface for visualization applications. It provides location independence (where a query can be re-routed to the desired When a materialized view is created, the database scans the engine) and semantic completeness (meaning a query can make entire base table, executes the query and creates a copy of the use of all underlying database features). An island in result in a temporary table which is persisted to the disk. When BigDAWG consists of data models and operations which we query, the materialized view table data is read from the disk provide location independence with its associated databases. A similar to a table, if it contains the query result executed ahead shim acts as a connector translating queries defined by of time, the result is returned immediately. Few databases operations in an island in to the native language of the update these materialized views automatically, some databases respective storage engines. One of the key aspects of the require a manual refresh and some do not support materialized polystore system is to process data on the storage engine it is views. best suited. In order to achieve this feature BigDAWG has implemented the “cast” feature where data can be converted Materialized views are used in Oracle databases where into different formats. BigDAWG does not support performance and quicker query response is critical and the materialized views [7]. complex SQL queries are executed against large tables. Queries are rewritten to execute against preaggregated tables than with Myria is a data management and analytical system which the base table which speeds up the query response [16]. focuses on usability and efficiency. Myria has its own execution engine called MyriaX. It also generates query plans for different backend engines. Users can query using MyriaL which is a relational query language. Myria can be operated as a cloud service. However, Myria does not provide support for materialized views [8]. Apache Kylin is an open source analytical engine that provides an SQL interface and analytics on Hadoop for large datasets. Kylin executes queries on pre-calculated cubes which are built offline. Kylin uses map-reduce process to build the cubes from source data. Recently Kylin is also speeding up the cube building processing using Apache Spark. Kylin is tightly coupled with Hive as a data source and HBase as data storage. Requests originate from a SQL tool or from a third party API services. Kylin’s RESTful service intercepts the requests and accesses the query engine. If the target data which the query processes can be met with the pre-built cubes then the results Query rewrite for Materialized Views are returned back quickly, else it is routed to execute on the Hadoop. Kylin does not support relational and NoSQL source DATABASE TECHNOLOGIES. Spark SQL is a module in data stores to build the cubes nor the creation and maintenance Apache Spark that integrates with relational processing of materialized views [9]. databases and lets users run complex analytical queries. It uses DataFrames which performs relational operations on external Apache Hive is used for data querying, analysis and data sources. DataFrames are collections of structured records summarization in a data warehouse. It converts SQL-like which can be manipulated and materialized in memory, but queries to map-reduce jobs for the processing of large volume lacks mechanism to persist them on disk and keep them up to of data. Hive is best suited for batch jobs instead of real time date [5]. data processing. HiveQL is query language used in Hive. HiveQL supports map-reduce scripts which can be plugged in Apache calcite is a unifying framework for parsing and to the queries. HiveQL does not support Online Transaction planning queries on different datasets. It allows for querying Processing and materialization views [10]. data which is resident in non-traditional databases through a SQL interface. It includes many features similar to typical Apache Lens integrates Apache Hadoop with traditional data databases but lacks some functionalities like storage of data, a warehouse to appear as one layer. It provides a unified layer for analytics.
Recommended publications
  • Relational Database Design Chapter 7
    Chapter 7: Relational Database Design Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional Dependencies Decomposition Boyce-Codd Normal Form Third Normal Form Multivalued Dependencies and Fourth Normal Form Overall Database Design Process Database System Concepts 7.2 ©Silberschatz, Korth and Sudarshan 1 First Normal Form Domain is atomic if its elements are considered to be indivisible units + Examples of non-atomic domains: Set of names, composite attributes Identification numbers like CS101 that can be broken up into parts A relational schema R is in first normal form if the domains of all attributes of R are atomic Non-atomic values complicate storage and encourage redundant (repeated) storage of data + E.g. Set of accounts stored with each customer, and set of owners stored with each account + We assume all relations are in first normal form (revisit this in Chapter 9 on Object Relational Databases) Database System Concepts 7.3 ©Silberschatz, Korth and Sudarshan First Normal Form (Contd.) Atomicity is actually a property of how the elements of the domain are used. + E.g. Strings would normally be considered indivisible + Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127 + If the first two characters are extracted to find the department, the domain of roll numbers is not atomic. + Doing so is a bad idea: leads to encoding of information in application program rather than in the database. Database System Concepts 7.4 ©Silberschatz, Korth and Sudarshan 2 Pitfalls in Relational Database Design Relational database design requires that we find a “good” collection of relation schemas.
    [Show full text]
  • Comparing Approaches: Analytic Workspaces and Materialized Views
    Comparing Materialized Views and Analytic Workspaces in Oracle Database 11g An Oracle White Paper March 2008 Comparing Materialized Views and Analytic Workspaces in Oracle Database 11g Introduction ....................................................................................................... 3 Fast Reporting – Comparing The Approaches............................................. 3 Overview of Materialized Views................................................................. 3 Overview of Analytic Workspaces............................................................. 4 Working Together in the Oracle Database ............................................... 6 Explanation of Data Used for this White Paper........................................... 6 Methodology for Designing and Building the Materialized Views........ 7 Manually Creating the Materialized View ............................................. 7 Generating Recommendations from the SQL Access Advisor ........ 9 Methodology for Defining the Analytic Workspace ............................. 10 Tools For Querying ........................................................................................ 15 Refreshing the Data ........................................................................................ 16 Refreshing Materialized Views.................................................................. 16 Refreshing Analytic Workspace Cubes.................................................... 17 Other Issues To Consider.............................................................................
    [Show full text]
  • Oracle Database 10G Materialized Views & Query Rewrite
    Oracle Materialized Views & Query Rewrite An Oracle White Paper May 2005 Oracle Materialized Views & Query Rewrite Executive Overview.......................................................................................... 3 Introduction ....................................................................................................... 3 Why use Summary Management..................................................................... 4 Components of Summary Management ........................................................ 5 Schema Requirements.................................................................................. 5 Dimensions ........................................................................................................ 5 Hints on Defining Dimensions .................................................................. 7 Materialized Views ............................................................................................ 8 Creating a Materialized View....................................................................... 8 Using your own pre-built materialized views............................................ 9 Index selection for Materialized Views...................................................... 9 What can this Materialized View Do?...................................................... 10 Tuning a Materialized View....................................................................... 11 Materialized View Invalidation ................................................................. 12 Security Implications
    [Show full text]
  • Apache Hive Overview Date of Publish: 2018-07-12
    Data Access 3 Apache Hive overview Date of Publish: 2018-07-12 http://docs.hortonworks.com Contents What's new in this release: Apache Hive...............................................................3 Apache Hive 3 architectural overview................................................................... 4 Apache Hive 3 upgrade process..............................................................................6 Changes after upgrading to Apache Hive 3.........................................................................................................7 Convert Hive CLI scripts to Beeline................................................................................................................... 9 Hive Semantic and Syntax Changes.................................................................................................................. 10 Creating a table.......................................................................................................................................10 Escaping db.table references.................................................................................................................. 11 Casting timestamps................................................................................................................................. 11 Renaming tables......................................................................................................................................12 Checking compatibility of column changes...........................................................................................12
    [Show full text]
  • Short Type Questions and Answers on DBMS
    BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Short Type Questions and Answers on DBMS Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. DABASE MANAGEMENT SYSTEM SHORT QUESTIONS AND ANSWERS Prepared by Dr.Subhendu Kumar Rath, Dy. Registrar, BPUT. 1. What is database? A database is a logically coherent collection of data with some inherent meaning, representing some aspect of real world and which is designed, built and populated with data for a specific purpose. 2. What is DBMS? It is a collection of programs that enables user to create and maintain a database. In other words it is general-purpose software that provides the users with the processes of defining, constructing and manipulating the database for various applications. 3. What is a Database system? The database and DBMS software together is called as Database system. 4. What are the advantages of DBMS? 1. Redundancy is controlled. 2. Unauthorised access is restricted. 3. Providing multiple user interfaces. 4. Enforcing integrity constraints. 5. Providing backup and recovery. 5. What are the disadvantage in File Processing System? 1. Data redundancy and inconsistency. 2. Difficult in accessing data. 3. Data isolation. 4. Data integrity. 5. Concurrent access is not possible. 6. Security Problems. 6. Describe the three levels of data abstraction? The are three levels of abstraction: 1. Physical level: The lowest level of abstraction describes how data are stored. 2. Logical level: The next higher level of abstraction, describes what data are stored in database and what relationship among those data. 3. View level: The highest level of abstraction describes only part of entire database.
    [Show full text]
  • Automated Selection of Materialized Views and Indexes for SQL Databases
    Automated Selection of Materialized Views and Indexes for SQL Databases Sanjay Agrawal Surajit Chaudhuri Vivek Narasayya Microsoft Research Microsoft Research Microsoft Research [email protected] [email protected] [email protected] Abstract large number of recent papers in this area, most of the Automatically selecting an appropriate set of prior work considers the problems of index selection and materialized views and indexes for SQL materialized view selection in isolation. databases is a non-trivial task. A judicious choice Although indexes and materialized views are similar, must be cost-driven and influenced by the a materialized view is much richer in structure than an workload experienced by the system. Although index since a materialized view may be defined over there has been work in materialized view multiple tables, and can have selections and GROUP BY selection in the context of multidimensional over multiple columns. In fact, an index can logically be (OLAP) databases, no past work has looked at considered as a special case of a single-table, projection the problem of building an industry-strength tool only materialized view. This richness of structure of for automated selection of materialized views materialized views makes the problem of selecting and indexes for SQL workloads. In this paper, materialized views significantly more complex than that we present an end-to-end solution to the problem of index selection. We therefore need innovative of selecting materialized views and indexes. We techniques for dealing with the large space of potentially describe results of extensive experimental interesting materialized views that are possible for a given evaluation that demonstrate the effectiveness of set of SQL queries and updates over a large schema.
    [Show full text]
  • Materialized Views
    MATERIALIZED VIEWS - WISSENSWERTES UND NEUERUNGEN IN 12C AUTHOR: JONAS GASSENMEYER www.syntegris.de © SYNTEGRIS INFORMATION SOLUTIONS GMBH Mein Haus, mein Auto,… [email protected] @gassenmj Stand 42 © SYNTEGRIS INFORMATION SOLUTIONS GMBH AGENDA . Vorstellung (2 Minuten) . Use Case Pharma Konzern (3 Minuten) •Wissenswertes (vor 12c) .Was ist eine MV, (SQL Hinterlegen und Index drauf) (2 Minuten) .Query Rewrite (1 Minuten) .Atomic_refresh (5 Minuten) .Tablespace (1 Minute) .Fast refresh (incrementell) (5 Minuten) .„es kommt drauf an“ (1 Minuten) • Out of place refresh . Prebuilt table (3 Minuten) . Demo (3 Minuten) • On Statement MVs . Erklärung (3 Minuten) . Demo (3 Minuten) • Real time MVs . Erklärung (3 Minuten) . Demo (3 Minuten) Refresh Statistiken .Erklärung (3 Minuten) .Demo (3 Minuten) .Bug? Fazit (3 Minuten) © SYNTEGRIS INFORMATION SOLUTIONS GMBH Use Case - Aggregation Table Table Table complex Tables MView fast select Report aggregation runs when user runs at night requests the report Materialized View pre-computes result sets © SYNTEGRIS INFORMATION SOLUTIONS GMBH Use Case - Replication › Use Case - Replication Database Local DB MView Link Table Remote DB Data Materialized View copies remote data to local DB © SYNTEGRIS INFORMATION SOLUTIONS GMBH Real World Example? © SYNTEGRIS INFORMATION SOLUTIONS GMBH Chemical Substances › Ordering Vials/Tubes/Plates Differ on each Site → Aggregation From ca. 50 Mio aggregated to ca. 6.5 Mio › Metadata about Substances Same on each Site → Replication Ca. 18.5 Mio © SYNTEGRIS INFORMATION
    [Show full text]
  • User Defined Functions and Materialized Views in Cassandra
    UDF/UDA & Materialized Views in Depth DuyHai DOAN, Apache Cassandra™ Evangelist Trademark Policy From now on … Cassandra ⩵ Apache Cassandra™ 2 @doanduyhai Materialized Views (MV) @doanduyhai Why Materialized Views ? • Relieve the pain of manual denormalization CREATE TABLE user( id int PRIMARY KEY, country text, … ); CREATE TABLE user_by_country( country text, id int, …, PRIMARY KEY(country, id) ); 4 @doanduyhai Materialzed View In Action CREATE MATERIALIZED VIEW user_by_country AS SELECT country, id, firstname, lastname FROM user WHERE country IS NOT NULL AND id IS NOT NULL PRIMARY KEY(country, id) CREATE TABLE user_by_country ( country text, id int, firstname text, lastname text, PRIMARY KEY(country, id)); 5 @doanduyhai Materialzed View Syntax CREATE MATERIALIZED VIEW [IF NOT EXISTS] keyspace_name.view_name Must select all primary key columns of base table AS SELECT column , column , ... 1 2 • IS NOT NULL condition for now • more complex conditions in future FROM keyspace_name.table_name WHERE column1 IS NOT NULL AND column2 IS NOT NULL ... • at least all primary key columns of base table PRIMARY KEY(column1, column2, ...) (ordering can be different) • maximum 1 column NOT pk from base table 6 @doanduyhai Materialized Views Demo 7 Materialized View Impl C* C* ① C* C* • send mutation to all replicas • waiting for ack(s) with CL UPDATE user SET country=‘FR’ C* C* WHERE id=1 C* C* 8 @doanduyhai Materialized View Impl C* C* ② * * C C Acquire local lock on base table partition UPDATE user SET country=‘FR’ C* C* WHERE id=1 C* C* 9 @doanduyhai
    [Show full text]
  • Reducing Intermediate Results for Incremental Updates of Materialized Views
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1996 Reducing Intermediate Results for Incremental Updates of Materialized Views Tetsuya Furukawa Ahmed K. Elmagarmid Purdue University, [email protected] Report Number: 96-037 Furukawa, Tetsuya and Elmagarmid, Ahmed K., "Reducing Intermediate Results for Incremental Updates of Materialized Views" (1996). Department of Computer Science Technical Reports. Paper 1292. https://docs.lib.purdue.edu/cstech/1292 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. REDUCING INTERMEDIATE RESULTS FOR INCREMENTAL UPDATES OF MATERIALIZED VIEWS Tetsuya Furukawa Ahmed K. Elmagannid CSD TR-96-037 June 1996 Reducing Intermediate Results for Incremental Updates of Materialized Views Tetsuya FurukawaH and Ahmed K. Elmagarmidt t Dept. Computer Science, Purdue University West Larayette, IN 47907, USA {furukawa, ake}@cs.purdue.edu :I: Dept. Economic Engineering, Kyushu University Fukuoka 812-81, Japan [email protected] Abstract To increase retrieval query processing efficiency, views are sometimes materialized in database systems. Since materialized views have to be consistent with their original data, they are updated according to updates of the original data. Materialized view update, how­ ever, becomes complicated when the view definition includes projection because one view data corresponds to several original data. This paper shows how to reduce the intermediate results to increase query processing efficiency when a materialized view defined with projec­ tion is updated. We need three steps to update materialized views, to get which view data corresponds with the updated original data, to check whether it indeed have to be updated, and to update the view data.
    [Show full text]
  • DB2 UDB's High Function Business Intelligence in E-Business
    Front cover DB2 UDB’s High Function Business Intelligence in e-business Exploit DB2’s materialized views (ASTs/MQTs) feature Leverage DB2’s statistics, analytic and OLAP functions Review sample business scenarios Nagraj Alur Peter Haas Daniela Momiroska Paul Read Nicholas Summers Virginia Totanes Calisto Zuzarte ibm.com/redbooks International Technical Support Organization DB2 UDB’s High-Function Business Intelligence in e-business September 2002 SG24-6546-00 Take Note! Before using this information and the product it supports, be sure to read the general information in “Notices” on page xvii. First Edition (September 2002) This edition applies to all operating system platforms that DB2 UDB Version 8 supports. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. QXXE Building 80-E2 650 Harry Road San Jose, California 95120-6099 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 2002. All rights reserved. Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . .xi Examples. xiii Notices . xvii Trademarks . xviii Preface . xix The team that wrote this redbook. xx Notice . xxii Comments welcome. xxii Chapter 1. Business Intelligence overview. 1 1.1 e-business drivers . 2 1.1.1 Impact of e-business . 5 1.1.2 Importance of BI . 7 1.2 IBM’s BI strategy and offerings .
    [Show full text]
  • Introduction and Data Models
    NoSQL systems: introduction and data models Riccardo Torlone Università Roma Tre Leveraging the NoSQL boom 2 CREDITS: Jimmy Lin (University of Maryland) Why NoSQL? In the last fifty years relational databases have been the default choice for serious data storage. An architect starting a new project: your only choice is likely to be which relational database to use. often not even that, if your company has a dominant vendor. In the past, other proposals for database technology: deductive databases in the 1980’s object databases in the 1990’s XML databases in the 2000’s these alternatives never got anywhere. 3 CREDITS: Jimmy Lin (University of Maryland) The Value of Relational Databases Effective and efficient management of persistent data Concurrency control Data integration A standard data model A standard query language 4 CREDITS: Jimmy Lin (University of Maryland) Impedance Mismatch Difference between the persistent data model and the in-memory data structures 5 CREDITS: Jimmy Lin (University of Maryland) A proposal to solve the problem (1990s) Databases that replicate the in-memory data structures to disk Object-oriented databases! Faded into obscurity in a few years.. Solution emerged: 6 object-relational mapping frameworks CREDITS: Jimmy Lin (University of Maryland) Evolution of applications OO databases are dead. Why? SQL provides an integration mechanism between applications The database acts as an integration database Multiple applications one database 2000s: a distinct shift to application databases (SOA) Web services add more flexibility for the data structure being exchanged richer data structures to reduce the number of round trips nested records, lists, etc. usually represented in XML or JSON.
    [Show full text]
  • Cost Models for Selecting Materialized Views in Public Clouds
    IGI Global Microsoft Word 2007 Template Reference templateInstructions.pdf for detailed instructions on using this document. Cost Models for Selecting Materialized Views in Public Clouds Romain Perriot Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158 [email protected] Jérémy Pfeifer Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158 [email protected] Laurent d’Orazio Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158 [email protected] Bruno Bachelet Clermont Université, CNRS, Université Blaise Pascal, LIMOS UMR 6158 [email protected] Sandro Bimonte IRSTEA, UR TSCF, Clermont-Ferrand [email protected] Jérôme Darmont Université de Lyon (Laboratoire ERIC) [email protected] Abstract Data warehouse performance is usually achieved through physical data structures such as indexes or materialized views. In this context, cost models can help select a relevant set ofsuch performance optimization structures. Nevertheless, selection becomes more complex in the cloud. The criterion to optimize is indeed at least two-dimensional, with monetary cost balancing overall query response time. This paper introduces new cost models that fit into the pay-as-you-go paradigm of cloud computing. Based on these cost models, an optimization problem is defined to discover, among candidate views, those to be materialized to minimize both the overall cost of using and maintaining the database in a public cloud and the total response time ofa given query workload. We experimentally show that maintaining materialized views is always advantageous, both in terms of performance and cost. 1. Introduction Recently, cloud computing, led by companies such as Google, Microsoft and Amazon, attracted special attention.
    [Show full text]