Mutant DNA Polymerase Δ from Thermosensitive

Total Page:16

File Type:pdf, Size:1020Kb

Mutant DNA Polymerase Δ from Thermosensitive Biochem. J. (1998) 335, 581–588 (Printed in Great Britain) 581 Mutant DNA polymerase δ from thermosensitive Schizosaccharomyces pombe strains display reduced stimulation by proliferating cell nuclear antigen ' > Mylene PERDERISET*, Giovanni MAGA†, Karine PIARD*, Stefania FRANCESCONI*, Isabelle TRATNER*, Ulrich HUBSCHER† and Giuseppe BALDACCI*1 *CNRS-IFC1, Institut de Recherche sur le Cancer, UPR 9044, 7 Rue Guy Moquet BP8, 94801 Villejuif, France, and †Institut fu$ r Veterina$ rbiochemie, Universita$ tZu$rich- Irchel, Winterthurerstrasse 190, CH-8057 Zu$ rich, Switzerland We have isolated and characterized DNA polymerase δ (pol δ) In contrast, Vmax values are lower than the wild-type value. The from two thermosensitive Schizosaccharomyces pombe strains, major in itro defect appears to be decreased stimulation of polδts1 and polδts3, mutated in two different evolutionarily mutant enzymes by PCNA, resulting in reduced velocity of DNA conserved domains of the catalytic subunit. At the restrictive synthesis. In addition, ts1 pol δ is not stimulated by low PCNA temperature of 37 mC polδts1 and polδts3 mutant strains arrest concentration at 37 mC, although low concentrations stimulate growth in the S phase of the cell cycle. We show that at low levels activity at 25 mC, suggesting that this thermolability at low levels of primer ends, in itro stimulation by proliferating cell nuclear of primer ends could be its critical defect in io. Thus, both ts1 antigen (PCNA) of mutant enzymes is lower than stimulation of and ts3 pol δ mutations are located in regions of the catalytic wild-type pol δ. Affinity for primer (3«-OH) ends and processivity subunit that seem necessary, directly or indirectly, for its efficient of mutant enzymes do not appear different from wild-type pol δ. interaction with PCNA. INTRODUCTION [10,14]. Pol δ holoenzyme from one of the S. cereisiae mutant strains showed thermolabile activity in itro, but the precise DNA polymerase (pol) δ is a eukaryotic enzyme that is essential location of the mutation in p125 is unknown [15]. At restrictive for in itro replication of DNA containing the origin of replication temperatures S. pombe pol δ mutant strains arrest their growth in of the simian virus 40 (SV40) [1]. Pol δ holoenzyme from the S phase of the cell cycle with a DNA content comprised of Schizosaccharomyces pombe is believed to consist of five subunits between 1C (where 1C is the DNA content of haploid nuclei) and (125, 55, 54, 42 and 22 kDa). The catalytic subunit (p125) is 2C [14,16]. Two of the strains, polδts1 and polδts3, are mutated encoded by the pol3+ gene [2], p55 and p54 are encoded by cdc1+ in two different evolutionarily conserved domains of p125 [14,16]. and cdc27+ genes respectively [3], and p42 and p22 (encoded by + The polδts1 allele has two adjacent point mutations in the NT1 the cdm1 gene) have been isolated recently and their function is "%$ "%% domain: Ala ! Val and Pro ! Ser. The polδts3 allele con- still unclear [4]. Genetic and biochemical studies have shown that + tains a single amino acid change in the ZnF2 domain (a putative p125 interacts with the product of the cdc1 gene, and that the "!'% Zn finger) [17] at the C-terminus of p125: Arg ! Gln. We products of cdc27+ and cdc1+ genes interact together, suggesting characterized mutant p125 from these strains in order to obtain that p125, p55 and p54 form a complex [3]. Recombinant p125 insights into the function of domains NT1 and ZnF2. In this expressed in insect cells or in Escherichia coli is not activated by paper, we report the partial purification and comparative analysis proliferating cell nuclear antigen (PCNA) [5,6]. Indeed, the p48 of pol δ from wild-type and from mutant S. pombe strains polδts1 subunit of human pol δ (homologous to S. pombe p55) is and polδts3. We show that at low levels of primer ends, essential for stimulation of polymerase activity by PCNA, stimulation of both mutant enzymes by PCNA is lower than for indicating that functional p125–PCNA interaction requires ad- wild-type pol δ, and that ts1 pol δ displays a temperature- ditional proteins [7–9]. dependent reduction of stimulation by PCNA. In budding and fission yeast the genes encoding the catalytic subunit of pol δ are essential for cell growth [10]. In addition, mutations affecting the 3« ! 5« exonuclease activity of Sac- charomyces cereisiae pol δ result in an increased mutation rate EXPERIMENTAL in io [11]. It has also been proposed that the N-terminal region Materials of S. cereisiae p125 is necessary for a productive association with PCNA [12,13]. Accordingly, a mutant in the NT1 domain Terminal deoxynucleotidyltransferase, E. coli pol I Klenow of human p125 did not show stimulation by PCNA [13]. fragment, nucleotides and ribonucleotides were obtained from Mutations in the gene encoding p125 that induce thermosensitive Boehringer Mannheim. Phosphocellulose (P11), glassmicrofibre growth have been isolated in both budding and fission yeast filters (GF}C) and DEAE-81 cellulose filters were purchased from Abbreviations used: pol, DNA polymerase; DTT, dithiothreitol; TCA, trichloroacetic acid; SV40, simian virus 40; RF-C, replication factor C; PCNA, proliferating cell nuclear antigen. 1 To whom correspondence should be addressed (e-mail baldacci!infobiogen.fr). 582 M. Perderiset and others Whatman BioSystems Inc. The TSK DEAE 5 PW HPLC column a (7.5¬75 mm) TSK DEAE 5 PW HPLC column equilibrated $ −" was from Beckman Instruments. [ H]dATP (17.5 Ci mmol ) with buffer B containing 25 mM KH#PO%, pH 7.0}10% (v}v) $ was from Du Pont-New England Nuclear, [ H]dTTP glycerol}2 mM EDTA}1 mM DTT}2 mM benzamidine}1 " $ " $# (58 Ci mmol− ) was from ICN, [ H]dCTP (25 Ci mmol− ), [ P]- µg}ml pepstatin A}1 µg}ml leupeptin}5 kallikrein units}ml " dATP (3000 Ci mmol− ) and ECL (enhanced chemiluminescence) aprotinin. Proteins were eluted with three linear KCl gradients Western blotting detection reagents were from Amersham Life (28 ml of 0–200 mM KCl, 12 ml of 200–350 mM KCl and 8 ml of Sciences, poly(dA)400 and oligo(dT)12–18 from Pharmacia 350–500 mM KCl). For quantification analyses, a preparative Biotech, Nitrocellulose (Biotrace NT) was from Gelman Sciences TSK DEAE 5PW column (21.5¬150 mm) was used as the first S. A., and opti-fluor O scintillation cocktail was from the chromatographic step, as described [20], and eluted pol δ was Packard Instrument Company. loaded on a phosphocellulose column as described above. Nucleic acid substrates pol assays Poly(dA) was mixed with oligo(dT) at a molar ratio of 1:3, Replication factor C (RF-C)-independent pol assay as described previously [18]. Single-stranded M13(mp11) DNA was prepared as described previously [19]. For the exonuclease pol activity was assayed with poly(dA)}oligo(dT) as template} assay, two substrates were used: as a first substrate the plasmid primer at different molar ratios. A final volume (50 µl) in buffer pUC19 DNA was digested with EcoRI and the 3«-end was C (50 mM Bistris, pH 6.5}1 mM DTT}250 µg}ml BSA}6mM $ $ labelled with [ H]dATP (1500 c.p.m.}pmol) using the Klenow MgCl#) contained the following components: 10 µM[H]dTTP fragment of E. coli pol I. The reaction was arrested by heating for (1.5 Ci}mmol), 200 ng of S. pombe recombinant PCNA, 0.5 µg 5 min at 65 mC, slowly cooled to room temperature and loaded poly(dA)}oligo(dT) and 10 µl of chromatographic fraction. DNA onto a Sephadex G-50 column pre-equilibrated with 10 mM synthesis was carried out at 37 mC for 60 min and the reaction $ Tris}HCl, pH 8}1 mM EDTA to eliminate unincorporated [ H]- was stopped by the addition of cold 10% (w}v) trichloroacetic dATP. As a second substrate, we used the partially mismatched acid (TCA). Insoluble radioactive material was collected, washed $ template}primer poly(dA)}oligo(dT)–[ H]dC-3«end-labelled, and counted as described [21]. prepared as described [6]. RF-C-dependent pol assay. Yeast cultures and extract preparations The final reaction volume of 25 µl contained: 50 mM Tris}HCl The S. pombe mutant strains polδts1 and polδts3 and the isogenic (pH 7.5), 1 mM DTT, 0.2 mg}ml BSA, 10 mM MgCl#, 200 ng of wild-type strain SP808 have been described previously [14]. S. pombe recombinant PCNA, 450 ng of E. coli single-stranded DNA-binding protein (SSB), 1 mM ATP, 100 ng of singly primed Procedures used for the extraction and purification of pol $ activities from fission yeast cells were similar to those described M13 DNA, [ H]dTTP (5 Ci}mmol), 6 µM dCTP, 6 µM dATP, previously for budding yeast [20]. Briefly, S. pombe cells were 6 µM dGTP, 0.02 units of pol δ and 0.03–0.05 units of calf grown aerobically at 30 mC (wild type) or 25 mC (thermosensitive thymus RF-C. Reactions were incubated at 37 mC, stopped by mutants) in 8 liters of 1% (w}v) yeast extract enriched with 3% the addition of 1 ml of ice-cold 10% TCA and acid precipitable (w}v) glucose and 12.5 g}l adenine. At a concentration of radioactivity was determined. One unit of RF-C-dependent ( 5¬10 }ml, cells were harvested by centrifugation at 2500 g at activity corresponds to the incorporation of 1 nmol of dNMPs 4 mC for 10 min and frozen in liquid nitrogen. Frozen cells were into acid-precipitable material during 1 h at 37 mC. broken with glass beads (0.5 mm diameter; Sigma) in a Waring To measure processivity, the sizes of products synthesized with Blender.
Recommended publications
  • DNA Repair and Synthetic Lethality
    Int J Oral Sci (2011) 3:176-179. www.ijos.org.cn REVIEW DNA repair and synthetic lethality Gong-she Guo1, Feng-mei Zhang1, Rui-jie Gao2, Robert Delsite4, Zhi-hui Feng1,3*, Simon N. Powell4* 1School of Public Health, Shandong University, Jinan 250012, China; 2Second People’s Hospital of Weifang, Weifang 261041, China; 3Department of Radiation Oncology, Washington University in St Louis, St Louis MO 63108, USA; 4Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA Tumors often have DNA repair defects, suggesting additional inhibition of other DNA repair pathways in tumors may lead to synthetic lethality. Accumulating data demonstrate that DNA repair-defective tumors, in particular homologous recombination (HR), are highly sensitive to DNA-damaging agents. Thus, HR-defective tumors exhibit potential vulnerability to the synthetic lethality approach, which may lead to new therapeutic strategies. It is well known that poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) inhibitors show the synthetically lethal effect in tumors defective in BRCA1 or BRCA2 genes encoded proteins that are required for efficient HR. In this review, we summarize the strategies of targeting DNA repair pathways and other DNA metabolic functions to cause synthetic lethality in HR-defective tumor cells. Keywords: DNA repair; homologous recombination; synthetic lethality; BRCA; Rad52 International Journal of Oral Science (2011) 3: 176-179. doi: 10.4248/IJOS11064 Introduction polymerase (PARP) inhibitors are specifically toxic to homologous recombination (HR)-defective cells [3-4]. Synthetic lethality is defined as a genetic combination Playing a key role in maintaining genetic stability, HR is of mutations in two or more genes that leads to cell a major repair pathway for double-strand breaks (DSBs) death, whereas a mutation in any one of the genes does utilizing undamaged homologous DNA sequence [5-6].
    [Show full text]
  • A Gain-Of-Function P53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia Through the Pluripotency Factor FOXH1
    Published OnlineFirst May 8, 2019; DOI: 10.1158/2159-8290.CD-18-1391 RESEARCH ARTICLE A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1 Evangelia Loizou1,2, Ana Banito1, Geulah Livshits1, Yu-Jui Ho1, Richard P. Koche3, Francisco J. Sánchez-Rivera1, Allison Mayle1, Chi-Chao Chen1, Savvas Kinalis4, Frederik O. Bagger4,5, Edward R. Kastenhuber1,6, Benjamin H. Durham7, and Scott W. Lowe1,8 Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst May 8, 2019; DOI: 10.1158/2159-8290.CD-18-1391 ABSTRACT Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53 R172H muta- tion (TP53 R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leu- kemic cells, a phenotype that is present in hematopoietic stem and progenitor cells (HSPC) even prior to their transformation. We identify FOXH1 as a critical mediator of mutant p53 function that binds to and regulates stem cell–associated genes and transcriptional programs. Our results identify a context where mutant p53 acts as a bona fi de oncogene that contributes to the pathogenesis of CK-AML and suggests a common biological theme for TP53 GOF in cancer. SIGNIFICANCE: Our study demonstrates how a GOF p53 mutant can hijack an embryonic transcrip- tion factor to promote aberrant self-renewal.
    [Show full text]
  • 701.Full.Pdf
    THE AVERAGE NUMBER OF GENERATIONS UNTIL EXTINCTION OF AN INDIVIDUAL MUTANT GENE IN A FINITE POPULATION MOT00 KIMURA' AND TOMOKO OHTA Department of Biology, Princeton University and National Institute of Genetics, Mishima, Japan Received June 13, 1969 AS pointed out by FISHER(1930), a majority of mutant genes which appear in natural populations are lost by chance within a small number of genera- tions. For example, if the mutant gene is selectively neutral, the probability is about 0.79 that it is lost from the population during the first 7 generations. With one percent selective advantage, this probability becomes about 0.78, namely, it changes very little. In general, the probability of loss in early generations due to random sampling of gametes is very high. The question which naturally follows is how long does it take, on the average, for a single mutant gene to become lost from the population, if we exclude the cases in which it is eventually fixed (established) in the population. In the present paper, we will derive some approximation formulas which are useful to answer this question, based on the theory of KIMURAand OHTA(1969). Also, we will report the results of Monte Carlo experiments performed to check the validity of the approximation formulas. APPROXIMATION FORMULAS BASED ON DIFFUSION MODELS Let us consider a diploid population, and denote by N and Ne, respectively, its actual and effective sizes. The following treatment is based on the diffusion models of population genetics (cf. KIMURA1964). As shown by KIMURAand OHTA (1969), if p is the initial frequency of the mutant gene, the average number of generations until loss of the mutant gene (excluding the cases of its eventual fixation) is - In this formula, 1 On leave from the National Institute of Genetics, Mishima, Japan.
    [Show full text]
  • Statement by the Group of Chief Scientific Advisors
    Statement by the Group of Chief Scientific Advisors A Scientific Perspective on the Regulatory Status of Products Derived from Gene Editing and the Implications for the GMO Directive On 25 July 2018, the Court of Justice of the European Biotechnology’ (SAM, 2017a), we have examined the Union ('the Court') decided that organisms obtained GMO Directive taking into account current by the new techniques of directed mutagenesis are knowledge and scientific evidence. genetically modified organisms (GMOs), within the meaning of the Directive 2001/18/EC on the release 1. The Ruling of the Court of Justice of genetically modified organisms into the On request by the French Conseil d'État, the Court environment ('GMO Directive')1,2, and that they are was asked to determine whether organisms subject to the obligations laid down by the GMO obtained by mutagenesis4 should be considered Directive. GMOs and which of those organisms are exempt New techniques of directed mutagenesis include according to the provisions of the GMO Directive. In gene editing such as CRISPR/Cas9 methodologies. particular, the Court was asked to determine The legal status of the products of such techniques whether organisms obtained by new directed was uncertain, because it was unclear whether they mutagenesis techniques are exempt from the fell within the scope of the GMO Directive. obligations imposed by the GMO Directive, as are those obtained by conventional, random These techniques enable the development of a wide mutagenesis techniques that existed before the range of agricultural applications and the ethical, adoption of the Directive, or are regulated like those legal, social and economic issues of their use are obtained by established techniques of genetic discussed intensively.
    [Show full text]
  • An Activated Rac Mutant Functions As a Dominant Negative for Membrane Ru‚Ing
    Oncogene (1998) 17, 625 ± 629 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc An activated Rac mutant functions as a dominant negative for membrane ruing Martin Alexander Schwartz, Jere E Meredith and William B Kiosses Department of Vascular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA Previous studies have shown that point mutations in the terminal eector domains (Westwick et al., 1997; eector domain of Rac1 block speci®c downstream Lamarche et al., 1996). Point mutants were con- pathways such as PAK, JNK/SAPK kinases and structed in V12 or Q61L backgrounds to give membrane ruing. Speci®cally, the F37A mutation, constitutively activated proteins that would show made in a constitutively activated Q61L background, dominant positive eects. These studies of Rac point activates PAK but fails to induce membrane rues. We mutations revealed that induction of membrane ruing now show that Q61L/F37A Rac not only fails to induce and cell cycle progression were independent of ruing but potently blocks membrane ruing induced by activation of PAK and other CRIB domain proteins, serum or PDGF. In the presence of serum, cells do and activation of the JNK/SAPK pathway (Westwick extend ®lopodia, suggesting that this mutant only blocks et al., 1997; Lamarche et al., 1996). a subset of the eectors that induce cytoskeletal One of these mutations, Q61L/F37A, was found to reorganization. At later times, this rac mutant induces abolish induction of membrane ruing and DNA membrane blebbing, but not apoptosis. These results synthesis but did not aect PAK or JNK/SAPK show that Q61L/F37A Rac, is constitutively activated activation (Lamarche et al., 1996).
    [Show full text]
  • Glossary/Index
    Glossary 03/08/2004 9:58 AM Page 119 GLOSSARY/INDEX The numbers after each term represent the chapter in which it first appears. additive 2 allele 2 When an allele’s contribution to the variation in a One of two or more alternative forms of a gene; a single phenotype is separately measurable; the independent allele for each gene is inherited separately from each effects of alleles “add up.” Antonym of nonadditive. parent. ADHD/ADD 6 Alzheimer’s disease 5 Attention Deficit Hyperactivity Disorder/Attention A medical disorder causing the loss of memory, rea- Deficit Disorder. Neurobehavioral disorders character- soning, and language abilities. Protein residues called ized by an attention span or ability to concentrate that is plaques and tangles build up and interfere with brain less than expected for a person's age. With ADHD, there function. This disorder usually first appears in persons also is age-inappropriate hyperactivity, impulsive over age sixty-five. Compare to early-onset Alzheimer’s. behavior or lack of inhibition. There are several types of ADHD: a predominantly inattentive subtype, a predomi- amino acids 2 nantly hyperactive-impulsive subtype, and a combined Molecules that are combined to form proteins. subtype. The condition can be cognitive alone or both The sequence of amino acids in a protein, and hence pro- cognitive and behavioral. tein function, is determined by the genetic code. adoption study 4 amnesia 5 A type of research focused on families that include one Loss of memory, temporary or permanent, that can result or more children raised by persons other than their from brain injury, illness, or trauma.
    [Show full text]
  • Efficient Recovery and Sequencing of Mutant Genes from Mammalian Chromosomal DNA (Mutagenesis/Retroviral Vector/Base Substitution/Deletion) CHARLES R
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 3356-3360, May 1986 Genetics Efficient recovery and sequencing of mutant genes from mammalian chromosomal DNA (mutagenesis/retroviral vector/base substitution/deletion) CHARLES R. ASHMAN, PUDUR JAGADEESWARAN, AND RICHARD L. DAVIDSON Center for Genetics, University of Illinois College of Medicine at Chicago, 808 South Wood Street, Chicago, IL 60612 Communicated by Theodore T. Puck, December 26, 1985 ABSTRACT A retroviral shuttle vector was constructed by was mutagen-induced. In addition, the selectable gene is introducing the Escherichia coli xanthine (guanine) phospho- integrated into chromosomal DNA in the mammalian cells ribosyltransferase gene (gpt) into the pZip-NeoSV(X)1 vector rather than being maintained in an autonomously replicating [Cepko, C. L., Roberts, B. E. & Mulligan, R. C. (1984) CeU molecule. 37, 1053-1062]. This vector was packaged into infectious virus The selectable gene used in this study is the E. coli gpt which then was used to infect a hypoxanthine (guanine) gene, which codes for xanthine (guanine) phosphoribosyl- phosphoribosyltransferase-deficient mouse cell line. Cell lines transferase (XPRTase). This gene was chosen because there that expressed the gpt gene were isolated, and it was found that are selective systems for and against XPRTase activity in these cells contained a single integrated copy of the vector in a both bacteria and mammalian cells. The gpt gene was proviral form. Treatment of these cell lines with either ethyl inserted into the retroviral shuttle vector pZip-NeoSV(X)1 methanesulfonate or BrdUrd produced a >10-fold increase in (8), which can be packaged into a virus that integrates into the frequency of 6-thioguanine-resistant (Sgur) mutants.
    [Show full text]
  • Genetic Engineering (3500 Words)
    Genetic Engineering (3500 words) Biology Also known as: biotechnology, gene splicing, recombinant DNA technology Anatomy or system affected: All Specialties and related fields: Alternative medicine, biochemistry, biotechnology, dermatology, embryology, ethics, forensic medicine, genetics, pharmacology, preventive medicine Definition: Genetic engineering, recombinant DNA technology and biotechnology – the buzz words you may have heard often on radio or TV, or read about in featured articles in newspapers or popular magazines. It is a set of techniques that are used to achieve one or more of three goals: to reveal the complex processes of how genes are inherited and expressed, to provide better understanding and effective treatment for various diseases, (particularly genetic disorders) and to generate economic benefits which include improved plants and animals for agriculture, and efficient production of valuable biopharmaceuticals. The characteristics of genetic engineering possess both vast promise and potential threat to human kind. It is an understatement to say that genetic engineering will revolutionize the medicine and agriculture in the 21st future. As this technology unleashes its power to impact our daily life, it will also bring challenges to our ethical system and religious beliefs. Key terms: GENETIC ENGINEERING: the collection of a wide array of techniques that alter the genetic constitution of cells or individuals by selective removal, insertion, or modification of individual genes or gene sets GENE CLONING: the development
    [Show full text]
  • Glossary of Common Terms in Genetics
    Glossary of Common Terms in Genetics Acquired mutations Gene changes genetic information. DNA is held Multiplexing A sequencing approach that that arise within individual cells and together by weak bonds between base uses several pooled samples simultaneous­ accumulate throughout a person's life pairs of nucleotides: adenine, guanine, ly, greatly increasing sequencing speed. span. cytosine, and thymine. Mutation Any heritable change in DNA Alleles One of a group of genes that Gene The fundamental unit of heredi­ sequence. occur alternatively at a given locus. A ty. A gene is an ordered sequence of single allele is inherited separately from nucleotides located in a particular posi­ Nucleotide A subunit of DNA or RNA each parent (e.g., at a locus for eye tion on a particular chromosome that consisting of a nitrogenous base, a phos­ color, the allele might result in blue or encodes a specific functional product phate molecule, and a sugar molecule. brown eyes). (i.e., a protein or RNA molecule i. Thousands of nucleotides are linked to form a DNA or RNA molecule. Base pair Two nitrogenous bases (ade­ Gene expression The process by which nine and thymine or guanine and cyto- a gene's coded information is converted Oncogene One or more forms of a sine) held together by weak bonds. Two into the structures present and operat­ gene associated with cancer. strands of DNA are held together in the ing in the cell. shape of a double helix by the bonds Polygenic disorders Genetic disorders between base pairs. Gene mapping Determination of the resulting from the combined action of relative positions of genes on a DNA alleles of more than one gene (e.g., Carrier A person who has a recessive molecule and the distance between heart disease, diabetes, and some can­ mutated gene along with its normal them.
    [Show full text]
  • The Qa Repressor Gene of Neurospora Crassa: Wild-Type and Mutant Nucleotide Sequences
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 3381-3385, May 1986 Genetics The qa repressor gene of Neurospora crassa: Wild-type and mutant nucleotide sequences (repressor protein/repressor mutants/eukaryotic gene regulation/gene cluster) LAYNE HuIET* AND NORMAN H. GILES Department of Genetics, University of Georgia, Athens, GA 30602 Contributed by Norman H. Giles, December 31, 1985 ABSTRACT The qa-JS gene, one of two regulatory genes The qa-JS genes from two constitutive mutants have also in the qa gene cluster of Neurospora crassa, encodes the qa been sequenced, revealing that the mutations are located in repressor. The qa-iS gene together with the qa-iF gene, which the distal region of the gene and suggesting that the COOH- encodes the qa activator protein, control the expression of all terminal region of the repressor protein may be involved in seven qa genes, including those encoding the inducible enzymes binding to its target, which may be the activator protein (1). responsible for the utilization of quinic acid as a carbon source. The qa-JS genes from two noninducible mutants had amino The nucleotide sequence of the qa-IS gene and its flanking acid substitutions just upstream of the constitutive muta- regions has been determined. The deduced coding sequence for tions, possibly implicating this region in binding the inducer. the qa-1S protein encodes 918 amino acids with a calculated Sequence analysis of these mutations also revealed a number molecular weight of 100,650 and is interrupted by a single of polymorphisms, primarily in the noncoding region of this 66-base-pair intervening sequence.
    [Show full text]
  • Isolation and Characterization of Mutant Cell Lines Defective in Transforming Growth Factor (3 Signaling BARBARA A
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 7655-7660, July 1996 Cell Biology Isolation and characterization of mutant cell lines defective in transforming growth factor (3 signaling BARBARA A. HOCEVAR AND PHILIP H. HowE* Department of Cell Biology, Cleveland Clinic Research Institute, Cleveland, OH 44195 Communicated by George R Stark The Cleveland Clinic Foundation, Cleveland, OH, April 12, 1996 (received for review November 1, 1995) ABSTRACT To isolate and characterize effector mole- is thus formed, which initiates a downstream signaling cascade cules of the transforming growth factor 13 (TGF.8) signaling (10, 11). pathway we have used a genetic approach involving the Recent cloning of the receptors for the other members of the generation of stable recessive mutants, defective in their TGF superfamily reveals many interesting parallels with the TGFf3 signaling, which can subsequently be functionally com- TGF/3 system. For activin signaling, as for TGF,3 signaling, the plemented to clone the affected genes. We have generated a cell type I receptor requires the type II receptor to bind ligand line derived from a hypoxanthine-guanine phosphoribosyl- followed by the formation of a heteromeric complex that transferase negative (HPRT-) HT1080 clone that contains the initiates signaling (12). The type I receptors for the bone selectable marker Escherichia coli guanine phosphoribosyl- morphogenetic proteins and the decapentaplegic gene product transferase (gpt) linked to a TGFI8-responsive promoter. This are capable of binding ligand on their own; however, it appears cell line proliferates or dies in the appropriate selection that signaling in these systems also involves complex formation medium in response to TGFI3.
    [Show full text]
  • The Genetical Analysis of an Induced Height Mutant In
    Heredity (1980), 45(1),61-71 0018-067X/80/02040061$02.00 1980. The Genetical Society of Great Britain THEGENETICAL ANALYSIS OF AN INDUCED HEIGHT MUTANT IN WHEAT A. J. WORLAND, C. N. LAW and A. SHAKOOR* Plant Breeding institute, Cambridge, England Received4.ii.80 SUMMARY Three semi-dwarf mutants were isolated after treating monosomics of homo- eologous group 2 of the tall wheat "Bersée" with ethyl methanesulphonate (EMS). Two of the mutant lines were shown to have a single identical mutated gene, designated Rht7, on chromosome 2A. Little evidence could be found for chromosomes hemizygous at the time of treatment with mutagens having an increased sensitivity to mutation. Lines carrying Rht7 were shown to have reduced yields so that this mutation will probably be of little use in the breeding of high yielding short-strawed wheats. 1. INTRODUCTION IN bread wheat, Triticum aestivum (2n =6x=42),it has been suggested by Tsunewaki and Heyne (1959) that the chances of detecting a recessive mutant could be increased by treating monosomic rather than euploid seeds. Many recessive genes would be expressed on a hemizygous chromosome but would be masked if a non-mutated homologous chromosome was present. Chromosomes in the hemizygous condition also appear to be more sensitive to mutagens. If this approach of mutating monosomics is to be used, it should be possible to further increase the chances of mutating genes for a certain character by treating monosomics known to carry genes for the character in question. For final plant height each of the chromosomes of homoeologous group 2 were shown to have marked effects since monosomes of this group in the variety Bersée were uniformly dwarfed (Law and Worland, 1973).
    [Show full text]