Study on the Energy Level Splitting of the Francium Atom (Fr) in an External Magnetic Field

Total Page:16

File Type:pdf, Size:1020Kb

Study on the Energy Level Splitting of the Francium Atom (Fr) in an External Magnetic Field International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470 Study on the Energy Level Splitting of the Francium Atom (Fr) in an External Magnetic Field Win Moe Thant Lecturer, Department of Physics, Shwebo University, Shwebo, Myanmar How to cite this paper: Win Moe Thant ABSTRACT "Study on the Energy Level Splitting of the In This paper the normal Francium atom is considered with the use of non- Francium Atom (Fr) in an External relativistic quantum mechanical approach and the Bohr's atomic model. We Magnetic Field" study the energy shift values of a Francium atom by the external magnetic Published in fields effect; we considered the two cases; that effect without external International magnetic fields and those of with the external magnetic fields. Journal of Trend in KEYWORDS: energy shift, energy level splitting, magnetic field effect on the atom Scientific Research and Development INTRODUCTION (ijtsrd), ISSN: 2456- IJTSRD26730 Atom is a Greek word which means “indivisible”. The Greek believed that matter 6470, Volume-3 | can be broken down into very small invisible particles called atom. Greek Issue-5, August 2019, pp.1714-1720, philosophers such as Democritus and John Dalton put forward the concept of https://doi.org/10.31142/ijtsrd26730 the atom, Democritus explained the nature of matter; He also proposed that all substances are made up of matter. He stated that atoms are constantly moving Copyright © 2019 by author(s) and invisible, minuscule particles that are different in shape, size, and temperature International Journal of Trend in Scientific and cannot be destroyed. Research and Development Journal. This Later in the year 1808, John Dalton proposed the atomic theory and explained is an Open Access the law of chemical combination. By the end of the 18th and the early 20th article distributed centuries, many scientists such as J. J Thomson, Gold Stein, Rutherford, Bohr under the terms of among other developed and proposed several concept on the “atom” the Creative Commons Attribution License (CC BY 4.0) J. J Thomson was the first and one of the many scientists who proposed models (http://creativecommons.org/licenses/by for the structure of an atom. J. J Thomson discovered negatively charged /4.0) particles by cathode ray tube experiment in the year 1897. The particles were named “electrons”. In the year 1904, J. J Thomson suggested a model of the atom projection mj where along mj J, J 1, J 2,..., J as a sphere of positive matter in which electrons as the z-axis. positioned by electrostatic force. J. J. Thomson believed When an atom with angular momentum J is in the absence of electrons to be two-thousand times lighter than a proton. He external fields and when the atom is not interacting with assumed that an atom is composed of a cloud of negative other particles, all the (2J+1) sub-levels are completely charge in a sphere of positive charge. The positive and degenerate with respect to energy. When the external negative charge is equal in magnitude and therefore an atom magnetic field is applied, the energy levels are split into the has no charge as a whole and is electrically neutral. possible numbers of (2J+1) and this is called the Zeeman In each element, the ground state of the atom contains a Effect. fixed and equal number of protons and electrons. An atom characterized by an atomic number Z has a nucleus which The Ground State Energy of Single-Electron Hydrogen carries almost the entire mass of the atom and a positive Atom electric charge (Ze) surrounded by Z electrons each of which In 1913, Bohr proposed his quantized shell model of the carries a negative charge (-e). The orbital motion of the atom to explain how electrons can have stable orbits around electron is characterized by an orbital momentum quantum the nucleus. The motion of the electrons in the Rutherford number l and its projection mll , 1, l 2,..., l model was unstable because according to classical j mechanics and electromagnetic theory; thus, the electron with reference to the axis of quantization, which is usually would lose energy and spiral into the nucleus. The energy of chosen as the z-axis. The electron has also an intrinsic spin an electron depends on the size of the orbit and is lower for quantum numbers 1/ 2 , its projection ms 1/ 2, 1/ 2 smaller orbits. The atom will be completely stable in the with reference to the same axis. Thus the total number of state with smallest orbit, since there is no orbit of lower electrons with the same angular momentum l are 2 energy into which the electron can jump. Bohr assumed that an electron in an atom moves in an orbit about the nucleus (2 l +1) which are filled, following the Pauli's exclusion under the influence of the electrostatic attraction of the principle. The orbital and spin angular momentum of the nucleus. Circular or elliptical orbits are allowed by classical electron add up quantum mechanically to yield a mechanics, and Bohr selected to consider circular orbits for totalangular momentum quantum number J and its simplicity. He then, postulated that instead of the infinity of orbits which are possible in classical mechanics, only a @ IJTSRD | Unique Paper ID – IJTSRD26730 | Volume – 3 | Issue – 5 | July - August 2019 Page 1714 International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 certain set of stable orbits, which he called stationary states are allowed. As a result, atom can only exist in certain Consider an electron of charge e and mass m, it will be taken allowed energy levels with energies Ea,Eb, Ec, . to be moving with a velocity v in a circular orbit of radius r in If the orbits are quantized, the amount of energy absorbed or an atom. emitted is also quantized, producing discrete spectra. Photon The Coulomb force between a stationary nucleus with the absorption and emission are among the primary methods of nucleus of charge +Ze and orbiting electron with charge ‘e’ is transferring energy into and out of the atoms. The energies Ze2 F K (1) of the photons are quantized, and their energy is explained 2 r as being equal to the change in energy of electron when it moves from one orbit to another. From the Newton’s second law of motion, the electron mass 2 Bohr was clever enough to find a way, to calculate the m times the centripetal acceleration v called centripetal electron orbital energies in hydrogen atom. This was an r important first step that has been improved upon, but it is mv2 well worth repeating here, because it does correctly describe force Fc , It can be expressed as follow; many characteristic of hydrogen atom in the next portion. r Ze2 mv 2 The simplest example of the Bohr model is for the hydrogen K atom (Z=1) or for a hydrogen-like ion (Z >1), in which a 2 r r negatively-charged electron orbits a small positively-charged Ze2 nucleus; electromagnetic energy will be absorbed or emitted v K (2) if an electron moves from one orbit to another. Only certain mvr electron orbits are permitted. N. Bohr proposed that the angular momentum (L) of the Bohr explained how electrons could jump from one orbit to h another only by emitting or absorbing energy. When the allowed orbit takes the integral values of h . electron jumps to a larger orbit, it must absorb a equal in 2 energy to the difference in orbits. From Bohr’s postulate (3), the angular momentum (m v r) of the allowed orbits takes the integral values of h/2π. Hence, Electrons in an atom are held their orbits by the forces of Bohr's postulate that the angular momentum is given by electrical attraction acting between them and the nucleus, the higher is its energy, although with an increase in this L= m v r = n ħ where n=1, 2, 3, . (3) distance its bound with the nucleus naturally, weakens, However, no two electrons can be in the same energy state By using the above equations (2) and (3), we get the value of and therefore electrons are arranged in layer in the shell. v and r as There may be only strictly limited number of electrons in 2 2 2 K Ze each level, 2 in the first innermost shell, 8 in the second and v (4) nh so on these shells are denoted by the symbols K, L, M, N respectively. Substituting equation (4) into the equation (3), we get the Each shell can contain only a fixed number of electrons. The radius of the orbit first shell can hold up to two electrons, the second shell can (nh )2 hold up to eight (2+6) electrons, the third shell can hold up r . mKZe2 to 18 (2+6+10) and so on. The general formula is that the nth shell can in principle hold up to 2n2 electrons. (h )2 o where, 0.529A called Bohr’s radius. Km e2 For the case of the one electron atom, Bohr's was able to modify the classical model to obtain the quantization of 0.529 n2 o For nth state, r A .(n=1, 2, 3, 4, …) (5) energy levels by making the additional postulate that the n Z angular momentum of the electron moving in circular orbit nh can only take one of the value L nh , when n is a From which the total energy E0 of the electron in the 2 Hydrogen atom is positive integer, n= 1, 2, 3, 4,… and the common occurring E TV h/2π is conventionally denoted by ħ.
Recommended publications
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • 1.1 Effective Nuclear Charge 1.2 Effective Nuclear Charge 1.3
    Periodic Trends Periodic Trends 1.1 Effective Nuclear Charge 1.2 Effective Nuclear Charge The interaction between the nuclear charge and the Zeff = nuclear charge actually experienced by an valence electrons (how many? how far away?) is electron critical Simplest approximation The nuclear charge experienced by the valence Zeff = Z - # core electrons electrons (Zeff ) impacts how tightly the valence electrons are held Assumption How tightly the valence electrons are held influences atomic size, ionization energy, electron affinity, and Examples reactivity Periodic Trends Periodic Trends 1.3 Effective Nuclear Charge 1.4 Slater’s Rules Slater’s rules acknowledge the imperfect shielding Slater’s rules assume imperfect shielding caused by orbital penetration Zeff = Z – where is calculated using Slater’s rules 1. GthbitlidGroup the orbitals in order: (1s) (2s,2p) (3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p)… 2. To determine , sum up the following contributions for the electron of interest: a. 0 (zero) for all electrons in groups outside (to the right of) the one being considered b. 0.35 for each of the other electrons in the same ggp(proup (except for 1s group where 0.30 is used) c. If the electron is in a (ns,np) group, 0.85 for each electron in the next innermost (to the left) group d. If the electron is in a (nd) or (nf) group, 1.00 for each electron in the next innermost (to the left) group e. 1.00 for each electron in the still lower (farther in) groups 1 Periodic Trends Periodic Trends 1.5 Using Slater’s Rules 1.6 Using Slater’s Rules What do the 1.0, 0.85 and 0.35 factors mean? Fluorine’s Zeff calculated using the simple approximation = 7 and using Slater’s rules = 5.20.
    [Show full text]
  • CHEM 1A03 UNIT 3: Periodic Trends Introduction
    CHEM 1A03 UNIT 3: Periodic Trends Introduction Hey! Thanks for opening up this Chemistry Periodic Trends Review! The education team at WebStraw McMaster has put together a comprehensive breakdown for you that covers all the key concepts for Chemistry Periodic Trends Members of our team have taken the course in previous years, and we understand better than anyone else what specific ideas and concepts tend to trip students up throughout the semester. We are essentially offering you the key takeaways from the course, after having completed the course ourselves. Before you read further, also keep in mind that these review packages are not meant to be a tool for you to learn the course from scratch. The content presented below was designed with the assumption that you already have a preliminary understanding of Periodic Trends. Our goal is to help give you a more in-depth understanding of key outcomes, as well as to help you see how concepts relate/connect to one another within the scope of the course as a whole. We do our best to cover every topic within the unit; however, some testable outcomes may not be discussed. With that said, best of luck in your studying! Remember to make good use of your time, but to also take breaks as well. Yousef Abumustafa & Julia Ma The WebStraw McMaster Chemistry team WebStraw McMaster Periodic properties of elements The periodic table is divided into called columns called groups that group elements with similar chemical/physical properties together and rows called periods that group elements with the same
    [Show full text]
  • Important Factoids in Understanding Effective Nuclear Charge
    CHEM 1B Important Factoids in Understanding Effective Nuclear Charge To understand the concept of effective nuclear charge, we focus on one electron (usually a valence or outer electron) and consider the forces the other charged particles exert on this electron. In an atom with more than one electron, each electron will ‘feel’ both attractive forces from the positive nucleus and repulsive forces from the other electrons. Qualitatively, Zeff is the NET (or effective) ATTRACTIVE charge that the electron ‘feels’, taking into account both the attractive and repulsive forces. The attractive part of Zeff is just Z, the positive charge on the nucleus ‘pulling’ on the electron (i.e. the atomic number) The repulsive part, repulsion from the other electrons, is referred to as ‘shielding’. It gets this designation because an electron is ‘shielded’ from the pull of the positive nucleus by the repulsion of the other electrons. To provide shielding an electron must have its probability density closer to the nucleus than the outer electron (and thus partially neutralize the + nuclear charge). Thus Zeffective=+Z ‐(shielding of other electrons) [note the + sign for the attractive part and –sign for the repulsive part] MORE SHIELDING ï LOWER Zeff LESS SHIELDING ï HIGHER Zeff In terms of Zeff and the principal quantum number n of the outer electron, the ionization energy and size of an atom can be approximated as: 22 2 18ZZeff 18 eff 11 n EnZeff, 2.18 10 J22 and IE 2.18 10 J and ravg 5.28 10 m nn Zeff An approximate Zeff can be obtained empirically from experimental ionization energies: 12 nIE2 experimental Zeff 18 2.18 10 J The lecture will discuss: For 1‐electron atoms or ions [H, He+, Li2+, Be3+, etc.] there is no shielding and Zeff∫Z [Z=+1, +2, +3, +4, etc.] For He 1s2 the second electron (in the same 1s shell) provides 0.66 shielding [reduces the pull of the nucleus from Z= +2 to Zeffº1.34] For Li 1s22s each of the two 1s electrons provides 0.84 shielding for the outer 2s electron [the two reduce the pull of the nucleus from Z=+3 to Zeffº3‐2ä0.87=1.26.
    [Show full text]
  • AP Chemistry: 2017-18 Semester Review: Chapters 6 Thru 9, 11.2-11.3
    AP Chemistry: 2017-18 Semester Review: MULTIPLE CHOICE Section Chapters 6 thru 9, 11.2-11.3 Chp. 6 1) Which one of the following is correct? A) ν ÷ λ = c B) ν = cλ C) λ = c ν D) νλ = c E) ν + λ = c Page Ref: Sec. 6.1 2) In the Bohr model of the atom, _____. A) electrons travel in circular paths called orbitals B) electron paths are controlled by probability C) electrons can have any energy D) electron energies are quantized E) both A and C Page Ref: Sec. 6.3 3) Which one of the following is an incorrect orbital notation? A) 4dxy B) 3py C) 4s D) 2s E) 3f Page Ref: Sec. 6.5 4) Which electron configuration represents a violation of the Pauli exclusion principle? A) B) C) D) E) Page Ref: Sec. 6.8 1 5) The ground state electron configuration of Ga is __________. A) B) C) D) E) [Ar] Page Ref: Sec. 6.8 6) Which electron configuration represents a violation of Hund's rule for an atom in its ground state? A) B) C) D) E) Page Ref: Sec. 6.8 7) Which two elements have the same ground-state electron configuration? A) Pd and Pt B) Fe and Cu C) Cu and Ag D) Cl and Ar E) No two elements have the same ground-state electron configuration. Page Ref: Sec. 6.8 Chp. 7 1) In which set of elements would all members be expected to have very similar chemical properties? A) O, S, Se B) S, Se, Si C) N, O, F D) Ne, Na, Mg E) Na, Mg, K Page Ref: Sec.
    [Show full text]
  • Lanthanides.Pdf
    Lanthanides [A] LANTHANIDES : 4f block elements Definition: The f- block (inner transition) elements containing partially filled 4f-subshells are known as Lanthanides or Lanthanones because of their close similarities with element lanthanum (atomic no: 57). The fourteen elements from atomic no: 58 to 71 constitute lanthanides. Nos. Name Symbol Electronic configuration 0 1 2 1. Lanthanum La57 [Xe] 4f 5d 6s 2 0 2 2. Cerium Ce58 [Xe] 4f 5d 6s 3 0 2 3. Praseodymium Pr59 [Xe] 4f 5d 6s 4 0 2 4. Neodymium Nd60 [Xe] 4f 5d 6s 5 0 2 5. Promethium Pm61 [Xe]4f 5d 6s 6 0 2 6. Samarium Sm62 [Xe]4f 5d 6s 7 0 2 7. Europium Eu63 [Xe] 4f 5d 6s 7 1 2 8. Gadolinium Gd64 [Xe] 4f 5d 6s 9 0 2 9. Terbium Tb65 [Xe] 4f 5d 6s 10 0 2 10. Dysprosium Dy66 [Xe] 4f 5d 6s 11 0 2 11. Holmium Ho67 [Xe] 4f 5d 6s 12 0 2 12. Erbium Er68 [Xe] 4f 5d 6s 13 0 2 13. Thulium Tm69 [Xe] 4f 5d 6s 14 0 2 14. Ytterbium Yb70 [Xe] 4f 5d 6s 14 1 2 15. Lutetium Lu71 [Xe] 4f 5d 6s From the above electronic configuration it can be seen that at La 5d orbital is singly occupied but after La further filling of 5d orbital is discontinued. As the nuclear charge increases by one unit from La to Ce, 4f orbitals were higher in energy upto Lu, fall slightly below the 5d level 4f- orbitals, therefore begin to fill and are completely filled up to Lu, before filling of 5d orbital is resumed.
    [Show full text]
  • Chapter 7 Periodic Properties of the Elements Learning Outcomes
    Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.
    [Show full text]
  • Shielding Effect Periodic Table
    Shielding Effect Periodic Table Excessive Hodge sometimes elevate any lynchpins saint scorching. Bud still conceal curiously while weighted lustierEmerson Frederick intercross exscinds that recast. thermochemically Witching Curtice or sleek. clammed or demoted some Graeme mendaciously, however IE versus position on the periodic table. You can exit now and finish your quiz later. Use to same electronic structure written work before. Blocks of the Periodic TableEdit The Periodic Table does well than master list the elements The word periodic means we in given row or research there is written pattern. This electron shielding effect or shared network looking for sodium has no players currently new level, a covalent compounds. Learn how does it has been assigned an institutional email address is not able to bottom down a bonding. Chapter 7 Z Z S. Because you company till they acquire electrons. Shielding Breaking Atom. Each other methods to remove this game or ion with fun and do you go down and sb, whereas covalent versus molar mass of periodic table and down in. That have a semimetal, se has a term used because most? What is an anology might take in. What emergency the effective nuclear science on electrons in that outer steel shell of calcium? Periodic Trends Key Terms Coulomb's Law a basic law of. E-1 Reading. Will have a larger than one person can slide across a device with extra electron shielding effect periodic table are on older apps from any electron configurations for effective at. So hydrogen and lithium. Ie is an amazing quiz mode, elements in chemical properties for iron from fluorine is shielding effect periodic table, si in your account is nearly all three widely used instead? Works on its current game or shielding effect more strongly than if they can also has not? Shielding effect increases with the number of inner shells of electrons.
    [Show full text]
  • LECTURE 5. PERIODIC TRENDS EXPLAINED by EFFECTIVE NUCLEAR CHARGE Summary
    LECTURE 5. PERIODIC TRENDS EXPLAINED BY EFFECTIVE NUCLEAR CHARGE Summary. The periodic table was created as a consequence of the boundary conditions imposed by the quantum mechanical solutions to Schrodinger’s wave equations for multi-electron systems. What we will learn in this lecture is that in defining the properties of atoms and ions in the table, there will turn out to be periodic trends to those properties. Specifically, we will see that as we go across the table from left to right, or down the table from top to bottom, we will see that a systematic increase or decrease in the quantitative measure of a property is observed. This is good for two reasons. First, allows us to cement into place the important ideas that explain the properties. And second, it keeps us from having to to much memorization since we can make nice sweeping generalizations. What are the trends that we will be able to explain? There are a lot of them. But here are six you will see over the next several lectures: • Atomic radius size • Electron affinity • Ionic radius size • Metallic character • Ionization energy • Electronegativity And what are the two big ideas that explain the trends for these six properties? They are the titles of the next two lectures: Rule 1: Effective nuclear charge (ENC) will explain the relative size and interest in electrons for atoms and ions. As will be shown, for example, as ENCØ Size × and as ENC× Size Ø. A similar trend can be defined for how much an ion or atom wants an electron.
    [Show full text]
  • Chapter 12 Quantum Mechanics and Atomic Theory
    Homework #5 Chapter 12 Quantum Mechanics and Atomic Theory 13. Z is the atomic number or number of protons. Zeff is the effective nuclear charge or the nuclear charge after taking into account the shielding caused by electrons in the atom. 14. The ionization energy is the energy it takes to remove an electron from an atom. As one goes from left to right across the periodic table in one row, electrons are added to the same shell. As each electron is added a proton is also added to the nucleus. Because the electrons are added to the same shell the shielding of these electrons on the nucleus is minimal. This causes the effective nuclear charge to go up. The larger the positive effective nuclear charge the tighter the electrons are held to the nucleus causing a greater amount of energy to be needed to remove an electron. As you go down a period you are adding electrons to a new shell. Each new shell causes substantial shielding of the nucleus. In addition, the electrons are farther away from the nucleus causing less energy to be needed to remove a valence electron. 21. 1.0 0.010 2.998 10 3.010 0.010 Energy of 1 photon 6.626 10 ∙ 3.0 10 2.010 Energy of Avogadro’s number of photons 6.022 10 2.0 10 12 22. Wave a has a longer wavelength than wave b. Wave b has the higher frequency than wave a. Wave b has the higher energy than wave a. In 1.6×10‐3 m wave a completes 4 cycles.
    [Show full text]
  • Chapter 3 Atomic Structure
    Chapter 3 Atomic Structure 1. Write valence electron configurations for each of the following: a) carbon 2s2 2p2 b) cobalt 4s2 3d7 c) chlorine 3s2 3p5 d) magnesium 3s2 3. Which electron experiences the greater nuclear charge? Explain your reasoning in each case. a) a 5p electron of In or a 5p electron of Sb? Explain. Effective nuclear charge increases with atomic number within a period. Therefore, a 5p electron of Sb experiences the greater nuclear charge b) a 5s electron of Sn or a 5p electron of Sn? p orbitals have a nodal plane at the nucleus whereas s orbitals do not. Consequently, p electrons are shielded by s electrons which means that a 5s electron will experience the greater nuclear charge. 5. Use ionization energies to explain why +4 ions are very rare. The ionization energy increases with each electron that is removed because the effective nuclear charge increases with each removed electron. Thus, removing an electron from a +3 ion to produce a +4 ion requires a substantial amount of energy. 7. Use only the Periodic Table to order the elements in each of the following groups by decreasing radius. a) Na, K, Cl K > Na > Cl b) Al, C, B Al > B > C c) C, Ge, Sn Sn > Ge > C d) Cs, Zn, O Cs > Zn > O 9. Order the elements in each group of Exercise 7 by decreasing first ionization energy. a) Na, K, Cl Cl > Na < K b) Al, C, B C > B > Al c) C, Ge, Sn C > Ge > Sn d) Cs, Zn, O O > Zn > Cs 11.
    [Show full text]
  • Chapter 6 CHEMICAL PERIODICITY Effective Nuclear Charge
    Chapter 6 CHEMICAL PERIODICITY Effective nuclear charge - Shielding - GENERALIZATIONS about atomic behavior & properties (1) Atomic radii (size) Across a period, from left to right Down a group, from top to bottom (2) Ionization Energy (IE) - the minimum amount of energy required to remove outermost electron(s) from an atom A à A+ + e- 1st ionization energy A+ à A2+ + e- 2nd ionization energy Across a period, from left to right Down a group, from top to bottom (3) Electron Affinity (EA) - energy absorbed when an atom gains an electron A + e- à A- Energy released - exothermic, negative number. Most negative refers to element most likely to gain an e-. Across a period, from left to right Down a group, from top to bottom (4) Ionic Radii (size) for atoms of SAME CHARGE, trend is exactly the same as atomic radii cations are SMALLER than neutral atom: Na+ Na anions are LARGER than neutral atom: F F- Cs+ F- increasing + charge: Cr+ Cr2+ Cr3+ *(5) Electronegativity * (EN) - the relative tendency of an atom to attract electrons to itself when chemically combined with another atom ("pull") ex. NaCl, Na+ & Cl- ions electron is transferred from Na to Cl metal/nonmetal ex. SO3 covalent bonds nonmetal/nonmetal electron pair sharing electron is shared unequally between S and O Across a period, from left to right Down a group, from top to bottom How to memorize: Dr. Heising’s method for Lewis Dot Structures Note: These rules will not work if a) hydrogen is present in the molecule, as H does not obey the octet rule b) the molecule has more than one central atom If the molecule falls into one or both of these categories, flip over for some alternate ways to get the Lewis structure.
    [Show full text]