Electromagnetic Induction

Total Page:16

File Type:pdf, Size:1020Kb

Electromagnetic Induction Electromagnetic induction So far we have found that v kQ Electric charges create E-fields E = rˆ r 2 v v µ qv × rˆ Moving electric charges create B-fields B = 0 4π r 2 But this is not the whole story! Electromagnetic induction Electric Fields can also be created by a changing Magnetic Field. This is described by “Faraday’s Law”. Magnetic Fields can also be created by a changing Electric Field. This will help complete the set of equations called Maxwell’s equations of electricity and magnetism. Electricity and Magnetism can be unified in a single theory! The electricity and magnetic forces are manifestations of a single “electromagnetic interaction” 2 Electromagnetic induction Magnetic Flux Magnetic Flux The flux through an element of area is: To calculate the flux through the surface, we need to integrate: B For the simple case of a flat surface, we obtain: φ Magnetic flux Clicker Question At what angle of orientation of the surface is the flux through the surface half of the maximum possible flux? A) φ = 0 degrees B B) φ = 30 degrees φ C) φ = 45 degrees D) φ = 60 degrees E) None of the above 7 Faraday’s Law of Induction A changing (time-dependent) magnetic field “induces” (generates) an EMF ε. The magnitude of the EMF equals minus the rate of change of the flux. dΦ ε = − B dt Two new quantities introduced. 1. Magnetic Flux = ΦB 2. Electro Motive Force (EMF) = ε 8 Important observations: • Recall: EMF is not a force, but a source of voltage capable of generating power. • The EMF is called “motional” EMF, to distinguish from “chemical” EMF (batteries) • Recall: The magnetic flux through a closed surface is zero! (Gauss’ Law for B-fields) • The surface for Faraday’s Law is an open surface! Clicker Question We have a square imaginary loop with side of length a. There is a Magnetic Field that is uniform throughout the region as shown. How does the Magnetic Flux magnitude |ΦB| change if we halve the Magnetic Field strength and double the sides of the square loop? A) Flux goes to ½ original value B) Flux goes to ¼ original value X B C) Flux goes to 2 times original value D) Flux does not change E) None of the above 10 Changing the magnetic flux 1. Change the strength of the Magnetic Field 2. Change the area of the loop 3. Change the orientation of the loop (A vector) and the B-field 11 Clicker Question A loop of wire is moving rapidly through a uniform magnetic field as shown. Is a non-zero EMF induced in the loop? A) No, there in no EMF B) Yes, there is an EMF 12 Clicker Question A loop of wire is spinning rapidly about a stationary axis in uniform magnetic field as shown. True or False: There is a non-zero EMF induced in the loop. A) False, zero EMF B) True, there is an induced EMF F = BAcosφ and the angle φ is changing. 13 Direction of the EMF around a loop Lenz’s Law The induced EMF tends to induce a current in the direction that opposes the changes in magnetic flux d Φ ε = − B dt The (-) negative sign in Faraday’s Law is more of a reminder. Lenz’s Law is just another way to express Faraday’s Law. Moreover, it can be deduced from it. 15 Lenz’s Law If we move the magnet closer to the loop, what is the direction of the induced EMF and thus the direction of the current in the loop? v v 1. The Magnetic Φ B = ∫ B ⋅dA Flux is increasing. surf dΦ 2. Therefore B > 0 dt 3. Induced current must create B-field that fights the change! 16 Lenz’s Law dΦ B > 0 i dt B Induced current must create B-field that fights the change! An induced B-field down through the loop will create a slight decrease in ΦB. Thus, we have determined the direction of the induced current and EMF. 17 Lenz’s Law “The Magnetic Flux ΦB Up Through the Loop is Increasing. To Fight this Change, an Induced B-field is made that Decreases the Flux Up Through the Loop. This is accomplished by the induced current.” 18 Lenz’s law (summary) Clicker Question A bar magnet is positioned below a loop of wire. The magnet is pulled down, away from the loop. As viewed from above, is the induced current in the loop clockwise, counterclockwise, or zero? B eyeball i A: clockwise B: counter-clockwise C: zero Answer: Counterclockwise. As the magnet is pulled away, the flux is decreasing. To fight the decrease, the induced B-field should add to the original B-field. 20 Clicker Question A loop of wire is sitting in a uniform, constant magnet field as shown. Suddenly, the loop is bent into a smaller area loop. During the bending of the loop, the induced current in the loop is ... A: zero B: clockwise C: counterclockwise B(in) B(in) Answer: Clockwise. The flux into the page is decreasing as the loop area decreases. To fight the decrease, we want the induced B to add to the original B. By the right hand rule (version II) , a clockwise induced current will make an induced B into the page, adding to the original B. 21 Clicker Question Is there an induced current in this circuit? If so, what is its direction? A. Yes, clockwise B. Yes, counterclockwise C. No * There is zero Magnetic Flux at all times through the loop. 22 Clicker Question A current-carrying wire is pulled away from a conducting loop in the direction shown. As the wire is moving, is there a clockwise current around the loop, a counterclockwise current or no current? A. There is a clockwise current around the loop. B. There is a counterclockwise current around the loop. C. There is no current around the loop. 23 2 2 Example with numbers: Area = (0.1m) =0.01 m dB/dt = +0.1 Tesla/second B (increasing) dΦ d dB | ε |= B = (BA) = A dt dt dt cm 0 1 | ε |= (0.01)(0.1) = 0.001Volts Suppose there are 1000 loops to the wire coil. V 10 cm dΦ (N) dΦ (1) | ε |= B = N B =1Volt dt dt 24 Generators Generators use Faraday’s Law to convert mechanical energy into electrical energy. This is the opposite of motors which convert electrical into mechanical energy. 25 The alternator • Wire loop in a constant external B-field. • Turning a crank makes the loop rotate. • This then induces a current in the wire loop. B B X X i (induced) 26 The alternator • Wire loop in a constant external B-field. • Turning a crank makes the loop rotate. • This then induces a current in the wire loop. 27 Clicker Question Instead of turning a crank and inducing a current, what if you hook up the wire loop to a battery and push current through it. What happens to the loop? B A) Nothing X B i B) It feels a net force X C) It feels a net torque D) The current stops flowing Note that the wire loop is a rectangle that is slightly rotated from the plane of the page. 28 Generator Motor Converts mechanical energy Converts electrical energy into into electrical energy. mechanical energy. Crank or otherwise Battery creates a current in a mechanically turns a wire loop loop. This interacts with an in an external B-field. This external B-field to create a induces an electric current in mechanical torque. the loop. 29 The “sliding bar generator” Sliding metal bar on metal rails Bar is pulled by an external agent to the B v right at constant L X X X X X X velocity. There is a uniform B- field surrounding the x=vt rails and loop system. 30 The “sliding bar generator” This creates a wire loop B v whose area is growing with L X X X X X X time. A = Lx = Lvt x=vt Thus, the Magnetic Flux is increasing with time! d d d Φ = (BA) = B (Lvt) = BLv dt B dt dt 31 Clicker Question What is the direction of the induced EMF and B v thus current in the wire L X X X X X X loop? A) Clockwise B) Counter Clockwise x=vt Motional EMF induced ε = BLv 32 The “sliding bar generator” There is another way to see why the current in the bar is up. i Charges in the bar are moving to the right with the bar itself. There is a B-field in this region. v Thus, there is an upward force on the charges. v v v X F = qv × B = qvB (up) B Thus, there is an upward current in the bar! 33 The “sliding bar generator” One more consequence…. If there is an upward current in the wire and there i FM FAgent is an external B-field, the we get? v v v FMag = IL× B = ILB (left) v But, there is also the external agent pulling the rod to the right. X If the velocity is constant, what is true about the B forces? They must be equal and opposite! 34 Clicker Question A conducting loop is halfway into a magnetic field. Suppose the magnetic field begins to increase rapidly in strength. What happens to the loop? A. The loop is pushed upward, toward the top of the page. B. The loop is pushed downward, toward the bottom of the page.
Recommended publications
  • The Mathematical Modeling of Magnetostriction
    THE MATHEMATICAL MODELING OF MAGNETOSTRICTION Katherine Shoemaker A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTERS OF ART May 2018 Committee: So-Hsiang Chou, Advisor Kit Chan Tong Sun c 2018 Katherine Shoemaker All rights reserved iii ABSTRACT So-Hsiang Chou, Advisor In this thesis, we study a system of differential equations that are used to model the material deformation due to magnetostriction both theoretically and numerically. The ordinary differential system is a mathematical model for a much more complex physical system established in labo- ratories. We are able to clarify that the phenomenon of double frequency is more delicate than originally suspected from pure physical considerations. It is shown that except for special cases, genuine double frequency does not arise. In particular, simulation results using the lab data is consistent with the experiment. iv I dedicate this work to my family. Even if they don’t understand it, they understand so much more. v ACKNOWLEDGMENTS I would like to express my sincerest gratitude to my advisor Dr. Chou. He has truly inspired me and made my graduate experience worthwhile. His guidance, both intellectually and spiritually, helped me through all the time spent researching and writing this thesis. I could not have asked for a better advisor, or a better instructor and I am truly appreciative of all the support he gave. In addition, I would like to thank the remaining faculty on my thesis committee: Dr. Tong Sun and Dr. Kit Chan, for supporting me through their instruction and mentorship.
    [Show full text]
  • Electro Magnetic Fields Lecture Notes B.Tech
    ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR – I SEM) (2019-20) Prepared by: M.KUMARA SWAMY., Asst.Prof Department of Electrical & Electronics Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India ELECTRO MAGNETIC FIELDS Objectives: • To introduce the concepts of electric field, magnetic field. • Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics: Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Gauss’s law – Application of Gauss’s Law – Maxwell’s first law, div ( D )=ρv – Laplace’s and Poison’s equations . Electric dipole – Dipole moment – potential and EFI due to an electric dipole. UNIT – II Dielectrics & Capacitance: Behavior of conductors in an electric field – Conductors and Insulators – Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions – Capacitance – Capacitance of parallel plates – spherical co‐axial capacitors. Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity UNIT – III Magneto Statics: Static magnetic fields – Biot‐Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current Carrying wire – Relation between magnetic flux and magnetic flux density – Maxwell’s second Equation, div(B)=0, Ampere’s Law & Applications: Ampere’s circuital law and its applications viz.
    [Show full text]
  • Electromagnetic Induction, Ac Circuits, and Electrical Technologies 813
    CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES 813 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr) 814 CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Learning Objectives 23.1. Induced Emf and Magnetic Flux • Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation. • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire. 23.2. Faraday’s Law of Induction: Lenz’s Law • Calculate emf, current, and magnetic fields using Faraday’s Law. • Explain the physical results of Lenz’s Law 23.3. Motional Emf • Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field. 23.4. Eddy Currents and Magnetic Damping • Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in. • Describe several applications of magnetic damping. 23.5. Electric Generators • Calculate the emf induced in a generator. • Calculate the peak emf which can be induced in a particular generator system. 23.6. Back Emf • Explain what back emf is and how it is induced. 23.7. Transformers • Explain how a transformer works. • Calculate voltage, current, and/or number of turns given the other quantities.
    [Show full text]
  • Magnetism Known to the Early Chinese in 12Th Century, and In
    Magnetism Known to the early Chinese in 12th century, and in some detail by ancient Greeks who observed that certain stones “lodestones” attracted pieces of iron. Lodestones were found in the coastal area of “Magnesia” in Thessaly at the beginning of the modern era. The name of magnetism derives from magnesia. William Gilbert, physician to Elizabeth 1, made magnets by rubbing Fe against lodestones and was first to recognize the Earth was a large magnet and that lodestones always pointed north-south. Hence the use of magnetic compasses. Book “De Magnete” 1600. The English word "electricity" was first used in 1646 by Sir Thomas Browne, derived from Gilbert's 1600 New Latin electricus, meaning "like amber". Gilbert demonstrates a “lodestone” compass to ER 1. Painting by Auckland Hunt. John Mitchell (1750) found that like electric forces magnetic forces decrease with separation (conformed by Coulomb). Link between electricity and magnetism discovered by Hans Christian Oersted (1820) who noted a wire carrying an electric current affected a magnetic compass. Conformed by Andre Marie Ampere who shoes electric currents were source of magnetic phenomena. Force fields emanating from a bar magnet, showing Nth and Sth poles (credit: Justscience 2017) Showing magnetic force fields with Fe filings (Wikipedia.org.) Earth’s magnetic field (protects from damaging charged particles emanating from sun. (Credit: livescience.com) Magnetic field around wire carrying a current (stackexchnage.com) Right hand rule gives the right sign of the force (stackexchnage.com) Magnetic field generated by a solenoid (miniphyiscs.com) Van Allen radiation belts. Energetic charged particles travel along B lines Electric currents (moving charges) generate magnetic fields but can magnetic fields generate electric currents.
    [Show full text]
  • F = BIL (F=Force, B=Magnetic Field, I=Current, L=Length of Conductor)
    Magnetism Joanna Radov Vocab: -Armature- is the power producing part of a motor -Domain- is a region in which the magnetic field of atoms are grouped together and aligned -Electric Motor- converts electrical energy into mechanical energy -Electromagnet- is a type of magnet whose magnetic field is produced by an electric current -First Right-Hand Rule (delete) -Fixed Magnet- is an object made from a magnetic material and creates a persistent magnetic field -Galvanometer- type of ammeter- detects and measures electric current -Magnetic Field- is a field of force produced by moving electric charges, by electric fields that vary in time, and by the 'intrinsic' magnetic field of elementary particles associated with the spin of the particle. -Magnetic Flux- is a measure of the amount of magnetic B field passing through a given surface -Polarized- when a magnet is permanently charged -Second Hand-Right Rule- (delete) -Solenoid- is a coil wound into a tightly packed helix -Third Right-Hand Rule- (delete) Major Points: -Similar magnetic poles repel each other, whereas opposite poles attract each other -Magnets exert a force on current-carrying wires -An electric charge produces an electric field in the region of space around the charge and that this field exerts a force on other electric charges placed in the field -The source of a magnetic field is moving charge, and the effect of a magnetic field is to exert a force on other moving charge placed in the field -The magnetic field is a vector quantity -We denote the magnetic field by the symbol B and represent it graphically by field lines -These lines are drawn ⊥ to their entry and exit points -They travel from N to S -If a stationary test charge is placed in a magnetic field, then the charge experiences no force.
    [Show full text]
  • Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
    aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process.
    [Show full text]
  • Magnetic Flux and Flux Linkage
    Magnetic Flux and Flux Linkage To be able to calculate and explain the magnetic flux through a coil of wire To be able to calculate the magnetic flux linkage of a coil of wire To be able to calculate the magnetic flux linkage of a rotating coil Magnetic Flux, Magnetic flux is a measure of how many magnetic field lines are passing through an area of A m2. The magnetic flux through an area A in a magnetic field of flux density B is given by: BA This is when B is perpendicular to A, so the normal to the area is in the same direction as the field lines. Magnetic Flux is measured in Webers, Wb The more field pass through area A, the greater the concentration and the stronger magnetic field. This is why a magnet is strongest at its poles; there is a high concentration of field lines. We can see that the amount of flux flowing through a loop of wire depends on the angle it makes with the field lines. The amount of flux passing through the loop is given by: θ is the angle that the normal to the loop makes with the field lines. Magnetic Flux Density We can now see why B is called the magnetic flux density. If we rearrange the top equation for B we get: B So B is a measure of how many flux lines (field lines) passes through each unit area (per m2). A A flux density of 1 Tesla is when an area of 1 metre squared has a flux of 1 Weber.
    [Show full text]
  • Lecture 30 Motional Emf
    LECTURE 30 MOTIONAL EMF Instructor: Kazumi Tolich Lecture 30 2 ¨ Reading chapter 23-3 & 23-4. ¤ Motional emf ¤ Mechanical work and electrical energy Clicker question: 1 3 Motional emf 4 ¨ As the rod moves to the right at a constant velocity v, the motional emf is given by ΔΦ BΔA lvΔt E = N = = B = Bvl Δt Δt Δt Example: 1 5 ¨ A Boeing KC-135A airplane has a wingspan of L = 39.9 m and flies at constant altitude in a northerly direction with a speed of v = 240 m/s. If the vertical component of the Earth’s magnetic -6 field is Bv = 5.0 × 10 T, and its -6 horizontal component is Bh = 1.4 × 10 T, what is the induced emf between the wing tips? Clicker question: 2 & 3 6 Mechanical and electric powers 7 ¨ Suppose the rod is moving with a constant velocity �. ¨ The mechanical power delivered by the external force is: ¨ Compare this to the electrical power in the light bulb: ¨ Therefore, mechanical power has been converted directly into electrical power. Example: 2 8 ¨ In the figure, let the magnetic field strength be B = 0.80 T, the rod speed be v = 10 m/s, the rod length be l = 0.20 m, and the resistance of the resistor be R = 2.0 Ω. (The resistance of the rod and rails are negligible.) a) Find the induced emf in the circuit. b) Find the induced current in the circuit (including direction). c) Find the force needed to move the rod with constant speed (assuming negligible friction).
    [Show full text]
  • Lecture 8: Magnets and Magnetism Magnets
    Lecture 8: Magnets and Magnetism Magnets •Materials that attract other metals •Three classes: natural, artificial and electromagnets •Permanent or Temporary •CRITICAL to electric systems: – Generation of electricity – Operation of motors – Operation of relays Magnets •Laws of magnetic attraction and repulsion –Like magnetic poles repel each other –Unlike magnetic poles attract each other –Closer together, greater the force Magnetic Fields and Forces •Magnetic lines of force – Lines indicating magnetic field – Direction from N to S – Density indicates strength •Magnetic field is region where force exists Magnetic Theories Molecular theory of magnetism Magnets can be split into two magnets Magnetic Theories Molecular theory of magnetism Split down to molecular level When unmagnetized, randomness, fields cancel When magnetized, order, fields combine Magnetic Theories Electron theory of magnetism •Electrons spin as they orbit (similar to earth) •Spin produces magnetic field •Magnetic direction depends on direction of rotation •Non-magnets → equal number of electrons spinning in opposite direction •Magnets → more spin one way than other Electromagnetism •Movement of electric charge induces magnetic field •Strength of magnetic field increases as current increases and vice versa Right Hand Rule (Conductor) •Determines direction of magnetic field •Imagine grasping conductor with right hand •Thumb in direction of current flow (not electron flow) •Fingers curl in the direction of magnetic field DO NOT USE LEFT HAND RULE IN BOOK Example Draw magnetic field lines around conduction path E (V) R Another Example •Draw magnetic field lines around conductors Conductor Conductor current into page current out of page Conductor coils •Single conductor not very useful •Multiple winds of a conductor required for most applications, – e.g.
    [Show full text]
  • Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches
    AP Corp | (508) 351-6200 | www.a-pcorp.com Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches Both eddy-current sensors as well as inductive switches and displacement sensors have been used for many years, each having their respective advantages when it comes to measuring position and displacement of objects in harsh environments. However, recent advances in eddy-current sensor design, integration and packaging, as well as overall cost reduction, have made these sensors a much more attractive option. This is especially true where high linearity, high-speed measurements and high resolution are critical requirements. Common Inductive Sensors & Switches To appreciate the inherent advantages of eddy-current sensors, relative to inductive switches and displacement sensors, it’s important to first understand the principle of operation of both types. The classic inductive displacement sensor comprises a coil that is wound around a ferromagnetic core. When excited by an alternating current from an oscillator-based driver circuit, the coil generates a magnetic field that is concentrated around the core. The lines of flux interact with the target conductor as it approaches, creating eddy currents that are the reverse of the initial excitation current and have the effect of reducing the voltage across the oscillator. These variations in voltage due to the change in air gap distance are detected and converted to an analog output signal, such as a 4-20mA loop, and then processed upstream to determine displacement. 1 AP Corp | (508) 351-6200 | www.a-pcorp.com In an inductive displacement sensor, a coil is wrapped around a ferromagnetic core and when an alternating current is passed through the coil it generates a magnetic field.
    [Show full text]
  • Juan Alberto Garcia the University of Texas at El Paso
    Juan Alberto Garcia The University of Texas at El Paso Is that all there is about E&M then??? F*@# no!! Electricity and Magnetism… no more! Electromagnetism!! • Hans Christian Ørsted ‐ Professor at Copenhagen ‐ Discovered (in 1820) one connection!! ‐ This one ‐ Well actually.. • One problem… he didn’t follow his experiment, but he published it tough. ! =D • Meanwhile in the Faraday world.. Devy kept Faraday performing tasks that were not desired by him.. • 1821 Ampère published his research…. Ampère • Force between two wires with electricity • They attract or repel each other .. Depending on the direction of the current!! • Led to the foundation of Electrodynamics • It was not until 1831 that Faraday finally started working in E&M and explained… • .. • Induction!!!! But First!!, Flux • Magnetic Flux A A B B Induction • Explained by Faraday! (this guy) • That is faraday’s law… well the easy form.. • It means the following…. • Well this is better… Lenz’s Law • Corollary of Faraday’s Law and Ohm’s Law • The emf induced in an electric circuit always acts in such a direction that the current it drives around the circuit opposes the change in magnetic flux which produces the emf. Maxwell • And then.. There was Maxwell • On Physical Lines of Force, March 1861 , Published 20 equations with 20 variables which were a compilation of what was know at the time. • Then on A Treatise on Electricity and Magnetism in 1873 he published what are known as the Maxwell’s Equations. Maxwell’s Equations • 4 PDE’s that describe the “Fields.” • They are in descending order (in free space): • Gauss’s law for E‐fields • Gauss’s law for B‐fields • Faraday’s Law • Ampère’s Law And then, there was light… • Turns out Maxwell’s Equations describe fields that Oscillate through space.
    [Show full text]
  • Ee334lect37summaryelectroma
    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
    [Show full text]