Beyond the WAM: Topics in Contemporary Logic Programming Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Beyond the WAM: Topics in Contemporary Logic Programming Implementation Beyond the WAM: Topics in Contemporary Logic Programming Implementation Terrance Swift May 4, 2012 Terrance Swift Topics in Logic Programming Implementation Beyond the WAM: Topics in Contemporary Logic Programming Implementation Topic 1: Overview and Miscellaneous Topics Terrance Swift Topics in Logic Programming Implementation After the WAM There are a lot of Prologs around: Sicstus, Quintus, YAP, Chao, SWI, GNU Prolog, B-Prolog, Mercury, HAL, ALS, XSB and many others Nearly every Prolog implements the WAM The WAM has been known for over 20 years ... so why are there a lot of Prologs? Terrance Swift Topics in Logic Programming Implementation After the WAM There is a lot more to Prolog than just the WAM Builtins for I/O, term manipulation, DCGs etc. Module systems Debuggers Dynamic code Libraries, interfaces, and packages: e.g. Interprolog [Cal04], lpdoc (Ciao [HtCG]), pl-doc (SWI) jasper, database interfaces, and many libraries, interfaces, etc. APIs for embeddability Memory management (garbage collectors) Arbitrary arithmetic { rational numbers Unicode and other extensions to readers Still, the main ISO standard has been around for 10 years [ISO95] Terrance Swift Topics in Logic Programming Implementation After the WAM Much of what keeps many Prologs around is research: Speed optimizations faster WAM execution (e.g. YAP [SC99, dSC06]) native-code compilation [Tay01, van92] (e.g. GNU Prolog [DP01b]) global analysis (e.g Ciao [MCH04], XSB [DRSS96]), indexing (e.g. YAP [], XSB [RRS+99]) Annotations and analysis for correctness Constraint libraries: CLP(R), CLP(Q), CLP(FD), CLP(BN) [CC03], Various libraries based on Constraint Handling Rules. Parallelism, multi-threading, and \cluster" Prologs Changes to evaluation methods (e.g. tabling) Syntactic extensions: e.g. HiLog [CKW93, SW95] Semantic extensions: well-founded negation, Generalized Annotated Programs, Object-logics such as FLORA-2, preference logics, etc. Integration with other LP paradigms such as ASP (e.g. XASP [CSW, ARD08]),Terrance abduction, Swift Topics etc. in Logic Programming Implementation Focus of This Topic We'll discuss implementation issues arising from Making the WAM into a modern Prolog system Extending Prolog into new directions Focus is on the XSB system (xsb.sourceforge.net) It is a widely used Prolog with approximately 10,000 downloads from site a year since 2000, plus inclusions as a package in other systems { e.g. Debian Linux It has most of the advanced features that other Prologs have It has some advanced features of its own It is partly a UNL product I know it. Terrance Swift Topics in Logic Programming Implementation Tentative Overview 1 Overview: Exception Handling and a Taste of Speeding up the WAM 2 Tabling for Definite Programs: Variance and Subsumption; Scheduling Strategies 3 The SLG-WAM: Data Structures and Stack Changes; 4 The SLG-WAM: Completion, Registers and Instructions; Linear tabling 5 Tabling with Negation: Stratification Theories, SLG Resolution 6 The SLG-WAM: Implementation of Tabled Negation 7 Multi-threaded Prolog: ISO-multi-threading, the MT-SLG-WAM; Concurrent Completion and Shared Completed Tables, YAP Tabling. 8 Dynamic Rules and Facts: Incremental Tabling 9 Constraints and CHR; Tabled constraints; Answer Subsumption Terrance Swift Topics in Logic Programming Implementation XSB Background As a poor measure of system complexity XSB has: ~ 84,000 lines of C code in engine and support for builtins ~ 14,000 Lines of Prolog code in compiler ~ 37,000 Lines of Prolog code for builtins and standard libraries ~ 70,000 Lines of Prolog and C for packages (including constraint libraries) This is roughly the same as other leading open-source Prologs Terrance Swift Topics in Logic Programming Implementation XSB Background XSB is currently developed at Universidade Nova de Lisboa and State University of New York at Stony Brook. WAM has Code Space, Heap, Environment Stack, Trail and PDL Prolog systems typically contain other areas: Atom Tables, predicate/structure tables, findall buffers, and much else. XSB (and some other Prologs) splits Environment Stack into Environment Stack and Choice Point Stack The reason for the split is to make it easier to use the choice point stack for scheduling in tabled evaluations Terrance Swift Topics in Logic Programming Implementation XSB Background The code and algorithms discussed in these lectures were developed by (in alphabetical order) Luis de Castro, Baoqiu Cui, Steve Dawson, Ernie Johnson, Juliana Freire, Michael Kifer, Rui F. Marques, C.R. Ramakrishnan, I.V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Diptikalyan Saha, Terrance Swift, David S. Warren and others. Terrance Swift Topics in Logic Programming Implementation Exceptions How do you handle exceptions in C? 1 Declare a C variable of type jmp buf 2 use setjmp(jmp buf env) to assign a forward continuation (i.e. environment) referred to by env For example, if you wanted to longjump to the WAM instruction dispatch loop: if (setjmp(xsb abort fallback environment)) Restore the default signal handling; set P register to saved value else P = first instruction of boot module goto *instr addr table[*P]; at beginning of instruction dispatch loop. 3 use longjmp(xsb abort fallback environment,val) to pop C stack to proper environment | the instruction goes back in stack to look for an environment with address matching that maintained in the jmp buf env. Terrance Swift Topics in Logic Programming Implementation Exceptions ISO-style exceptions are an elegant part of Prolog and are often under-appreciated1 To throw an exception, call throw(Ball): Ball is simply a Prolog term To handle an exception, call a goal through catch(Goal,Ball,Handler) This calls Goal and if Goal throws an exception (via throw(Ball)) that unifies with Ball, call Handler if Goal throws an exception that does not unify with Ball nothing happens, the exception is handled by an ancestor catch Thus, there are three continuations in Prolog: forward (success), failure, and exception. Note that continuations may be removed via !/0. catch/3 important when a Prolog is part of a system: e.g. called from Interprolog, from within a Ruby, Delphi, or C process. 1Exceptions in XSB wereTerrance originally Swift implementedTopics in Logic by Programming B. Demoen Implementation Exceptions How can exceptions be implemented? catch/3 is a little like a setjmp(), but relies on unification of Prolog terms, rather than matches of stack addresses. Go up Prolog's environment stack until you find an environment Env that looks like a catch. Recall that WAM environments contain: A pointer to their parent environment A pointer to the byte-code for their continuation Various permanent variables (+ perhaps another pointer for Tabling) See if the thrown Ball unifies with something in Env if so reset stacks and call Handler if not, keep going up stack Terrance Swift Topics in Logic Programming Implementation Exceptions Here's how we find the environment of a catch catch marker indicates that the current environment is that of catch/3 We aren't yet addressing the unification of the ball with the second argument of catch/3 Terrance Swift Topics in Logic Programming Implementation Exceptions find next catch() temp E = E find an environment that matches catch while (E and cp(E) != catch marker) temp E = parentEnv(E) if ( ! temp E) xsb exit("Throw failed because no catcher for throw") search through choice points until you find the choice point whose cp E value is older than temp E set B to this value search through choice points until you find the trail cell equal to cp TR(B) set TR to this value return(FALSE); Terrance Swift Topics in Logic Programming Implementation Exceptions After interning the error ball, throw/1 finds the next catch/3 environment (if any) Stacks are set to this new environment so that when we fail (which acts analogously to longjmp()), we'll take the failure continuation for catch/3 Recall from a few slides ago that xsb abort fallback environment puts you back to the beginning of the emulator. throw(error term) Intern error term as exception ball(thread,error term) if (find next catch()) xsb exit(”find next catch() failed in xsb throw internal!") /* Resume main emulator instruction loop */ longjmp(xsb abort fallback environment, fail inst) Terrance Swift Topics in Logic Programming Implementation Exceptions catch(Goal, Catcher, Handler) :- set variable catch marker to point to clean up block call(Goal), clean up block. catch( Goal,Catcher,Handler) :- xsb thread self(T), '$$exception ball'(T,Ball), % one fact per thread here so no CP ( Ball = Catcher -> retractall('exception ball'( )), call(Handler) ; find next catch() ). A call to catch/3 first makes sure that catch marker points to clean up block (this actually needs to be done at initialization). If find next catch() traverses the environment for a call to catch/3 it will set the environment and choice point stacks, the heap and trail to that environment, and succeeds. If the thrown Ball unifies with Catcher, Handler will be called; othewise find next catch() will be called again. When there are no choice points created by Goal, clean up block removes the choice point set up by catch/3. Terrance Swift Topics in Logic Programming Implementation Catching vs. Cutting catch/3 finds a previous enviroment and resets stack to that enviroment. After the environment is reset, it calls a handler and succeeds (if the handler succeeds); !/0 finds a previous choice point C, and resets stacks to the enviroment in C by failing. Once the enviroment is reset, a failure continuation is taken. Terrance Swift Topics in Logic Programming Implementation Cleaning Up after a Goal How do you guarentee that a given handler is always called after a goal { whether the goal succeeds (with no more choice points), fails, or throws an exception E.g. to close a db cursor, mutex, etc. As described, catch/3 handles exceptions This is usually done via call cleanup(#Goal,#Handler) Failure of Goal: ?- call_cleanup(fail,writeln(failed(Goal))).
Recommended publications
  • From Plain Prolog to Logtalk Objects: Effective Code Encapsulation and Reuse
    From Plain Prolog to Logtalk Objects: Effective Code Encapsulation and Reuse Paulo Moura Dep. of Computer Science, Univ. of Beira Interior, Portugal Center for Research in Advanced Computing Systems INESC Porto, Portugal http://logtalk.org/ [email protected] ICLP 2009 Inivited Talk Someone said I need one... 2 Spoilers • Objects in a Prolog world • Logtalk design goals • Logtalk architecture • Logtalk versus Prolog and Prolog modules • Logtalk overview and quick tour • Some demos (if time allows) • Logtalk as a portable Prolog application • Logtalk programming support 3 A warning... • I have a laser and I’m not afraid to use it ... Beware of asking embarrassing questions! • But please feel free to interrupt and ask nice ones that make the speaker shine! 4 A bit of history... • Project started in January 1998 • First version for registered users in July 1998 • First public beta in October 1998 • First stable version in February 1999 5 Logtalk in numbers • Compiler + runtime: ~11000 lines of Prolog code • 37 major releases, 122 including minor ones • Current version: Logtalk 2.37.2 minor release number major release number second generation of Logtalk • ~1500 downloads/month (so many earthlings, so little time) 6 Logtalk distribution • Full sources (compiler/runtime, Prolog config files, libraries) • MacOS X (pkg), Linux (rpm), Debian (deb), and Windows (exe) installers XHTML and PDF User and Reference Manuals • (121 + 144 pages) • +90 programming examples • Support for several text editors and syntax highlighters (text services and code publishing) 7 Objects in Prolog?!? We’re being invaded! 8 Objects have identifiers and dynamic state! • It seems Prolog modules are there first: Identifier! :- module(broadcast, [...]).
    [Show full text]
  • Utgåvenoteringar För Fedora 11
    Fedora 11 Utgåvenoteringar Utgåvenoteringar för Fedora 11 Dale Bewley Paul Frields Chitlesh Goorah Kevin Kofler Rüdiger Landmann Ryan Lerch John McDonough Dominik Mierzejewski David Nalley Zachary Oglesby Jens Petersen Rahul Sundaram Miloslav Trmac Karsten Wade Copyright © 2009 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. 1 Utgåvenoteringar For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
    [Show full text]
  • Intercepting Functions for Memoization Arjun Suresh
    Intercepting Functions for Memoization Arjun Suresh To cite this version: Arjun Suresh. Intercepting Functions for Memoization. Other [cs.OH]. Université de Rennes 1, 2016. English. tel-01410539v1 HAL Id: tel-01410539 https://hal.inria.fr/tel-01410539v1 Submitted on 6 Dec 2016 (v1), last revised 11 May 2017 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2016 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l’Universite´ Bretagne Loire En Cotutelle Internationale avec pour le grade de DOCTEUR DE L’UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole´ doctorale Matisse present´ ee´ par Arjun SURESH prepar´ ee´ a` l’unite´ de recherche INRIA Institut National de Recherche en Informatique et Automatique Universite´ de Rennes 1 These` soutenue a` Rennes Intercepting le 10 Mai, 2016 devant le jury compose´ de : Functions Fabrice RASTELLO Charge´ de recherche Inria / Rapporteur Jean-Michel MULLER for Directeur de recherche CNRS / Rapporteur Sandrine BLAZY Memoization Professeur a` l’Universite´ de Rennes 1 / Examinateur Vincent LOECHNER Maˆıtre de conferences,´ Universite´ Louis Pasteur, Stras- bourg / Examinateur Erven ROHOU Directeur de recherche INRIA / Directeur de these` Andre´ SEZNEC Directeur de recherche INRIA / Co-directeur de these` If you save now you might benefit later.
    [Show full text]
  • Intercepting Functions for Memoization Arjun Suresh
    Intercepting functions for memoization Arjun Suresh To cite this version: Arjun Suresh. Intercepting functions for memoization. Programming Languages [cs.PL]. Université Rennes 1, 2016. English. NNT : 2016REN1S106. tel-01410539v2 HAL Id: tel-01410539 https://tel.archives-ouvertes.fr/tel-01410539v2 Submitted on 11 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNEE´ 2016 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l’Universite´ Bretagne Loire En Cotutelle Internationale avec pour le grade de DOCTEUR DE L’UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole´ doctorale Matisse present´ ee´ par Arjun SURESH prepar´ ee´ a` l’unite´ de recherche INRIA Institut National de Recherche en Informatique et Automatique Universite´ de Rennes 1 These` soutenue a` Rennes Intercepting le 10 Mai, 2016 devant le jury compose´ de : Functions Fabrice RASTELLO Charge´ de recherche Inria / Rapporteur Jean-Michel MULLER for Directeur de recherche CNRS / Rapporteur Sandrine BLAZY Memoization Professeur a` l’Universite´ de Rennes 1 / Examinateur Vincent LOECHNER Maˆıtre de conferences,´ Universite´ Louis Pasteur, Stras- bourg / Examinateur Erven ROHOU Directeur de recherche INRIA / Directeur de these` Andre´ SEZNEC Directeur de recherche INRIA / Co-directeur de these` If you save now you might benefit later.
    [Show full text]
  • Translingual Obfuscation
    Translingual Obfuscation Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu College of Information Sciences and Technology The Pennsylvania State University fpxw172, szw175, jum310, yzj107, [email protected] Abstract—Program obfuscation is an important software pro- Currently the state-of-the-art obfuscation technique is to tection technique that prevents attackers from revealing the incorporate with process-level virtualization. For example, programming logic and design of the software. We introduce obfuscators such as VMProtect [10] and Code Virtualizer [4] translingual obfuscation, a new software obfuscation scheme replace the original binary code with new bytecode, and a which makes programs obscure by “misusing” the unique custom interpreter is attached to interpret and execute the features of certain programming languages. Translingual ob- bytecode. The result is that the original binary code does fuscation translates part of a program from its original lan- not exist anymore, leaving only the bytecode and interpreter, guage to another language which has a different program- making it difficult to directly reverse engineer [39]. How- ming paradigm and execution model, thus increasing program ever, recent work has shown that the decode-and-dispatch complexity and impeding reverse engineering. In this paper, execution pattern of virtualization-based obfuscation can we investigate the feasibility and effectiveness of translingual be a severe vulnerability leading to effective deobfusca- obfuscation with Prolog, a logic programming language. We tion [24], [66], implying that we are in need of obfuscation implement translingual obfuscation in a tool called BABEL, techniques based on new schemes. which can selectively translate C functions into Prolog pred- We propose a novel and practical obfuscation method icates.
    [Show full text]
  • On the Implementation of a Cloud-Based Computing Test Bench Environment for Prolog Systems †
    information Article On the Implementation of a Cloud-Based Computing Test Bench Environment for Prolog Systems † Ricardo Gonçalves, Miguel Areias * ID and Ricardo Rocha ID CRACS & INESC TEC and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal; [email protected] (R.G.); [email protected] (R.R.) * Correspondence: [email protected] † This paper is an extended version of our paper published in the Symposium on Languages, Applications and Technologies 2017. Received: 13 September 2017; Accepted: 13 October 2017; Published: 19 October 2017 Abstract: Software testing and benchmarking are key components of the software development process. Nowadays, a good practice in large software projects is the continuous integration (CI) software development technique. The key idea of CI is to let developers integrate their work as they produce it, instead of performing the integration at the end of each software module. In this paper, we extend a previous work on a benchmark suite for the YAP Prolog system, and we propose a fully automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems. YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework as well as a new Jenkins plugin to manage the underlying infrastructure. We present the key design and implementation aspects of YAPTBE and show its most important features, such as its graphical user interface (GUI) and the automated process that builds and runs Prolog systems and benchmarks.
    [Show full text]
  • Distributed Multi-Threading in GNU Prolog Nuno Eduardo Quaresma Morgadinho
    §' Departamento de hrformática Distributed Multi-Threading in GNU Prolog Nuno Eduardo Quaresma Morgadinho <[email protected]> Supervisor: Salvador Abreu (Ur,iversidade de Évora DI) This thesis does not include aVpreciation nor suggestions madeby the iury. Esta dissertaçã.o não inclui as críticas e sugestões feitas pelo iúri, Évora 2007 § Departamento de Lrformática Distributed Multi-Threading in GNU Prolog Nuno Eduardo Quaresma Morgadinho <[email protected]> ..--# Jü3 3?Y Supervisor: Salvador Abreu (Universidade de Évora, DI) This thesis does not include appreciation nor suggestions madeby tlrc jury. Esta dissertação não inclui as críticas e sugestões feitas pelo júri. Évora 2007 Abstract Although parallel computing has been widely researdred, the process of bringrng concurrency and parallel programming to the mainstream has just be- gun. Combining a distributed multi-threading environment like PM2 with Pro- log, opens the way to exploit concurrency and parallel computing using logic programming. Tlo achieve suú a pu{pose, we developed PM2-Prolog, a Prolog interface to the PM2 system. It allows multithreaded Prolog applications to run in multiple GNU Prolog engines in a distributed environment, thus taking advan- tage of the resources available on a computer network. This is especially useful for computationally intensive problems, where performance is an important fac- tor. The system API offers thread management primitives, as well as explicit communication between threads. Preliminary test results show an almost linear speedup, when compared to a sequential version. Keywords: Distributed, Multi-Threading, Prolog, Logic Programming, Concurrency, Parallel, High-PerformÉulce Computing 1 Resumo Multi-Threading Distribuído no GNU Prolog Embora a computação paralela já tenha sido alvo de inúmeros estudos, o processo de a tomar acessível às massas ainda mal começou.
    [Show full text]
  • Improving the Compilation of Prolog to C Using Type and Determinism Information: Preliminary Results*
    Improving the Compilation of Prolog to C Using Type and Determinism Information: Preliminary Results* J. Morales1, M. Carro1' M. Hermenegildo* * [email protected] [email protected] [email protected] Abstract We describe the current status of and provide preliminary performance results for a compiler of Prolog to C. The compiler is novel in that it is designed to accept different kinds of high-level information (typically ob- tained via an analysis of the initial Prolog program and expressed in a standardized language of assertions) and use this information to optimize the resulting C code, which is then further processed by an off-the-shelf C compiler. The basic translation process used essentially mimics an unfolding of a C-coded bytecode emú- lator with respect to the particular bytecode corresponding to the Prolog program. Optimizations are then applied to this unfolded program. This is facilitated by a more flexible design of the bytecode instructions and their lower-level components. This approach allows reusing a sizable amount of the machinery of the bytecode emulator: ancillary pieces of C code, data definitions, memory management routines and áreas, etc., as well as mixing bytecode emulated code with natively compiled code in a relatively straightforward way We report on the performance of programs compiled by the current versión of the system, both with and without analysis information. 1 Introduction Several techniques for implementing Prolog have been devised since the original interpreter developed by Colmerauer and Roussel [5], many of them aimed at achieving more speed. An excellent survey of a sig- nifícant part of this work can be found in [26].
    [Show full text]
  • Bousi-Prolog Ver
    UNIVERSIDAD DE CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA Dpto. de Tecnologías y Sistemas de Información Bousi∼Prolog ver. 2.0: Implementation, User Manual and Applications Autors: Pascual Julián-Iranzo and Juan Gallardo-Casero Other contributors: Fernando Sáenz-Pérez (U. Complutense de Madrid) Bousi∼Prolog ver. 2.0: Implementation, User Manual and Applications © Pascual Julián-Iranzo & Juan Gallardo-Casero, 2008-2017. Pascual Julián-Iranzo, Juan Gallardo- Casero & Fernando Sáenz-Pérez, 2017-2019. Bousi∼Prolog is licensed for research and educational purposes only and it’s distributed with NO WARRANTY OF ANY KIND. You are freely allowed to use, copy and distribute Bousi Prolog provided that you make no modifications to any of its files and give credit to its original authors. This documentation was written and formatted with LATEX. All the figures and diagrams that appear in it were designed with Gimp, Inkscape or ArgoUML. The shield of the cover is work of D. Villa, I. Díez, F. Moya, Xavigivax and G. Paula and is distributed under the Creative Commons Attribution 3.0 license. ii ABSTRACT Logic Programming is a programming paradigm based on first order logic that, in recent decades, has been used in fields such as knowledge representation, artificial intelligence or deductive databases. However, Logic Programming presents an important limitation when dealing with real-world problems where precise information is not available, since it does not have the tools to explicitly handle uncertainty and vagueness. One of the related frameworks to this paradigm is Fuzzy Logic Programming, which integrates concepts coming from Fuzzy Logic into Logic Programming to solve the disad- vantages of traditional logic languages when dealing with uncertainty and ambiguity.
    [Show full text]
  • IN112 Mathematical Logic Lab Session on Prolog
    Institut Supérieur de l’Aéronautique et de l’Espace IN112 Mathematical Logic Lab session on Prolog Christophe Garion DMIA – ISAE Christophe Garion IN112 IN112 Mathematical Logic 1/ 31 License CC BY-NC-SA 3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-NC-SA 3.0) You are free to Share (copy, distribute and transmite) and to Remix (adapt) this work under the following conditions: Attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial – You may not use this work for commercial purposes. Share Alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. See http://creativecommons.org/licenses/by-nc-sa/3.0/. Christophe Garion IN112 IN112 Mathematical Logic 2/ 31 Outline 1 Prolog: getting started! 2 Interpreting and querying 3 Unification and assignement 4 Lists 5 Negation by failure 6 Misc. Christophe Garion IN112 IN112 Mathematical Logic 3/ 31 Outline 1 Prolog: getting started! 2 Interpreting and querying 3 Unification and assignement 4 Lists 5 Negation by failure 6 Misc. Christophe Garion IN112 IN112 Mathematical Logic 4/ 31 Prolog interpreter Prolog is an interpreted language: no executable is created (even if it is possible) a Prolog program is loaded into the interpreter queries are executed on this program through the interpreter We will use the GNU Prolog interpreter.
    [Show full text]
  • Introducción a Linux Equivalencias Windows En Linux Ivalencias
    No has iniciado sesión Discusión Contribuciones Crear una cuenta Acceder Página discusión Leer Editar Ver historial Buscar Introducción a Linux Equivalencias Windows en Linux Portada < Introducción a Linux Categorías de libros Equivalencias Windows en GNU/Linux es una lista de equivalencias, reemplazos y software Cam bios recientes Libro aleatorio análogo a Windows en GNU/Linux y viceversa. Ayuda Contenido [ocultar] Donaciones 1 Algunas diferencias entre los programas para Windows y GNU/Linux Comunidad 2 Redes y Conectividad Café 3 Trabajando con archivos Portal de la comunidad 4 Software de escritorio Subproyectos 5 Multimedia Recetario 5.1 Audio y reproductores de CD Wikichicos 5.2 Gráficos 5.3 Video y otros Imprimir/exportar 6 Ofimática/negocios Crear un libro 7 Juegos Descargar como PDF Versión para im primir 8 Programación y Desarrollo 9 Software para Servidores Herramientas 10 Científicos y Prog s Especiales 11 Otros Cambios relacionados 12 Enlaces externos Subir archivo 12.1 Notas Páginas especiales Enlace permanente Información de la Algunas diferencias entre los programas para Windows y y página Enlace corto GNU/Linux [ editar ] Citar esta página La mayoría de los programas de Windows son hechos con el principio de "Todo en uno" (cada Idiomas desarrollador agrega todo a su producto). De la misma forma, a este principio le llaman el Añadir enlaces "Estilo-Windows". Redes y Conectividad [ editar ] Descripción del programa, Windows GNU/Linux tareas ejecutadas Firefox (Iceweasel) Opera [NL] Internet Explorer Konqueror Netscape /
    [Show full text]
  • A Linguistic Symbiosis Approach to Bring the Declarative Power of Prolog to Java
    LogicObjects : A Linguistic Symbiosis Approach to Bring the Declarative Power of Prolog to Java Sergio Castro Kim Mens Paulo Moura RELEASeD lab RELEASeD lab Dept. of Computer Science ICTEAM Institute ICTEAM Institute University of Beira Interior Université catholique de Université catholique de & CRACS, INESC–TEC Louvain, Belgium Louvain, Belgium Portugal [email protected] [email protected] [email protected] ABSTRACT Although there exists some other work that focusses on Logic programming is well suited for declaratively solving facilitating the interaction from an object-oriented language computational problems that require knowledge representa- to a logic language, to the best of our knowledge this is the tion and reasoning. Object-oriented languages, on the other first approach that provides a truly transparent, automatic hand, are well suited for modeling real-world concepts and and customizable integration from the perspective of the profit from rich ecosystems developed around them, which object-oriented language. are often missing from logic languages. For applications that This paper is structured as follows: Section 2 presents a require both the declarative power of logic programming and problem of declarative nature and its implementation in a the rich modeling expressiveness and development environ- logic language. This will be referenced in the next sections. ments offered by object-oriented languages, there is a need Section 3 presents our framework and shows how it enables for reconciling both worlds. LogicObjects is our linguistic a transparent access from Java to our implementation in symbiosis framework for integrating Prolog within the Java logic. Section 4 discuss relevant related work and section 5 language.
    [Show full text]