Identification of Id4 As a Regulator of BRCA1 Expression by Using a Ribozyme-Library-Based Inverse Genomics Approach

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Id4 As a Regulator of BRCA1 Expression by Using a Ribozyme-Library-Based Inverse Genomics Approach Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach Carmela Beger*†, Leigh N. Pierce‡, Martin Kru¨ ger*§, Eric G. Marcusson‡, Joan M. Robbins‡, Piri Welcsh¶, Peter J. Welch‡ʈ, Karl Welte**, Mary-Claire King¶, Jack R. Barber‡, and Flossie Wong-Staal*†† *Department of Medicine, University of California San Diego, La Jolla, CA 92093-0665; ‡Immusol Inc., San Diego, California 92121; ¶Departments of Medicine and Genetics, University of Washington, Seattle, WA 98195-7720; and **Department of Pediatric Hematology and Oncology, Hannover Medical School, D-30625 Hannover, Germany Edited by Carlo M. Croce, Thomas Jefferson University, Philadelphia, PA, and approved October 30, 2000 (received for review July 23, 2000) Expression of the breast and ovarian cancer susceptibility gene reproducibly confer phenotypic changes is used to identify the BRCA1 is down-regulated in sporadic breast and ovarian cancer corresponding target gene(s). We have recently used this ap- cases. Therefore, the identification of genes involved in the regu- proach to identify cellular genes involved in Hepatitis C virus lation of BRCA1 expression might lead to new insights into the translation mediated by its internal ribosome entry site (18). In pathogenesis and treatment of these tumors. In the present study, the present application, ribozyme-library-transduced cells were an ‘‘inverse genomics’’ approach based on a randomized ribozyme selected for altered BRCA1 promoter-driven reporter gene gene library was applied to identify cellular genes regulating expression. By using this approach, we identified the dominant BRCA1 expression. A ribozyme gene library with randomized negative transcriptional regulator Id4 as a crucial gene involved target recognition sequences was introduced into human ovarian in BRCA1 regulation, and provide further insights into the cancer-derived cells stably expressing a selectable marker [en- biological properties of Id4 protein in the context of BRCA1 hanced green fluorescence protein (EGFP)] under the control of the expression. BRCA1 promoter. Cells in which BRCA1 expression was up- regulated by particular ribozymes were selected through their Materials and Methods concomitant increase in EGFP expression. The cellular target gene Construction of the Ribozyme Library Vector. The Moloney retro- of one ribozyme was identified to be the dominant negative viral genome based vector pLHPM-RzLib was constructed to transcriptional regulator Id4. Modulation of Id4 expression re- contain a ribozyme (Rz) expression cassette with eight random sulted in inversely regulated expression of BRCA1. In addition, nucleotides in helix 1 and four random nucleotides in helix 2 increase in Id4 expression was associated with the ability of cells driven by the tRNAval promoter as described (18). To demon- to exhibit anchorage-independent growth, demonstrating the bi- strate the randomness of the Rz library insert, 50 individual ological relevance of this gene. Our data suggest that Id4 is a crucial bacterial colonies were analyzed by standard sequencing tech- gene regulating BRCA1 expression and might therefore be impor- niques using primer NL6H6 (5Ј-CTGACTCCATCGAGC- tant for the BRCA1 regulatory pathway involved in the pathogen- CAGTGTAGAG-3Ј). Additionally, in vitro cleavages of several esis of sporadic breast and ovarian cancer. short RNA transcripts by a comparable ribozyme library con- firmed the randomness (data not shown). An unrelated control RCA1 has been linked to the genetic susceptibility of a ribozyme, directed against the negative strand of the 5ЈUTR of Bmajority of familial breast and ovarian cancers (1, 2). Its the Hepatitis C Virus (‘‘CNR3’’) was cloned into pLHPM and dominant nature as a tumor suppressor gene has been supported used as a control ribozyme. by the finding of frequent loss of heterozygosity (LOH) of the wild-type allele in breast tumors from mutation carriers (1, 3, 4). Reporter Vector Construction. To construct a BRCA1 promoter- Although mutational loss of function of BRCA1 does not seem driven enhanced green fluorescence protein (EGFP) reporter to contribute to sporadic cancers (5–7), BRCA1 mRNA levels are vector, a 2.9-kb fragment was amplified from a pGL2 vector reduced or undetectable in sporadic breast and ovarian carci- containing a 3.8-kb genomic BRCA1 PstI-fragment (19) using nomas and breast cancer cell lines (8–11). CpG methylation of primers BA-5Pst (5Ј-ATCTTTCTGCAGCTGCTGGCCCGG- the promoter may contribute to this decreased expression (12, 3Ј) and BA-3Age (5Ј-GTGTAAACCGGTAACGCGAAGAG- 13), but is unlikely to be the sole mechanism (14). Thus, the CAGATA-3Ј) and cloned into pEGFP-1 (CLONTECH). Vector regulatory pathway leading to the reduction of BRCA1 expres- pCMV-EGFP, with a CMV promoter driving EGFP gene ex- sion in sporadic breast cancer remains unclear. The identifica- tion of candidate genes in this pathway can potentially lead to the development of new therapeutic options. This paper was submitted directly (Track II) to the PNAS office. Here, we report a ribozyme-library-based ‘‘inverse genomics’’ Abbreviations: EGFP, enhanced green fluorescence protein; FACS, fluorescence activated approach to identify cellular regulators of BRCA1 expression. cell sorting; RT-PCR, reverse transcription–PCR; HLH, helix–loop–helix; Rz, ribozyme; VRz, Ribozymes are catalytic RNA molecules that bind to defined ‘‘validation’’ ribozyme. RNA targets based on sequence complementarity, and enzy- †Present address: Department of Pediatric Hematology and Oncology, Hannover Medical matically cleave these RNA targets. Typically, hairpin ribozymes School, D-30625 Hannover, Germany. cleave upstream of a GUC triplet in the target sequence, thereby §Present address: Department of Gastroenterology and Hepatology, Hannover Medical School, D-30625 Hannover, Germany. inhibiting the expression of the corresponding gene (15–17). A ʈ library of hairpin ribozymes with randomized substrate binding Present address: Invitrogen Corp., 1600 Faraday Avenue, Carlsbad, CA 92008. sequences could potentially cleave any RNA substrate contain- ††To whom reprint requests should be addressed. Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0665. E-mail: ing a GUC. Expression of the ribozyme library in cells and [email protected]. subsequent selection for a given phenotype enables the identi- The publication costs of this article were defrayed in part by page charge payment. This fication of single ribozymes responsible for this particular phe- article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. notype. The target recognition sequence of ribozymes that §1734 solely to indicate this fact. 130–135 ͉ PNAS ͉ January 2, 2001 ͉ vol. 98 ͉ no. 1 Downloaded by guest on September 27, 2021 pression, was used as a control vector. The hygromycin reporter Construction of Id4 Expression Vectors. The Id4 cDNA sequence vector was constructed by inserting the hygro͞HSV-Tk fusion was amplified by using primers ID4-3 (5Ј-TCCGAAGGGAGT- gene from pCMV-HyTk into pcDNA3.1(Ϫ) (Invitrogen), gen- GACTAGGACACCC-3Ј) and ID4-7 (5Ј-TTCTGCTCTTC- erating the control vector pc-HyTk (18). The BRCA1-driven CCCCTCCCTCTCTA-3Ј). The amplified product was cloned HyTk plasmid pBR-HyTK was obtained by replacing the CMV with the retroviral expression vector pLPCX (CLONTECH) in promoter with a 2.9-kb genomic BRCA1 fragment (BglII–Sap I) sense- or antisense-orientation. containing the promoter region. Construction of Target Validation Ribozymes. Hairpin ribozyme Construction and Characterization of Reporter Cell Clones. PA-1 cells cleavage sites were identified within the sequence of the candi- were transfected with pBR-EGFP or pCMV-EGFP by using a date target gene according to target recognition sequence standard calcium phosphate transfection method. SK-BR-3 cells requirements (xxxxNGTCxxxxxxxx; x representing bases comple- were transfected with pBR-EGFP, pCMV-EGFP, pc-HyTk, and mentary to helices 1 & 2): GCGCNGTCCAGGTGTG [‘‘vali- pBR-HyTk; T47-D cells were transfected with pBR-EGFP and dation’’ ribozyme (VRz)1], GACCNGTCCAGCCGCG pCMV-EGFP by using Lipofectamine Plus (GIBCO͞BRL) ac- (VRz2). Ribozymes were constructed by annealing of overlap- cording to the manufacturer’s instructions. Following selection ping ribozyme specific oligonucleotides (20). Double-stranded DNA was cloned into pLHPM and retroviral particles were with G418 (GIBCO͞BRL), single colonies were functionally produced. analyzed by flow cytometry analyzing EGFP expression (EGFP reporter cells), or characterization for their resistance against RNA Analysis. Total RNA was extracted from cultures grown to hygromycin B (hygromycin reporter cells). The integrity of the ͞ 80% confluency and Northern blot analysis was performed as BRCA1 promoter EGFP cassette in SK-BR-3 cells transfected described elsewhere (18). For quantitative real-time reverse with pBR-EGFP was confirmed by PCR amplification. Clones transcription–PCR (RT-PCR) analysis, the TaqMan technology from SK-BR-3 cells transfected with pBR-HyTk were tested for ͞ (7700 Sequence Detector, Perkin–Elmer) was applied according the integrity of the BRCA1 promoter HyTk cassette by genomic to the manufacturer’s instructions for one-tube RT-PCR by southern blot. using the standard curve method. Primers and probes (IDT) were chosen with the help of PRIMER EXPRESS Software (Perkin– Viral Vector Production. Retroviral particles were produced by Elmer)—sequences
Recommended publications
  • RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-12 RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes Deli Hong University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Cancer Biology Commons, and the Cell Biology Commons Repository Citation Hong D. (2017). RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes. GSBS Dissertations and Theses. https://doi.org/10.13028/M21Q2F. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/949 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 12, 2017 Program of Cell Biology RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong This work was undertaken in the Graduate School of Biomedical Sciences Program of Cell Biology The signature of the Thesis Advisor signifies validation of Dissertation content Gary S. Stein, Ph. D., Thesis Advisor The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Leslie Shaw, Ph.
    [Show full text]
  • GATA3 As an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: a Study with a Review of the Literature
    diagnostics Article GATA3 as an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: A Study with a Review of the Literature Patrizia Querzoli 1, Massimo Pedriali 1 , Rosa Rinaldi 2 , Paola Secchiero 3, Paolo Giorgi Rossi 4 and Elisabetta Kuhn 5,6,* 1 Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; [email protected] (P.Q.); [email protected] (M.P.) 2 Section of Anatomic Pathology, ASST Mantova, Ospedale Carlo Poma, 46100 Mantova, Italy; [email protected] 3 Surgery and Experimental Medicine and Interdepartmental Center of Technology of Advanced Therapies (LTTA), Department of Morphology, University of Ferrara, 44121 Ferrara, Italy; [email protected] 4 Epidemiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; [email protected] 5 Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy 6 Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milano, Italy * Correspondence: [email protected]; Tel.: +39-02-5032-0564; Fax: +39-02-5503-2860 Abstract: Background: GATA binding protein 3 (GATA3) expression is positively correlated with Citation: Querzoli, P.; Pedriali, M.; estrogen receptor (ER) expression, but its prognostic value as an independent factor remains unclear. Rinaldi, R.; Secchiero, P.; Rossi, P.G.; Thus, we undertook the current study to evaluate the expression of GATA3 and its prognostic value Kuhn, E. GATA3 as an Adjunct in a large series of breast carcinomas (BCs) with long-term follow-up. Methods: A total of 702 Prognostic Factor in Breast Cancer consecutive primary invasive BCs resected between 1989 and 1993 in our institution were arranged Patients with Less Aggressive in tissue microarrays, immunostained for ER, progesterone receptor (PR), ki-67, HER2, p53, and Disease: A Study with a Review of GATA3, and scored.
    [Show full text]
  • Id4, a New Candidate Gene for Senile Osteoporosis, Acts As a Molecular Switch Promoting Osteoblast Differentiation
    Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation Yoshimi Tokuzawa1., Ken Yagi1., Yzumi Yamashita1, Yutaka Nakachi1, Itoshi Nikaido1, Hidemasa Bono1, Yuichi Ninomiya1, Yukiko Kanesaki-Yatsuka1, Masumi Akita2, Hiromi Motegi3, Shigeharu Wakana3, Tetsuo Noda3,4, Fred Sablitzky5, Shigeki Arai6, Riki Kurokawa6, Toru Fukuda7, Takenobu Katagiri7, Christian Scho¨ nbach8,9, Tatsuo Suda1, Yosuke Mizuno1, Yasushi Okazaki1* 1 Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 2 Division of Morphological Science, Biomedical Research Center, Saitama Medical University, Iruma-gun, Saitama, Japan, 3 RIKEN BioResource Center, Tsukuba, Ibaraki, Japan, 4 The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ward, Tokyo, Japan, 5 Developmental Genetics and Gene Control, Institute of Genetics, University of Nottingham, Queen’s Medical Center, Nottingham, United Kingdom, 6 Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 7 Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan, 8 Division of Genomics and Genetics, Nanyang Technological University School of Biological Sciences, Singapore, Singapore, 9 Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan Abstract Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated.
    [Show full text]
  • A Core Transcriptional Network Composed of Pax2/8, Gata3 and Lim1 Regulates Key Players of Pro/Mesonephros Morphogenesis
    Developmental Biology 382 (2013) 555–566 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Genomes and Developmental Control A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis Sami Kamel Boualia a, Yaned Gaitan a, Mathieu Tremblay a, Richa Sharma a, Julie Cardin b, Artur Kania b, Maxime Bouchard a,n a Goodman Cancer Research Centre and Department of Biochemistry, McGill University, 1160 Pine Ave. W., Montreal, Quebec, Canada H3A 1A3 b Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada H2W 1R7, Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada, H3A 2B2 and Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada, H3C 3J7. article info abstract Article history: Translating the developmental program encoded in the genome into cellular and morphogenetic Received 23 January 2013 functions requires the deployment of elaborate gene regulatory networks (GRNs). GRNs are especially Received in revised form crucial at the onset of organ development where a few regulatory signals establish the different 27 July 2013 programs required for tissue organization. In the renal system primordium (the pro/mesonephros), Accepted 30 July 2013 important regulators have been identified but their hierarchical and regulatory organization is still Available online 3 August 2013 elusive. Here, we have performed a detailed analysis of the GRN underlying mouse pro/mesonephros Keywords: development. We find that a core regulatory subcircuit composed of Pax2/8, Gata3 and Lim1 turns on a Kidney development deeper layer of transcriptional regulators while activating effector genes responsible for cell signaling Transcription and tissue organization.
    [Show full text]
  • Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
    Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41).
    [Show full text]
  • The Novel Progesterone Receptor
    0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist.
    [Show full text]
  • Expression of the Apoptosis-Related Genes Bcl-2 and P53 in Clinical Samples from Endometrial Carcinoma Patients
    ANTICANCER RESEARCH 31: 4191-4194 (2011) Expression of the Apoptosis-related Genes Bcl-2 and p53 in Clinical Samples from Endometrial Carcinoma Patients IRENE GONZÁLEZ-RODILLA1, VIRGINIA VERNA2, ANA-BELÉN MUÑOZ2, JOSÉ ESTÉVEZ2, MERCEDES BOIX2 and JOSÉ SCHNEIDER2 Departments of 1Pathology and 2Obstetrics and Gynecology, Marqués de Valdecilla University Hospital, Cantabria University, Santander, Spain Abstract. Background: Although alterations in the mechanisms biological features indicative of a less aggressive tumor of apoptosis are an integral part of the tumor phenotype, their phenotype (1). Furthermore, in that same paper, any level of precise role in endometrial carcinoma is still obscure. The aim expression of Bcl-2, from the lowest upwards, was found to was to determine whether Bcl-2 plays a similar biological role be biologically significant. Finally, an explanation for the so- in endometrial cancer as in breast cancer, endometrial cancer called ‘Bcl-2 paradox in breast cancer’, where Bcl-2 being an being also a hormone-dependent tumor. Materials and anti-apoptotic gene, thus promoting the immortalisation of Methods: The expression of the apoptosis-related Bcl-2 and p53 tumor cells, should in principle represent a negative biological genes, together with Ki67, E-cadherin, c-erb-B2 and estrogen feature of tumors expressing it, virtually all published results and progesterone receptors were studied in 136 formalin-fixed, point to the opposite, i.e. that Bcl-2 expression is associated paraffin-embedded endometrial carcinoma samples by means with a better outcome in breast cancer, was put forward. Bcl- of immunohistochemistry. Results: Bcl-2 expression correlated 2 was found to be predominantly expressed in well- directly and significantly with E-cadherin (r=0.22, p=0.011) differentiated, low-proliferating breast carcinomas expressing estrogen receptor (r=0.18, p=0.04) and progesterone receptor hormone receptors, all of them highly favorable prognostic expression (r=0.30, p=0.0006), and inversely with surgical factors.
    [Show full text]
  • Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1
    [CANCER RESEARCH 37, 464-471 , February 1977] Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1 M. F. Pichon and E. Milgrom Groupe de Recherches sur Ia Biochimie Endocrinienne et Ia Reproduction (INSERM U.135), FacultédeMédecine,Paris-Sud, 94270 Bicétre,France ever, only some patients are improved by such treatments. It SUMMARY would thus be of great practical importance to predict in advance which patient will respond and to nationalize the [3H]Pregn-4-ene-3,20-dione ([3Hjpmogestenane)-recepton choice of the surgical or pharmacological technique to be complexes from human mammary carcinoma were found to used. During the last 15 years, the detection and quantifica be stabilized in the presence of glycerol. The dissociation tion of estrogen receptors in mammary tumors have allowed rate constant was lowered and the equilibrium dissociation marked progress in this direction (11, 12, 16, 18, 21, 22, 34). constant was decreased (KD = 3 nM in the absence of However, the growth of mammary carcinoma may be can glycerol and 1.1 nM in the presence of 30% glycerol), traIled not only by estrogens but also by other hormones whereas no clean-cut effect on the association rate was including observed and no change occurred in the concentration andragens, glucacorticaids, pragestagens , and of binding sites. Gortisol was found to compete with prolactin (13). The study of specific receptors for these [3Hjpmagesterone only at concentrations higher than 1 @M. hormones should shed some bight on the problem of tumor This made it possible to distinguish [3H]pmogestemanebind hormonal dependence . The characterization and measu me ing to the receptor from binding to carticosteroid-binding ment of progesterone receptors have been hampered by the globulin.
    [Show full text]
  • Genetic Alterations of Histone Lysine Methyltransferases and Their Significance in Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.4 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer Lanxin Liu1,*, Sarah Kimball1,*, Hui Liu1, Andreana Holowatyj1 and Zeng-Quan Yang1 1 Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA * These authors contributed equally to this work Correspondence to: Zeng-Quan Yang, email: [email protected] Keywords: breast cancer, histone lysine methyltransferase, gene amplification, deletion, mutation Received: August 27, 2014 Accepted: December 10, 2014 Published: December 11, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone lysine methyltransferases (HMTs), a large class of enzymes that catalyze site-specific methylation of lysine residues on histones and other proteins, play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of HMTs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of approximately 50 HMTs in breast cancer and identified associations among recurrent copy number alterations, mutations, gene expression, and clinical outcome. We identified 12 HMTs with the highest frequency of genetic alterations, including 8 with high-level amplification, 2 with putative homozygous deletion, and 2 with somatic mutation. Different subtypes of breast cancer have different patterns of copy number and expression for each HMT gene. In addition, chromosome 1q contains four HMTs that are concurrently or independently amplified or overexpressed in breast cancer. Copy number or mRNA expression of several HMTs was significantly associated with basal- like breast cancer and shorter patient survival.
    [Show full text]
  • Diagnostic Value of Progesterone Receptor and P53 Expression in Uterine Smooth Muscle Tumors Iman H Hewedi*, Nehal a Radwan and Lobna S Shash
    Hewedi et al. Diagnostic Pathology 2012, 7:1 http://www.diagnosticpathology.org/content/7/1/1 RESEARCH Open Access Diagnostic value of progesterone receptor and p53 expression in uterine smooth muscle tumors Iman H Hewedi*, Nehal A Radwan and Lobna S Shash Abstract Background: The diagnosis of uterine smooth muscle tumors depends on a combination of microscopic features. However, a small number of these tumors still pose difficult diagnostic challenges. Aim: To investigate progesterone receptor (PR) and p53 expression in leiomyomas (LMs), atypical leiomyomas (ALMs), smooth muscle tumors of uncertain malignant potential (STUMP), and leiomyosarcomas (LMSs) and to evaluate the potential utility of the selected immunohistochemical markers in differentiating these tumors. Materials and methods: Immunohistochemical expression of PR and p53 was investigated in 41 uterine smooth muscle tumors comprising: 15 LMS, 4 STUMP, 6 ALM and 16 LM. Quantitative evaluation of PR and p53 expression was graded on a scale from 0 to 3+. Results: Leiomyosarcomas showed reduced PR expression. All LMs as well as ALMs and STUMP were stained intensely for PR. Conversely, LMS was strongly stained with p53, while the three non-sarcomatous groups (STUMP, ALM, LM) were either entirely negative or weakly stained for p53. Regarding both PR and p53 expression, the difference between the LMS group and the three non-sarcomatous groups was highly significant (p < 0.001). Combined high PR - low p53 expression was seen in all the 26 examined cases of the non-sarcomatous group including the STUMP cases and none of the LMS cases. Therefore, it represents a “benign” profile with 100% specificity in diagnosis of a non-sarcomatous tumor.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Progesterone Receptor-A Isoform Interaction with RUNX Transcription Factors Controls
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448908; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Progesterone receptor-A isoform interaction with RUNX transcription factors controls 2 chromatin remodelling at promoters during ovulation 3 Authors: Dinh DT 1 (*), Breen J 2, Nicol B 3, Smith KM 1, Nicholls M 1, Emery A 1, 4 Wong YY 1, Barry SC 1, Yao HHC 3, Robker RL 1, Russell DL 1 (*) 5 Affiliations: 6 1. Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia 7 2. South Australian Genomics Centre (SAGC), South Australian Health and Medical 8 Research Institute (SAHMRI), Adelaide, South Australia, Australia 9 3. Reproductive Developmental Biology Group, National Institute of Environmental Health 10 Sciences, Research Triangle Park, NC 27709, USA 11 12 Summary: 13 Progesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates 14 mammalian fertility. In the ovary, acutely induced PGR is the key determinant of ovulation 15 through transcriptional control of a unique set of genes that culminates in follicle rupture. 16 However, the molecular mechanisms for PGR’s specialised function in ovulation is poorly 17 understood. To address this, we assembled a detailed genomic profile of PGR action through 18 combined ATAC-seq, RNA-seq and ChIP-seq analysis in wildtype and isoform-specific PGR 19 null mice.
    [Show full text]