New Insights in Prostate Cancer Development and Tumor Therapy

Total Page:16

File Type:pdf, Size:1020Kb

New Insights in Prostate Cancer Development and Tumor Therapy New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors Laura Bousset, Amandine Rambur, Allan Fouache, Julio Bunay, Laurent Morel, Jean-Marc Lobaccaro, Silvère Baron, Amalia Trousson, Cyrille de Joussineau To cite this version: Laura Bousset, Amandine Rambur, Allan Fouache, Julio Bunay, Laurent Morel, et al.. New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors. International Journal of Molecular Sciences, MDPI, 2018, 19(9), 10.3390/ijms19092545. hal-01922077 HAL Id: hal-01922077 https://hal.uca.fr/hal-01922077 Submitted on 11 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Molecular Sciences Review New Insights in Prostate Cancer Development and Tumor Therapy: Modulation of Nuclear Receptors and the Specific Role of Liver X Receptors Laura Bousset 1,2,†, Amandine Rambur 1,2,†, Allan Fouache 1,2,†, Julio Bunay 1,2 ID , Laurent Morel 1,2, Jean-Marc A. Lobaccaro 1,2,* ID , Silvère Baron 1,2,*, Amalia Trousson 1,2,‡ and Cyrille de Joussineau 1,2,‡ 1 Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; [email protected] (L.B.); [email protected] (A.R.); [email protected] (A.F.); [email protected] (J.B.); [email protected] (L.M.); [email protected] (A.T.); [email protected] (C.d.J.) 2 Centre de Recherche en Nutrition Humaine d’Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France * Correspondence: [email protected] (J.-M.A.L.); [email protected] (S.B.); Tel.: +33-473-407-416 (J.-M.A.L.); +33-473-407-412 (S.B.); Fax: +33-473-407-042 (J.-M.A.L.); +33-473-178-387 (S.B.) † These authors contributed equally to this work. ‡ These authors contributed equally to this work. Received: 29 June 2018; Accepted: 9 August 2018; Published: 28 August 2018 Abstract: Prostate cancer (PCa) incidence has been dramatically increasing these last years in westernized countries. Though localized PCa is usually treated by radical prostatectomy, androgen deprivation therapy is preferred in locally advanced disease in combination with chemotherapy. Unfortunately, PCa goes into a castration-resistant state in the vast majority of the cases, leading to questions about the molecular mechanisms involving the steroids and their respective nuclear receptors in this relapse. Interestingly, liver X receptors (LXRα/NR1H3 and LXRβ/NR1H2) have emerged as new actors in prostate physiology, beyond their historical roles of cholesterol sensors. More importantly LXRs have been proposed to be good pharmacological targets in PCa. This rational has been based on numerous experiments performed in PCa cell lines and genetic animal models pointing out that using selective liver X receptor modulators (SLiMs) could actually be a good complementary therapy in patients with a castration resistant PCa. Hence, this review is focused on the interaction among the androgen receptors (AR/NR3C4), estrogen receptors (ERα/NR3A1 and ERβ/NR3A2), and LXRs in prostate homeostasis and their putative pharmacological modulations in parallel to the patients’ support. Keywords: prostate cancer; metastasis; LXRs; androgens; estrogens; cholesterol; oxysterols; signaling pathway 1. Introduction Prostate cancer (PCa) rarely appears before the age of 40 years and is diagnosed in men of approximately 70 years old. Already known risk factors include age, family history, ethnicity, and internal steroid hormones levels, whilst there are also emerging carcinogenic factors, including diet, lifestyle, and exposure to xenobiotics. PCa requires androgens for growth, and androgen deprivation has, for decades, been the principal strategy to treating advanced disease. The increased incidence of PCa in many countries has been partly attributed to changes in diagnostic methods. Despite its Int. J. Mol. Sci. 2018, 19, 2545; doi:10.3390/ijms19092545 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2018, 19, 2545 2 of 20 Int.controversy, J. Mol. Sci. 2018 introduction, 19, x of the prostate-specific antigen (PSA) assay as a screening method during2 of 20 the last decade has led to an increase in incidence. However, this alone does not explain the observed the last decade has led to an increase in incidence. However, this alone does not explain the observed continuing rise. Besides, epidemiological studies have also pointed out that environmental factors continuing rise. Besides, epidemiological studies have also pointed out that environmental factors could influence PCa risks, even though they are difficult to define [1]. PCa is the paradigm of the could influence PCa risks, even though they are difficult to define [1]. PCa is the paradigm of the endocrine-related tumors, together with breast cancer. Various hormones, mainly steroids and their endocrine-related tumors, together with breast cancer. Various hormones, mainly steroids and their respective nuclear receptors (NRs), have a prominent role in the development of PCa. Hence, unusual respective nuclear receptors (NRs), have a prominent role in the development of PCa. Hence, unusual levels of testosterone and dihydrotestosterone (DHT) in prostate tissue are suspected to increase the levels of testosterone and dihydrotestosterone (DHT) in prostate tissue are suspected to increase the risk of developing cancer [2], and estrogens are believed to have an important role as well [3,4]. risk of developing cancer [2], and estrogens are believed to have an important role as well [3,4]. NRs are part of a superfamily encompassing 48 members within humans. As DNA-binding NRs are part of a superfamily encompassing 48 members within humans. As DNA-binding proteins, they can control the transcription of genes whose products are fundamental for important proteins, they can control the transcription of genes whose products are fundamental for important physiological functions (for a review see Evans and Mangelsdorf [5]). Schematically, NRs are composed physiological functions (for a review see Evans and Mangelsdorf [5]). Schematically, NRs are of three major independent functioning domains (Figure1): a N-terminal involved in the regulation of composed of three major independent functioning domains (Figure 1): a N-terminal involved in the the non-ligand dependent transcriptional activity, a central DNA-binding domain, and a C-terminal regulation of the non-ligand dependent transcriptional activity, a central DNA-binding domain, and ligand-binding domain carrying a potential ligand-binding pocket controlling the ligand-dependent a C-terminal ligand-binding domain carrying a potential ligand-binding pocket controlling the transcriptional activation function [6]. ligand-dependent transcriptional activation function [6]. The steroid receptors are within the cytoplasm in the absence of a ligand and are bound to heat The steroid receptors are within the cytoplasm in the absence of a ligand and are bound to heat shock proteins that impede the shuttling to the nucleus (Figure1). shock proteins that impede the shuttling to the nucleus (Figure 1). Figure 1. Schematic structure and functioning of steroid receptors. Nuclear receptors are composed Figure 1. Schematic structure and functioning of steroid receptors. Nuclear receptors are composed of an N-terminal domain (NTD), a DNA-binding domain (DBD) responsible of the binding to the of an N-terminal domain (NTD), a DNA-binding domain (DBD) responsible of the binding to the DNA-target sequences usually located within the promoters of the targets genes and a C-terminal DNA-target sequences usually located within the promoters of the targets genes and a C-terminal ligand-binding domain (LBD), which is specific to the molecule. Canonically, it is admitted that ligand-binding domain (LBD), which is specific to the molecule. Canonically, it is admitted that steroid steroid receptors are located within the cytoplasm in the absence of hormone, bound to heat shock receptors are located within the cytoplasm in the absence of hormone, bound to heat shock proteins proteins (HSP) that impede shuttling to the nucleus. The binding of the steroid (L) allows the (HSP) that impede shuttling to the nucleus. The binding of the steroid (L) allows the chaperones chaperones to unbind from the receptor and migrate to the nucleus after a homodimerization. The to unbind from the receptor and migrate to the nucleus after a homodimerization. The binding of binding of co-activators (Coact.) makes the recruitment of the transcriptional machinery possible, co-activators (Coact.) makes the recruitment of the transcriptional machinery possible, along with the along with the RNA polymerase II (RNA Pol II), the transcription of the target gene, and the RNA polymerase II (RNA Pol II), the transcription of the target gene, and the physiological effects. physiological effects. However,However, other other types of NR, such asas thethe liverliver XX receptorsreceptors (LXR(LXRαα/NR1H3/NR1H3 and LXRLXRβ/NR1H), functionfunction in in a a heterodimer heterodimer with retinoid XX receptorsreceptors (RXRs,(RXRs, the the receptor receptor for for 9-cis 9-cis retinoic retinoic acid, acid, NR2B1-3). NR2B1- 3).In suchIn such signaling signaling systems, systems, the heterodimerthe heterodimer complex complex resides resides bound bound to DNA to DNA in the in absence the absence of a ligand, of a ligand,with transcription with transcription blocked blocked by the presenceby the presence of co-repressors of co-repressors (Figure 2(Figure). 2). Int. J. Mol. Sci. 2018, 19, 2545 3 of 20 Int.
Recommended publications
  • Neurosteroids and Brain Sterols
    NEUROSTEROIDS AND BRAIN STEROLS Lathe, R. and Seckl, J.R. To appear in: Mason, J.I. (ed.) Genetics of Steroid Biosynthesis and Function. Modern Genetics, volume 6, Harwood Academic, Amsterdam. in press (2002). Now published as Lathe, R., and Seckl, J.R. (2002). Neurosteroids and brain sterols. In: Mason, J.I. (ed.) Genetics of Steroid Biosynthesis and Function. Modern Genetics, volume 6, Harwood Academic, Amsterdam. pp 405-472. File:-//integra/t&f/Gsb/3b2/Gsbc15.3d ± Date:-19.12.2001 ± Time:-4:23pm 15.NEUROSTEROIDSANDBRAINSTEROLS RICHARD LATHE*,y AND JONATHAN R. SECKL* *Centre for Genome Research and Molecular Medicine Centre, Centre for Neuroscience, The University of Edinburgh, King's Buildings, Edinburgh EH93JQ , UK Conventionally, steroids operate via transcription, but a subclass of brain-active steroids, dubbed neurosteroids, may govern cognitive processes via membrane-associated receptors. De novo synthesis of neurosteroids within the brain has been discussed; we suggest that these may derive primarily from the circulation. In contrast, the brain is largely self-sufficient in cholesterol. Synthesis and metabolism of cholesterol and its oxysterol derivatives appears to be crucial to brain development and function, emphasized by drugs (anti-convulsants, neuroleptics)and mutations (Smith-Lemli-Opitz, Niemann-Pick disease type C, cerebrotendinous xanthamatosis)that affect these pathways and have marked brain effects. Receptors for steroids and sterols are discussed, particularly those at cell-surface and intracellular membranes including sites of sterol metabolism and trafficking (including sigma-1, the emopamil binding protein [EBP], and the peripheral benzodiazepine receptor [PBR]). Potential overlaps between sterol and steroid signaling are discussed. In addition to regulating neuronal activity, we suggest that steroids and sterols may regulate proliferative and degenerative processes in the brain including apoptosis induction.
    [Show full text]
  • Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: from Discovery to Clinical Usage
    H OH metabolites OH Review Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage Yaping Wang 1, Xiaobo Li 2 and Shunlin Ren 1,* 1 Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; [email protected] 2 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; [email protected] * Correspondence: [email protected]; Tel.: +1-(804)-675-5000 (ext. 4973) Abstract: Oxysterols have long been believed to be ligands of nuclear receptors such as liver × recep- tor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increas- ingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome. Oxysterols can be sulfated, and the sulfated oxysterols act in different directions: they decrease lipid biosynthesis, suppress inflammatory responses, and promote cell survival. Our recent reports have shown that oxysterol and oxysterol sulfates are paired epigenetic regulators, agonists, and antagonists of DNA methyl- transferases, indicating that their function of global regulation is through epigenetic modification. In this review, we explore our latest research of 25-hydroxycholesterol and 25-hydroxycholesterol 3-sulfate in a novel regulatory mechanism and evaluate the current evidence for these roles. Citation: Wang, Y.; Li, X.; Ren, S. Keywords: oxysterol sulfates; oxysterol sulfation; epigenetic regulators; 25-hydroxysterol; Cholesterol Metabolites 25-hydroxycholesterol 3-sulfate; 25-hydroxycholesterol 3,25-disulfate 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage.
    [Show full text]
  • Cholesterol Metabolites Exported from Human Brain
    Steroids xxx (2015) xxx–xxx Contents lists available at ScienceDirect Steroids journal homepage: www.elsevier.com/locate/steroids Cholesterol metabolites exported from human brain Luigi Iuliano a, Peter J. Crick b,1, Chiara Zerbinati a, Luigi Tritapepe c, Jonas Abdel-Khalik b, Marc Poirot d, ⇑ ⇑ Yuqin Wang b, , William J. Griffiths b, a Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, corso della Repubblica 79, Latina 04100, Italy b College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK c Department of Anesthesiology and Intensive Care, Sapienza University of Rome, vial del Policlinico 163, Rome 00161, Italy d UMR 1037 INSERM-University Toulouse III, Cancer Research Center of Toulouse, and Institut Claudius Regaud, 31052 Toulouse, France article info abstract Article history: The human brain contains approximately 25% of the body’s cholesterol. The brain is separated from the Received 16 December 2014 circulation by the blood brain barrier. While cholesterol will not passes this barrier, oxygenated forms of Received in revised form 13 January 2015 cholesterol can cross the barrier. Here by measuring the difference in the oxysterol content of blood Accepted 23 January 2015 plasma in the jugular vein and in a forearm vein by mass spectrometry (MS) we were able to determine Available online xxxx the flux of more than 20 cholesterol metabolites between brain and the circulation. We confirm that 24S- hydroxycholesterol is exported from brain at a rate of about 2–3 mg/24 h. Gas chromatography (GC)–MS Keywords: data shows that the cholesterol metabolites 5a-hydroxy-6-oxocholesterol (3b,5a-dihydroxycholestan-6- Oxysterol one), 7b-hydroxycholesterol and 7-oxocholesterol, generally considered to be formed through reactive LC–MS GC–MS oxygen species, are similarly exported from brain at rates of about 0.1, 2 and 2 mg/24 h, respectively.
    [Show full text]
  • An Examination of Oxysterol Effects on Membrane Bilayers Using Molecular Dynamics Simulations Brett Olsen Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 2010 An Examination of Oxysterol Effects on Membrane Bilayers Using Molecular Dynamics Simulations Brett Olsen Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Olsen, Brett, "An Examination of Oxysterol Effects on Membrane Bilayers Using Molecular Dynamics Simulations" (2010). All Theses and Dissertations (ETDs). 420. https://openscholarship.wustl.edu/etd/420 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. Washington University in Saint Louis Division of Biology and Biological Sciences Program in Molecular and Cellular Biology Dissertation Examination Committee: Nathan Baker, Chair Douglas Covey Katherine Henzler-Wildman Garland Marshall Daniel Ory Paul Schlesinger An Examination of Oxysterol Effects on Membrane Bilayers Using Molecular Dynamics Simulations by Brett Neil Olsen A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2010 Saint Louis, Missouri Acknowledgments I would like to thank my doctoral adviser Nathan Baker, whose guidance and advice has been essential to my development as an independent researcher, and whose confidence in my abilities has often surpassed my own. Thanks to my experimental collaborators at Washington University: Paul Schlesinger, Daniel Ory, and Doug Covey, without whom this work never would have been begun.
    [Show full text]
  • Do Oxysterols Control Cholesterol Homeostasis?
    Do oxysterols control cholesterol homeostasis? Ingemar Björkhem J Clin Invest. 2002;110(6):725-730. https://doi.org/10.1172/JCI16388. Perspective Oxysterols are oxygenated derivatives of cholesterol with a very short half-life relative to cholesterol. As a consequence they are present in very low concentrations in all mammalian systems, almost invariably accompanied by 103- to 106-fold excess of cholesterol. Oxysterols are important intermediates in a number of hepatic and extrahepatic catabolic pathways, most of which generate water-soluble bile acids as final products. Based on largely indirect evidence, and in spite of their low levels in vivo, oxysterols are generally believed to be important physiological mediators of cholesterol- induced effects. Perhaps the best support for this model is the existence of nuclear receptors that bind these compounds with high affinity and the fact that oxysterols potently regulate the expression of sterol-sensitive genes in vitro. Here I consider the role of oxysterols as intermediates in different catabolic pathways, and I weigh the evidence for and against the “oxysterol hypothesis” of cholesterol homeostasis. Oxygenation in cholesterol metabolism Cholesterol synthesis requires only one oxygenation reaction, but several such steps are necessary in its degradation to bile acids and its conversion to steroid hormones. Introduction of an oxygen atom in cholesterol drastically reduces its half-life and directs the molecule to leave the body. The physical properties of oxysterols facilitate their degradation and excretion, as oxysterols are able to pass lipophilic membranes much more quickly than does cholesterol […] Find the latest version: https://jci.me/16388/pdf PERSPECTIVE Biology and biochemistry of cholesterol | Ira Tabas, Series Editor Do oxysterols control cholesterol homeostasis? Ingemar Björkhem Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden J.
    [Show full text]
  • Androgen Receptor Targeted Agents for Castration Resistant Prostate Cancer: a Review of Clinical Effectiveness and Cost- Effectiveness
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Androgen Receptor Targeted Agents for Castration Resistant Prostate Cancer: A Review of Clinical Effectiveness and Cost- Effectiveness Service Line: Rapid Response Service Version: 1.0 Publication Date: June 6, 2019 Report Length: 30 Pages Authors: Khai Tran, Suzanne McCormack Cite As: Androgen Receptor Targeted Agents for Castration Resistant Prostate Cancer: A Review of Clinical Effectiveness and Cost-Effectiveness. Ottawa: CADTH; 2019 Jun. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect.
    [Show full text]
  • The Role of Autophagy in Survival Response Induced by 27- T Hydroxycholesterol in Human Promonocytic Cells
    Redox Biology 17 (2018) 400–410 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Research Paper The role of autophagy in survival response induced by 27- T hydroxycholesterol in human promonocytic cells Beyza Vurusanera, Simona Gargiulob, Gabriella Testab, Paola Gambab, Gabriella Leonarduzzib, ⁎ Giuseppe Polib, Huveyda Basagaa, a Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey b Department of Clinical and Biological Sciences, University of Torino, Torino, Italy ARTICLE INFO ABSTRACT Keywords: Autophagy has been shown to be stimulated in advanced atherosclerotic plaques by metabolic stress, in- Oxysterols flammation and oxidized lipids. The lack of published studies addressing the potential stimulation of pro-sur- 27-hydroxycholesterol vival autophagy by oxysterols, a family of cholesterol oxidation products, has prompted our study. Thus, the goal Autophagy of the current study is to elucidate the molecular mechanism of the autophagy induced by 27-hydroxycholesterol ROS (27-OH), that is one of the most abundant oxysterols in advanced atherosclerotic lesions, and to assess whether Survival signaling the pro-oxidant effect of the oxysterol is involved in the given response. Here we showed that 27-OH, in a low micromolar range, activates a pro-survival autophagic response in terms of increased LC3 II/LC3 I ratio and Beclin 1, that depends on the up-regulation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways as a potential result of an intracellular reactive oxygen species increase provoked by the oxysterol in human promonocytic U937 cells. Moreover, 27-OH induced autophagy is dependent on the relation between nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-dependent antioxidant response and p62.
    [Show full text]
  • Smith-Lemli-Opitz Syndrome and Inborn Errors of Cholesterol Synthesis
    BRIEF REPORT Smith-Lemli-Opitz syndrome and inborn errors of cholesterol synthesis: summary of the 2007 SLO/RSH Foundation scientific conference sponsored by the National Institutes of Health Louise S. Merkens, PhD1, Christopher Wassif, MS2, Kristy Healy, RN, CCRC1, Anuradha S. Pappu, PhD3, Andrea E. DeBarber, PhD3, Jennifer A. Penfield, MS, PA-C1, Rebecca A. Lindsay, BA4, Jean-Baptiste Roullet, PhD1, Forbes D. Porter, MD, PhD2, and Robert D. Steiner, MD1,5 Abstract: In June 2007, the Smith-Lemli-Opitz/RSH Foundation held a tive research projects that would ultimately improve our under- scientific conference hosted jointly by Dr. Robert Steiner from Oregon standing and treatment of SLOS and other inborn errors of Health & Science University and Dr. Forbes D. Porter from The Eunice cholesterol synthesis. Kennedy Shriver National Institute for Child Health and Human De- Several of the scientists also participated in the concurrent velopment, National Institutes of Health. The main goal of this meeting Smith-Lemli-Opitz/RSH Foundation family conference. These was to promote interaction between scientists with expertise in choles- family sessions occur every 2 years as a forum for education of terol homeostasis, brain cholesterol metabolism, developmental biol- families with affected children about SLOS and dealing with ogy, and oxysterol and neurosteroid biochemistry, clinicians research- children with a chronic disease. They are also an opportunity for ing and treating patients with Smith-Lemli-Opitz syndrome, the patient SLOS families to meet and network. The families were invited support organization and families. This report summarizes the presen- to ask questions and express concerns to a panel of physicians, tations and discussions at the conference, represents the conference psychologists, dietitians, and scientists currently working in the proceedings, and is intended to foster collaborative research and ulti- diagnosis and management of patients with SLOS.
    [Show full text]
  • Diverse Immunoregulatory Roles of Oxysterols— the Oxidized Cholesterol Metabolites
    H OH metabolites OH Review Diverse Immunoregulatory Roles of Oxysterols— The Oxidized Cholesterol Metabolites Chloe Choi 1,* and David K. Finlay 1,2,* 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland 2 School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland * Correspondence: [email protected] (C.C.); fi[email protected] (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.) Received: 13 August 2020; Accepted: 24 September 2020; Published: 28 September 2020 Abstract: Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings. Keywords: oxysterols; cholesterol; SREBP; LXR; GPR183; ROR; SERM; Ch25h; Cyp27a1; inflammation; cancer; infection; obesity; autoimmunity; endometriosis; immunometabolism 1. Introduction Cholesterol is a vital component of our cells and our bodies. It is a structural component of cellular membranes, plays a role in regulating intracellular signal transduction and is a precursor for the generation of other important molecules such as bile acids and steroid hormones.
    [Show full text]
  • Cholesterol Dyshomeostasis and Age Related Macular Degeneration Bhanu Chandar Dasari
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1-1-2012 Cholesterol Dyshomeostasis And Age Related Macular Degeneration Bhanu Chandar Dasari Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Dasari, Bhanu Chandar, "Cholesterol Dyshomeostasis And Age Related Macular Degeneration" (2012). Theses and Dissertations. 1235. https://commons.und.edu/theses/1235 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHOLESTEROL DYSHOMEOSTASIS AND AGE RELATED MACULAR DEGENERATION by Bhanu Chandar Dasari Bachelor of Science, Kakatiya University, 1999 Master of Science, University of Pune, 2001 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 2012 This dissertation, submitted by Bhanu Chandar Dasari in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. __________________________________ Othman Ghribi, Ph.D. __________________________________ Brij B. Singh, Ph.D. __________________________________ Colin K. Combs, Ph.D. __________________________________ James E. Porter, Ph.D. __________________________________ Saobo Lei, Ph.D. This dissertation is being submitted by the appointed advisory committee as having met all of the requirements of the Graduate School at the University of North Dakota and is hereby approved.
    [Show full text]
  • February 13–15, 2020 Moscone West Building | San Francisco, California
    gucasym.org #GU20 IN PURSUIT OF PATIENT-CENTERED CARE PROCEEDINGS FEBRUARY 13–15, 2020 MOSCONE WEST BUILDING | SAN FRANCISCO, CALIFORNIA COSPONSORED BY 2020 Genitourinary Cancers Symposium Proceedings Guide to Abstracts Penile Cancer 1 Prostate Cancer—Advanced 3 Prostate Cancer—Localized 69 Testicular Cancer 96 Urethral Cancer 106 Urothelial Carcinoma 109 Renal Cell Cancer 151 The abstracts contained within are published as an online supplement to Journal of Clinical Oncology (JCO) and carry JCO citations. The format for citation of abstracts is as follows: J Clin Oncol 38, 2020 (suppl 6; abstr 1). Editor: Michael A. Carducci, MD The 2020 Genitourinary Cancers Symposium Proceedings (ISBN 978-0-9996799-9-9) is published by the American Society of Clinical Oncology. Requests for permission to reprint abstracts should be directed to [email protected]. Editorial correspondence should be directed to [email protected]. Copyright © 2020 American Society of Clinical Oncology. All rights reserved. No part of this publication may be reproduced or transmitted in any form orby any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission by the Society. The abstracts contained within are copyrighted to Journal of Clinical Oncology and are reprinted within the Proceedings with Permissions. The American Society of Clinical Oncology assumes no responsibility for errors or omissions in this publication. The reader is advised to check the appropriate medical literature and the product information currently provided by the manufacturer of each drug to be administered to verify the dosage, the method and duration or administration, or contraindications. It is the responsibility of the treating physician or other health care professional, relying on independent experience and knowledge of the patient, to determine drug, disease, and the best treatment for the patient.
    [Show full text]
  • Genomic Pro Ling in Ctdna Revealing Complicated Resistance
    Genomic Proling in ctDNA Revealing Complicated Resistance Mechanism of Olaparib and Abiraterone as Salvage Therapy in Prostate Cancer: A Case Report Fang Yuan Chongqing University Nan Liu Chongqing University Hong Luo Chongqing University XiaoTian Zhang BGI MingZhen Yang Army Medical University Hong Zhou ( [email protected] ) Chongqing University https://orcid.org/0000-0003-2526-8153 Case Report Keywords: mCRPC, Olaparib, PALB2 Posted Date: July 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-38627/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/12 Abstract Background: PARP inhibitor, e.g. Olaparib, displayed superior clinical effect in metastatic castration prostate cancer (mCRPC) patients with deleterious mutations of DNA damage repair genes (DDR) as reported recently. Besides, for mCRPC patients without DDR alterations, a combination of Olaparib and abiraterone may achieve an acceptable clinical outcome as indicated by researches. However, these previous clinical studies involved patients strictly following inclusion criteria. In real-world situations, where the situation of patients is more complicated, the ecacy of salvage treatment of Olaparib with or without abiraterone-prednisone remains to be unclear. Case presentation: The present case displayed a 61-year-old man who was initially diagnosed with metastatic hormone-sensitive prostate cancer(mHSPC) and proceeding into mCRPC after several kinds of standard therapies. Surprisingly, the patient had a well TPSA response and remission of symptoms for four months by taking Olaparib combined with abiraterone-prednisone, basing on androgen-deprivation therapy (ADT). The resistance of Olaparib was occurred with slowly increasing serum TPSA level again.
    [Show full text]