Team Members Are Proposed As Key Personnel

Total Page:16

File Type:pdf, Size:1020Kb

Team Members Are Proposed As Key Personnel Multi-Modal Approaches to Real-Time Video Analysis Team Members: All team members are proposed as Key Personnel. Garrett T. Kenyon* [email protected] 505-667-1900 Dylan Paiton** [email protected] 505-720-5074 Pete Schultz [email protected] Vicente Malave [email protected] 619-800-4113 *lead developer, **alternate lead developer Description of Capability to be Delivered We intend to provide users with a high-performance (MPI-based, multi-core, GPU-accelerated) software tool for using biologically-inspired, hierarchical neural networks to detect objects of interest in streaming video by combining texture/color, shape and motion/depth cues. The system will be capable of processing video data or still imagery. The software to be provided will build upon an existing high-performance, open-source, NSF-funded neural simulation toolbox called PetaVision. Last fall, several members of our team worked closely together in an analogous boiler room atmosphere while competing in the DARPA NeoVision2 shootout. The close environment and hard deadline allowed for scientific advances at a more accelerated rate and forced innovative ways to combine traditionally independent algorithms. In particular, we found that by combining previously independent efforts to model different aspects of cortical visual processing, including local color/texture patches, long-range shape processing and relative depth from motion, we obtained better detection and localization accuracy than was possible using any of the individual processing techniques alone. By integrating a variety of new approaches to the implementation of these separate visual processing modalities and combining these modalities into a single simulation environment, we expect to produce dramatic improvements in the state-of-the- art of object detection and localization in high-definition video. This approach is inspired from neuroscience literature, where it has been shown that each of these separate processing modalities is present as an anatomically and physiologically distinct pathway in the ventral processing stream. Novelty of our Approach It has been observed in the primate visual cortex that independent features are processed via separate pathways from early processing areas (V1, V2) through object classification areas (V4, PIT). Although biologically-inspired “deep learning” models have been shown to achieve state- of-the-art results for classification, they are all essentially feedforward models. Our intent is to implement additional neuroscience theories in order to achieve improved object classification and localization. For example, intra-layer lateral interactions have traditionally been ignored. We will implement separate feature extraction models (i.e. color/texture, shape, motion) that incorporate lateral interaction between features. We have demonstrated the feasibility of this procedure with models that mimic processing in V1 and V2 and we wish to explore innovative ways to combine the pathways, similar to what is done in V4 and PIT. Proposed Phase 1 Demonstration At the end of Phase 1, we propose to deliver a proof-of-concept of the following hypotheses, all implemented and tested within the PetaVision framework. Hypothesis I - Texture/Color Patch Classification (“thin stripes” in the processing area V2): Better classification of color/texture features can be achieved by using lateral interactions between learned feature detectors to exploit complex spatial structure in the visual environment. The lateral interactions, which have been shown to be widely prevalent in visual cortex layers, allow the system to learn temporal co-occurrences between feature detectors, thus creating a more robust set of features than those generated by the traditional approach of adding a layer on top of the set of learned feature detectors. Processing of texture/color patches in the visual cortex is thought to be associated with V2 thin stripes, as identified by cytochrome oxidase staining reflecting relative metabolic activity and by optical and electrophysiological recording techniques, which indicate primarily color-opponent responses. Previous work by ourselves and others has shown that dictionaries of color/texture features can be learned by optimizing a cost function that rewards accurate reconstruction of the sensory input using only a sparsely activated subset of the learned dictionary elements. We and others have further shown that these sparsely activated feature detectors can be clustered into semantically meaningful categories, yielding state-of-the-art performance on object detection tasks. Here, we propose to extend these processing hierarchies to construct deep, generative architectures. Hypothesis II - Shape Classification (“inter stripes” or “pale stripes” in V2): Better detection of object shapes can be achieved by hierarchically learning higher-order correlations between edge features within and between multiple spatial scales. Processing of shape in the visual cortex is thought to be associated with V2 inter stripes, where a preponderance of orientation-selective neurons has been observed. Previous work by ourselves and others has shown that lateral synaptic interactions between orientation- selective elements, often referred to as cortical association fields, can support the viewpoint invariant detection of smooth contours. Here, we propose to extend these results by mimicking the ability of cortical neurons, via their extensive dendritic trees, to processes highly non-linear combinations of features and of cortical networks to act at multiple spatial scales: Hypothesis III - Relative Depth from Motion (“thick stripes” in V2): Better resolution of local pattern motion can be achieved by using lateral interactions to resolve aperture effects. Processing of relative depth in the visual cortex is thought to be associated with V2 thick stripes, where motion and stereo-disparity driven responses have been observed. Previous work by ourselves and others has shown that depth from relative motion can be extracted using cortically-inspired models based on motion-energy filters. Here we wish to augment our existing model of the dorsal motion pathway of the primate cortex to include a “ventral stream”, based on observations of V2 and V4 neurons, to compute the relative motion of objects and their depth from the observer. Proposed Phase 2 Demonstration At the end of Phase 2, we propose to combine the 3 processing modalities into a package for object detection and localization in streaming video. The methodology for combining the processing modes is to be inspired from neurophysiological data for observations in the ventral visual areas V4 and PIT. Technical Approach Our overall technical approach has been described in several recent publications, listed below Team Qualifications In addition to the attached CVs, our team qualifications are attested to by the following recent publications involving team members: Paiton, D.M., Kenyon, G.T., Brumby, S.P., Modeling Two Functionally Distinct Ventral Pathways Representing Static Form and Color/Texture, NIPS 2012 (submitted). Schultz, P.F., Bettencourt, L.M.A., Kenyon, G.T., A Symmetry-Breaking Generative Model of a Simple- Cell/Complex-Cell Hierarchy, SSIAI 2012. Paiton, D.M., Brumby, S.P., Kenyon, G.T., Kunde, G.J., Peterson, K.D., Ham, M.I., Schultz, P.F., George, J.S., Combining Multiple Visual Processing Streams for Locating and Classifying Objects in Video, SSIAI 2012. Gintautas, V., Ham, M.I., Kunsberg, B., Barr, S., Brumby, S.P., Rasmussen, C., George, J.S., Nemenman, I., Bettencourt, L. M., Kenyon, G.T., Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception, PLoS Comput. Biol, 7(10), 2011. Brumby, S.P, Kenyon, G.T., Landecker, W., Rasmussen, C., Swaminarayan, S., and Bettencourt, L. M. A., Large-Scale Functional Models of Visual Cortex for Remote Sensing, AIPR 2009. Garrett Kenyon MS-D454, P-21, Physics Division, LANL, Los Alamos, NM 87545, [email protected], 505-667-1900 Education 1990 Ph.D., Physics, University of Washington 1986 M.S., Physics, University of Washington 1984 B.A., Physics, University of California at Santa Cruz Research and Professional Experience 2001 present Technical Staff Member, Biological and Quantum Physics (P-21), LANL 1992-2000 Postdoc, U. of Texas Med. School, Dept. of Neurobiology and Anatomy 1990-1992 Postdoc, Baylor College of Medicine, Division of Neuroscience Publications ● Paiton, D.M., Kenyon, G.T., Brumby, S.P., Modeling Two Functionally Distinct Ventral Pathways Representing Static Form and Color/Texture, NIPS 2012 (submitted). ● Landecker, W., Thomure, M., Bettencourt, L.M.A., Kenyon, G.T., Mitchell, M., Brumby, S.P., Contribution propagation: Explaining classifications in hierarchical models. ICANN, 2012 (submitted). ● Schultz, P.F., Bettencourt, L.M.A., Kenyon, G.T., A Symmetry-Breaking Generative Model of a Simple- Cell/Complex-Cell Hierarchy, SSIAI 2012. ● Paiton, D.M., Brumby, S.P., Kenyon, G.T., Kunde, G.J., Peterson, K.D., Ham, M.I., Schultz, P.F., George, J.S., Combining Multiple Visual Processing Streams for Locating and Classifying Objects in Video, In SSIAI 2012. ● Gintautas, V., Ham, M.I., Kunsberg, B., Barr, S., Brumby, S.P., Rasmussen, C., George, J.S., Nemenman, I., Bettencourt, L. M., Kenyon, G.T., Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception, PLoS Comput. Biol, 7(10), 2011 ● Ji, Z., Huang, W.,
Recommended publications
  • Magnetothermal Multiplexing for Biomedical Applications
    Magnetothermal Multiplexing for Biomedical Applications by Michael G. Christiansen B.S. Physics, Arizona State University, 2012 Submitted to the Department of Materials Science and Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 © 2017 Massachusetts Institute of Technology. All rights reserved Signature of Author………………………………………………………………………………… Department of Materials Science and Engineering May 25, 2017 Certified by………………………………………………………………………………………… Polina Anikeeva Professor of Materials Science and Engineering Thesis Advisor Certified by………………………………………………………………………………………… Donald R. Sadoway Chairman, Department Committee on Graduate Students 1 Magnetothermal Multiplexing for Biomedical Applications by Michael G. Christiansen Submitted tot eh Department of Materials Science and Engineering on May 25, 2017 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering ABSTRACT Research on biomedical applications of magnetic nanoparticles (MNPs) has increasingly sought to demonstrate noninvasive actuation of cellular processes and material responses using heat dissipated in the presence of an alternating magnetic field (AMF). By modeling the dependence of hysteresis losses on AMF amplitude and constraining AMF conditions to be physiologically suitable, it can be shown that MNPs exhibit uniquely optimal driving conditions that depend on controllable material properties such as magnetic anisotropy, magnetization, and particle volume. “Magnetothermal multiplexing,” which relies on selecting materials with substantially distinct optimal AMF conditions, enables the selective heating of different kinds of collocated MNPs by applying different AMF parameters. This effect has the potential to extend the functionality of a variety of emerging techniques with mechanisms that rely on bulk or nanoscale heating of MNPs.
    [Show full text]
  • The Flightgear Manual
    The FlightGear Manual Michael Basler, Martin Spott, Stuart Buchanan, Jon Berndt, Bernhard Buckel, Cameron Moore, Curt Olson, Dave Perry, Michael Selig, Darrell Walisser, and others The FlightGear Manual February 22, 2010 For FlightGear version 2.0.0 2 Contents 0.1 Condensed Reading.........................6 0.2 Instructions For the Truly Impatient................6 0.3 Further Reading...........................6 I Installation9 1 Want to have a free flight? Take FlightGear! 11 1.1 Yet Another Flight Simulator?................... 11 1.2 System Requirements........................ 14 1.3 Choosing A Version......................... 15 1.4 Flight Dynamics Models...................... 16 1.5 About This Guide.......................... 16 2 Preflight: Installing FlightGear 19 2.1 Installing scenery.......................... 19 2.1.1 MS Windows Vista/7.................... 20 2.1.2 Mac OS X......................... 20 2.1.3 FG_SCENERY....................... 20 2.1.4 Fetch Scenery as you fly.................. 21 2.1.5 Creating your own Scenery................. 22 2.2 Installing aircraft.......................... 22 2.3 Installing documentation...................... 22 II Flying with FlightGear 25 3 Takeoff: How to start the program 27 3.1 Environment Variables....................... 27 3.1.1 FG_ROOT......................... 27 3.1.2 FG_SCENERY....................... 27 3.1.3 Environment Variables on Windows and Mac OS X.... 27 3.2 Launching the simulator under Unix/Linux............ 28 3.3 Launching the simulator under Windows.............. 29 3.3.1 Launching from the command line............. 30 3 4 CONTENTS 3.4 Launching the simulator under Mac OS X............. 30 3.4.1 Selecting an aircraft and an airport............. 31 3.4.2 Enabling on-the-fly scenery downloading......... 31 3.4.3 Enabling Navigation Map (Atlas)............
    [Show full text]
  • ARTIFICIAL MATERIALS for NOVEL WAVE PHENOMENA Metamaterials 2019
    ROME, 16-21 SEPTEMBER 2019 META MATE RIALS 13TH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA Metamaterials 2019 Proceedings In this edition, there are no USB sticks for the distribution of the proceedings. The proceedings can be downloaded as part of a zip file using the following link: 02 President Message 03 Preface congress2019.metamorphose-vi.org/proceedings2019 04 Welcome Message To browse the Metamaterials’19 proceedings, please open “Booklet.pdf” that will open the main file of the 06 Program at a Glance proceedings. By clicking the papers titles you will be forwarded to the specified .pdf file of the papers. Please 08 Monday note that, although all the submitted contributions 34 Tuesday are listed in the proceedings, only the ones satisfying requirements in terms of paper template and copyright 58 Wednesday form have a direct link to the corresponding full papers. 82 Thursday 108 Student paper competition 109 European School on Metamaterials Quick download for tablets and other mobile devices (370 MB) 110 Social Events 112 Workshop 114 Organizers 116 Map: Crowne Plaza - St. Peter’s 118 Map to the Metro 16- 21 September 2019 in Rome, Italy 1 President Message Preface It is a great honor and pleasure for me to serve the Virtual On behalf of the Technical Program Committee (TPC), Institute for Artificial Electromagnetic Materials and it is my great pleasure to welcome you to the 2019 edition Metamaterials (METAMORPHOSE VI) as the new President. of the Metamaterials Congress and to outline its technical Our institute spun off several years ago, when I was still a program.
    [Show full text]
  • Developing an Enterprise Operating System for the Monitoring and Control of Enterprise Operations Joseph Youssef
    Developing an enterprise operating system for the monitoring and control of enterprise operations Joseph Youssef To cite this version: Joseph Youssef. Developing an enterprise operating system for the monitoring and control of enterprise operations. Other [cond-mat.other]. Université de Bordeaux, 2017. English. NNT : 2017BORD0761. tel-01760341 HAL Id: tel-01760341 https://tel.archives-ouvertes.fr/tel-01760341 Submitted on 6 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ECOLE DOCTORALE DES SCIENCES PHYSIQUES ET DE L’INGÉNIEUR SPECIALITE : PRODUCTIQUE Par Joseph YOUSSEF DEVELOPING AN ENTERPRISE OPERATING SYSTEM FOR THE MONITORING AND CONTROL OF ENTERPRISE OPERATIONS Sous la direction de : David CHEN (Co-directeur : Gregory ZACHAREWICZ) Soutenue le 21 Décembre 2017 Membres du jury : M. DUCQ, Yves Professeur, Université de Bordeaux Président M. KASSEL, Stephan Professeur, Université des Sciences Appliquées de Zwickau Rapporteur M. ARCHIMEDE, Bernard Professeur, Ecole Nationale D’Ingénieurs de Tarbes Rapporteur M. CHEN, David Professeur, Université de Bordeaux Directeur M. ZACHAREWICZ, Gregory MCF (H.D.R), Université de Bordeaux Co-directeur M. DACLIN, Nicolas Maître-Assistant, Ecole des Mines d’Alès Examinateur 2 Titre : Développement d’un Système D’exploitation des Entreprises pour le Suivi et le Contrôle des Opérations.
    [Show full text]
  • Co-Simulation of Matlab and Flightgear for Identification And
    Guilherme Aschauer et al. / IFAC-PapersOnLine 48-1 (2015) 067–072 8th Vienna International Conference on Mathematical Modelling February8th Vienna 18 International - 20, 2015. Vienna Conference University on Mathematical of Technology, Modelling Vienna, 8th Vienna International Conference on Mathematical Modelling AustriaFebruary 18 - 20, 2015. Vienna UniversityAvailable of Technology, online at Vienna,www.sciencedirect.com AustriaFebruary 18 - 20, 2015. Vienna University of Technology, Vienna, Austria ScienceDirect IFAC-PapersOnLine 48-1 (2015) 067–072 Co-Simulation of Matlab and FlightGear Co-Simulation of Matlab and FlightGear for Identification and Control of Aircraft for Identification and Control of Aircraft Guilherme Aschauer ∗ Alexander Schirrer ∗ Martin Kozek ∗ Guilherme Aschauer ∗ Alexander Schirrer ∗ Martin Kozek ∗ Guilherme Aschauer ∗ Alexander Schirrer ∗ Martin Kozek ∗ Inst. of Mechanics & Mechatronics, Vienna University of Technology, ∗ Inst. of Mechanics & Mechatronics, Vienna University of Technology, ∗ Austria ∗ Inst. of Mechanics & Mechatronics,Austria Vienna University of Technology, e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] Abstract: The paper outlines the development of a co-simulation solution of Matlab and Flight- Abstract: The paper outlines the development of a co-simulation solution of Matlab and Flight- Gear in which the communication between these programs is done via UDP without needing GearAbstract: in whichThe the paper communication outlines the development between these of a programs co-simulation is done solution via UDP of Matlab without and needing Flight- further toolsets. The simulation and rendering is done by FlightGear. Flight measurement signals furtherGear in toolsets. which the The communication simulation and between rendering these is done programs by FlightGear.
    [Show full text]
  • Openscenegraph 3.0 Beginner's Guide
    OpenSceneGraph 3.0 Beginner's Guide Create high-performance virtual reality applications with OpenSceneGraph, one of the best 3D graphics engines Rui Wang Xuelei Qian BIRMINGHAM - MUMBAI OpenSceneGraph 3.0 Beginner's Guide Copyright © 2010 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: December 2010 Production Reference: 1081210 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-849512-82-4 www.packtpub.com Cover Image by Ed Maclean ([email protected]) Credits Authors Editorial Team Leader Rui Wang Akshara Aware Xuelei Qian Project Team Leader Reviewers Lata Basantani Jean-Sébastien Guay Project Coordinator Cedric Pinson
    [Show full text]
  • Boston University Photonics Center Annual Report 2019 the Above Image Is an Overview of MEMS Mirror Design
    Boston University Photonics Center Annual Report 2019 The above image is an overview of MEMS mirror design. The image, featuring Professor David Bishop’s research, is a false color SEM image of the MEMS magnet mirror, comprised of four bimorphs that lift a polysilicon platform off the substrate. A 250 μm cubed N52 magnet is attached to the platform using a custom pick and place micro-gluing technique and a gold plated mirror is glued on top of the magnet using the same gluing technique. (Source: Reprinted with permission from © The Optical Society. C. Pollock, J. Javor, A. Stange, L. K. Barrett, and D. J. Bishop, “Extreme angle, tip-tilt MEMS micromirror enabling full-hemispheric, quasi-static optical coverage,” Optics Express, 2019, 27(11), 15318-15326.) Front cover image: Coupled nonlinear metamaterials, featuring a self-adaptive or intelligent response, serve to enhance the signal-to-noise ratio of magnetic resonance imaging by more than tenfold. (Source: X. Zhao, G. Duan, K. Wu, S.W. Anderson, and X. Zhang, “Intelligent metamaterials based on nonlinearity for magnetic resonance imaging,” Advanced Materials, 2019, 31(49): 1905461. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.) Letter from the Director THIS ANNUAL REPORT summarizes activities of the Boston University Photonics Center for the 2018-2019 academic year. In it, you will find quantitative and descriptive information regarding our photonics programs in education, interdisciplinary research, business innovation, and technology development. Located at the heart of Boston University’s urban campus, the Photonics Center is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.
    [Show full text]
  • Progress on and Usage of the Open Source Flight Dynamics Model, Jsbsim
    AIAA Modeling and Simulation Technologies Conference AIAA 2009-5699 10 - 13 August 2009, Chicago, Illinois Progress on and Usage of the Open Source Flight Dynamics Model Software Library, JSBSim Jon S. Berndt* Engineering and Science Contract Group / Jacobs, Houston, Texas, 77573 Agostino De Marco† University of Naples, Federico II, Naples, Italy JSBSim is an open source software (OSS) flight dynamics model that can be incorporated into a larger flight simulation architecture (such as FlightGear, or OpenEaagles). It can also be run as a standalone batch application when linked with a stub routine. Since 2004, when JSBSim was formally introduced at the Modeling and Simulation Technology conference, many advances have taken place, and a variety of uses have been demonstrated. This paper will present updates on project status, an overview of XML configuration file format enhancements, details on recent improvements and design choices, and some basic examples of use. A discussion about interfacing JSBSim with Matlab as a Mex-Function or Simulink S-Function is included, followed by a deeper look at a representative usage case study. I. Introduction JSBSim is a high-fidelity, 6-DoF (Degree-of-Freedom), general purpose, flight dynamics model software library written in the C++ programming languages. The library routines propagate the simulated state of an aircraft given inputs provided via a script or issued from a larger simulation application. The inputs can be processed through arbitrary flight control laws, with the outputs generated being used to control the aircraft. Aircraft control and other systems, engines, etc. are all defined in various files in a codified XML format.
    [Show full text]
  • An Open Source Flight Dynamics Model in C++
    AIAA Modeling and Simulation Technologies Conference and Exhibit AIAA 2004-4923 16 - 19 August 2004, Providence, Rhode Island JSBSim: An Open Source Flight Dynamics Model in C++ Jon S. Berndt* JSBSim Project League City, TX Abstract: This paper gives an overview of JSBSim, an open source, multi-platform, flight dynamics model (FDM) framework written in the C++ programming language. JSBSim is designed to support simulation modeling of arbitrary aerospace craft without the need for specific compiled and linked program code. Instead, it relies on a relatively simple model specification written in an extensible markup language (XML) format. Also presented are some key (perhaps unique) features employed in the framework. Aspects of developing an open source project are identified. Notable uses of JSBSim are listed. I. Introduction SBSim1 was conceived in 1996 as a batch simulation application aimed at modeling flight dynamics and control J for aircraft.† It was accepted that such a tool could be useful in an academic setting as a freely available aid in aircraft design and controls courses. In 1998, the author began working with the FlightGear project.2 FlightGear is a sophisticated, full-featured, desktop flight simulator framework for use in research or academic environments, for the development and pursuit of interesting flight simulation ideas, and as an end-user application. At that time, FlightGear was using the LaRCsim3 flight dynamics model (FDM). LaRCsim requires new aircraft to be modeled in program code. Discussions with developers in the FlightGear community suggested that in order to make flight simulation more accessible, creating a generic, completely data-driven FDM framework would be helpful.
    [Show full text]
  • The Demon Haunted World
    THE DEMON- HAUNTED WORLD Science as a Candle in the Dark CARL SAGAN BALLANTINE BOOKS • NEW YORK Preface MY TEACHERS It was a blustery fall day in 1939. In the streets outside the apartment building, fallen leaves were swirling in little whirlwinds, each with a life of its own. It was good to be inside and warm and safe, with my mother preparing dinner in the next room. In our apartment there were no older kids who picked on you for no reason. Just the week be- fore, I had been in a fight—I can't remember, after all these years, who it was with; maybe it was Snoony Agata from the third floor— and, after a wild swing, I found I had put my fist through the plate glass window of Schechter's drug store. Mr. Schechter was solicitous: "It's all right, I'm insured," he said as he put some unbelievably painful antiseptic on my wrist. My mother took me to the doctor whose office was on the ground floor of our building. With a pair of tweezers, he pulled out a fragment of glass. Using needle and thread, he sewed two stitches. "Two stitches!" my father had repeated later that night. He knew about stitches, because he was a cutter in the garment industry; his job was to use a very scary power saw to cut out patterns—backs, say, or sleeves for ladies' coats and suits—from an enormous stack of cloth. Then the patterns were conveyed to endless rows of women sitting at sewing machines.
    [Show full text]
  • Flightgear Flight Simulator 11-7-5 上午10:22
    FlightGear Flight Simulator 11-7-5 上午10:22 Main Get FlightGear Support Links Users Developers Search Ads by Google GA Aircraft Aircraft Games Free FSX Aircraft Modeling Network FlightGear Features Oil Absorbing Fabric High degree of Freedom Use Ultra-X-Tex material to FlightGear is an open-source project. This means as long as you abide by the terms of the capture oil and GPL license you may freely download and copy FlightGear. Anyway can have easy and open keep it off the access to the latest development source code. Being an open-source project, we have made beach! our file formats open and easily accessible. We support standard 3d model formats and much www.SpillContainment… of the simulator configuration is controlled through xml based ascii files. Writing 3rd party extensions for FlightGear (or even directly modifying the FlightGear source code) is straightforward and doesn't require a large amount of reverse engineering. This makes FlightGear an attractive option for use in private, commercial, research, or hobby projects. FlightGear is known to run on Windows, Linux, Mac OS-X, FreeBSD, Solaris, and IRIX platforms allowing the user run on their platform of preference. Flight Dynamics Models With FlightGear it is possible to choose between three primary Flight Dynamics Models. It is possible to add new dynamics models or even interface to external "proprietary" flight dynamics models: 1. JSBSim: JSBSim is a generic, 6DoF flight dynamics model for simulating the motion of flight vehicles. It is written in C++. JSBSim can be run in a standalone mode for batch runs, or it can be the driver for a larger simulation program that includes a visuals subsystem (such as FlightGear.) In both cases, aircraft are modeled in an XML configuration file, where the mass properties, aerodynamic and flight control properties are all defined.
    [Show full text]
  • A Simplified Manual of the Jsbsim Open-Source Software FDM for Fixed-Wing UAV Applications
    May 2019 A Simplified Manual of the JSBSim Open-Source Software FDM for Fixed-Wing UAV Applications TECHNICAL REPORT Oihane Cereceda Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John’s, NL, Canada Summary Simulation packages provide a valuable framework or environment to study the interaction between aircraft, including Unmanned Aerial Vehicles (UAVs), and the existing air traffic in Near Mid-Air Collision (NMAC) scenarios. The described simulation package is based on the open- source JSBSim Flight Dynamics Model (FDM), which has been validated and tested in UAV computer models for 4D encounters and avoidance manoeuvres. The objective of this technical report is to provide a simplified version of the current package, including the minimum requirements for the design of a UAV in JSBSim, and to guide any modellers on the UAV computer design task. Introductory concepts and the dynamics behind this package will not be stated here. This report begins with a brief introduction of JSBSim structure and simulation modes. The source code classes are introduced in Section 2 followed by the set instructions for the additional feature of the multiplayer mode used in 4D encounters. The report concludes with a UAV example case study. i Table of Contents Summary ..................................................................................................................................... i Table of Contents .......................................................................................................................
    [Show full text]