The Rotation Index of a Plane Curve

Total Page:16

File Type:pdf, Size:1020Kb

The Rotation Index of a Plane Curve THE ROTATION INDEX OF A PLANE CURVE AARON W. BROWN AND LORING W. TU The rotation index of a smooth closed plane curve C is the number of complete rotations that a tangent vector to the curve makes as it goes around the curve. According to a classical theorem of Heinz Hopf [1], the rotation index of a piecewise smooth closed curve with no self-intersections is ˙1, depending on whether the curve is oriented clockwise or counterclockwise. Hopf’s theorem is a key ingredient in a proof of the Gauss–Bonnet theorem for a surface ([2, Proof of Th. 9.3, p. 164], [3, Proof of Th. 4.4, p. 187]). In this article, we generalize Hopf’s theorem by allowing the curve C to have self-intersections (Figure 0.1). C1 C1 b b p2 p1 p4 b C1 p3 b 1 b c.0/ FIGURE 0.1. Local indices at self-intersection points. We show that it is possible to define a local index p at each self-intersection p such that the rotation index rot.C/ of the curve C can be computed from these local indices: rot.C/ D ˙1 C p; (0.1) Xp where ˙1 depends on the orientation of C and the sum runs over all self-intersection points of C . What is most remarkable about this formula is that it expresses the rotation index, a priori a global invariant of the curve, as a sum of local contributions at the self-intersections. Thus, our formula fits into the general framework of localization theorems such as the Hopf index theorem for a vector field, the Bott residue theorem, or the Lefschetz fixed-point theorem that express a global invariant as a sum of local invariants. Whereas the known localization theorems localize to zeros of a vector field, fixed points of a map, or fixed points of a group action, Formula (0.1) localizes to the self-intersection points of a curve. It is the only localization formula of this type that we are aware of. Our rotation index theorem expresses a fundamental fact about closed plane curves: the number of complete turns and the type of crossings of a closed plane curve are not arbitrary, but must satisfy the constraint imposed by (0.1). We first prove the formula for a piecewise smooth curve March 21, version 7. 1 2 AARON W. BROWN AND LORING W. TU in the plane and then generalize it to a piecewise smooth curve in a Riemannian manifold of dimension 2. 1. ORIENTATIONS ON A PLANE CURVE By a curve in the plane, we will mean either a continuous map cW Œ0;` ! R2 or its oriented image C WD c.Œ0;`/; the context will make clear whether a curve is a map or a point set. The curve cW Œ0;` ! R2 is closed if c.0/ D c.`/. By the Jordan curve theorem, a simple closed curve C in the plane separates the plane into two regions, one bounded and the other unbounded; the bounded region is called the interior of the curve. When the simple closed curve is piecewise smooth, the union M of the curve C and its interior is a manifold with boundary and possibly with corners, and the positive orientation on C is the orientation in Stokes’s theorem, namely, if Np is an outward normal vector at p 2 C and Tp is a tangent vector at p that gives the orientation 2 of C , then the ordered pair .Np; Tp/ gives the standard orientation of R (Figure 1.1). Tp b Np FIGURE 1.1. Positive orientation on a curve. When the curve C has a self-intersection, such as the figure-eight (Figure 1.2), the region D bounded by the curve may have more than one components. Because the various components can give rise to incompatible orientations, it may not be possible to define the positive orientation as the boundary orientation of D [C . For a piecewise smooth curve that may have self-intersections, we introduce the concept of a positive orientation with respect to a smooth extremal point. b b b b p q p q FIGURE 1.2. Positive orientation with respect to p and q Definition 1.1. Let cW Œ0;` ! R2 be a piecewise smooth curve. A point p 2 C WD c.Œ0;`/ is called an extremal point of C if the curve C lies entirely in a closed half plane bounded by a line through p (Figure 1.3). Lemma 1.2. If p is a smooth extremal point of a piecewise smooth plane curve C and L is the line through p bounding a closed half plane containing C , then the line L is tangent to C at p (Figure 1.3). THEROTATIONINDEXOFAPLANECURVE 3 b s b b r b q p FIGURE 1.3. p and q not extremal; r and s are extremal. PROOF. Let Ltan be the tangent line to C at p. If Ltan ¤ L, then Ltan intersects L transversally at p, so C also intersects L transversally at p (Figure 1.4), contradicting the hypothesis that C lies on one side of L. Hence, Ltan D L. C Ltan L b p FIGURE 1.4. Transversal intersection of Ltan and L. Now suppose cW Œ0;` ! R2 is a piecewise smooth, closed curve. At a smooth extremal point p D c.t0/, there is a well-defined unit outward normal vector Np to the curve, since C lies 0 entirely on one side of its tangent line. Let Tp D c .t0/ be the velocity vector at p D c.t0/. We say that the curve c is positively oriented with respect to p if the ordered pair .Np; Tp/ gives the counterclockwise orientation of R2 (Figure 1.5). Tp Np b FIGURE 1.5. Positive orientation with respect to a smooth extremal point. 2. THE LOCAL INDEX AT A SELF-INTERSECTION We say that a curve C1 crosses another curve C2 at an isolated intersection point p 2 C1 \ C2 if C1 passes from one side of C2 to the other side of C2 at p. Figure 2.1 shows two examples of curves that cross each other at p. Note that two curves can cross each other at p and still be tangent at p. Figure 2.2 shows four examples of curves that do not cross each other at p. Smooth curves meeting at p without crossing each other at p are necessarily tangent at p. 4 AARON W. BROWN AND LORING W. TU FIGURE 2.1. Branches that cross each other at p. Double arrows and gray indi- cate the second branch. p p p p b b b b (i) (ii) (iii) (iv) FIGURE 2.2. Branches that do not cross each other at p; local index p D 0. Let cW Œ0;` ! R2 be a smooth plane curve with finitely many self-intersection points. In particular, all the self-intersection points are isolated. A point p D c.t/ is an m-fold point of c if p D c.t/ for exactly m values of t. We will define the local index at a self-intersection point in stages. First consider an isolated double (2-fold) point p where the two branches of C cross each other. Near p, the curve C intersects a sufficiently small circle centered at p in exactly four points. Label the initial point and the endpoint on the circle of the first branch (earlier branch) a and 1 respectively, and of the second branch (latter branch) b and 2 respectively (Figure 2.1). Because the two branches cross each other at p, points 1 and 2 are adjacent on the circle, i.e., not separated by a or b. As one walks on the circle from 1 to 2 without hitting a and b, the direction is either clockwise or counterclockwise. In this way, one can say whether the second branch is clockwise or counterclockwise from the first branch. The local index at a double point p is defined to be C1 if the two branches cross each other at p and the second branch is 8 clockwise from the first branch, p D ˆ1 if the two branches cross each other at p and the second branch is (2.1) ˆ < counterclockwise from the first branch, ˆ 0 if the two branches do not cross each other at p: ˆ :ˆ At an m-fold point p, the curve has m branches, labelled say 1;2;:::;m in chronological order. For any pair 1 i < j m, branch i and branch j intersect at a double point with local index ij D ˙1 or 0 as above. The local index p at the m-fold point p is defined to be the sum of the THEROTATIONINDEXOFAPLANECURVE 5 m 2 pairs of local indices ij : p D ij : 1i<jXm p DC3 3 p 2 b 1 r D1 b r b q q D1 b c.0/ FIGURE 2.3. A curve with a triple point. Example 2.1. The curve C in Figure 2.3 has three branches at the triple point p, labelled 1; 2; 3 chronologically. Branches 1 and 2 define a double point with local index 12 D 1, since they cross each other at p and branch 2 is clockwise from branch 1. Similarly, 13 D 23 D 1. Hence, the local index at p is p D 12 C 13 C 23 D 1 C 1 C 1 D 3: At the double point q, since branch 2 is counterclockwise from branch 1, the local index is q D1.
Recommended publications
  • Bézout's Theorem
    Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces.
    [Show full text]
  • Chapter 1 Geometry of Plane Curves
    Chapter 1 Geometry of Plane Curves Definition 1 A (parametrized) curve in Rn is a piece-wise differentiable func- tion α :(a, b) Rn. If I is any other subset of R, α : I Rn is a curve provided that α→extends to a piece-wise differentiable function→ on some open interval (a, b) I. The trace of a curve α is the set of points α ((a, b)) Rn. ⊃ ⊂ AsubsetS Rn is parametrized by α if and only if there exists set I R ⊂ ⊆ such that α : I Rn is a curve for which α (I)=S. A one-to-one parame- trization α assigns→ and orientation toacurveC thought of as the direction of increasing parameter, i.e., if s<t,the direction of increasing parameter runs from α (s) to α (t) . AsubsetS Rn may be parametrized in many ways. ⊂ Example 2 Consider the circle C : x2 + y2 =1and let ω>0. The curve 2π α : 0, R2 given by ω → ¡ ¤ α(t)=(cosωt, sin ωt) . is a parametrization of C for each choice of ω R. Recall that the velocity and acceleration are respectively given by ∈ α0 (t)=( ω sin ωt, ω cos ωt) − and α00 (t)= ω2 cos 2πωt, ω2 sin 2πωt = ω2α(t). − − − The speed is given by ¡ ¢ 2 2 v(t)= α0(t) = ( ω sin ωt) +(ω cos ωt) = ω. (1.1) k k − q 1 2 CHAPTER 1. GEOMETRY OF PLANE CURVES The various parametrizations obtained by varying ω change the velocity, ac- 2π celeration and speed but have the same trace, i.e., α 0, ω = C for each ω.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • TWO FAMILIES of STABLE BUNDLES with the SAME SPECTRUM Nonreduced [M]
    proceedings of the american mathematical society Volume 109, Number 3, July 1990 TWO FAMILIES OF STABLE BUNDLES WITH THE SAME SPECTRUM A. P. RAO (Communicated by Louis J. Ratliff, Jr.) Abstract. We study stable rank two algebraic vector bundles on P and show that the family of bundles with fixed Chern classes and spectrum may have more than one irreducible component. We also produce a component where the generic bundle has a monad with ghost terms which cannot be deformed away. In the last century, Halphen and M. Noether attempted to classify smooth algebraic curves in P . They proceeded with the invariants d , g , the degree and genus, and worked their way up to d = 20. As the invariants grew larger, the number of components of the parameter space grew as well. Recent work of Gruson and Peskine has settled the question of which invariant pairs (d, g) are admissible. For a fixed pair (d, g), the question of determining the number of components of the parameter space is still intractable. For some values of (d, g) (for example [E-l], if d > g + 3) there is only one component. For other values, one may find many components including components which are nonreduced [M]. More recently, similar questions have been asked about algebraic vector bun- dles of rank two on P . We will restrict our attention to stable bundles a? with first Chern class c, = 0 (and second Chern class c2 = n, so that « is a positive integer and i? has no global sections). To study these, we have the invariants n, the a-invariant (which is equal to dim//"'(P , f(-2)) mod 2) and the spectrum.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2.
    [Show full text]
  • Bézout's Theorem
    Bézout’s Theorem Jennifer Li Department of Mathematics University of Massachusetts Amherst, MA ¡ No common components How many intersection points are there? Motivation f (x,y) g(x,y) Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 How many intersection points are there? Motivation f (x,y) ¡ No common components g(x,y) Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 Motivation f (x,y) ¡ No common components g(x,y) How many intersection points are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 Algebra Geometry { set of solutions } { intersection points of curves } Motivation f (x,y) = 0 g(x,y) = 0 Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Geometry { intersection points of curves } Motivation f (x,y) = 0 g(x,y) = 0 Algebra { set of solutions } Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Motivation f (x,y) = 0 g(x,y) = 0 Algebra Geometry { set of solutions } { intersection points of curves } Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 4 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 5 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 6 / 80 f (x): polynomial in one variable 2 n f (x) = a0 + a1x + a2x +⋯+ anx Example.
    [Show full text]
  • 1.3 Curvature and Plane Curves
    1.3. CURVATURE AND PLANE CURVES 7 1.3 Curvature and Plane Curves We want to be able to associate to a curve a function that measures how much the curve bends at each point. Let α:(a, b) R2 be a curve parameterized by arclength. Now, in the Euclidean plane any three non-collinear→ points lie on a unique circle, centered at the orthocenter of the triangle defined by the three points. For s (a, b) choose s1, s2, and s3 near s so that α(s1), α(s2), and α(s3) are non- ∈ collinear. This is possible as long as α is not linear near α(s). Let C = C(s1, s2, s3) be the center of the circle through α(s1), α(s2), and α(s3). The radius of this circle is approximately α(s) C . A better function to consider is the square of the radius: | − | ρ(s) = (α(s) C) (α(s) C). − · − Since α is smooth, so is ρ. Now, α(s1), α(s2), and α(s3) lie on the circle so ρ(s1) = ρ(s2) = ρ(s3). By Rolle’s Theorem there are points t1 (s1, s2) and t2 (s2, s3) so that ∈ ∈ ρ0(t1) = ρ0(t2) = 0. Then, using Rolle’s Theorem again on these points, there is a point u (t1, t2) so that ρ (u) = 0. Using Leibnitz’ Rule we have ρ (s) = 2α (s) (α(s) C) and ∈ 00 0 0 · − ρ00(s) = 2[α00(s) (α(s) C) + α0(s) α0(s)]. · − · Since ρ00(u) = 0, we get α00(u) (α(u) C) = α0(s) α(s) = 1.
    [Show full text]
  • Global Properties of Plane and Space Curves
    GLOBAL PROPERTIES OF PLANE AND SPACE CURVES KEVIN YAN Abstract. The purpose of this paper is purely expository. Its goal is to explain basic differential geometry to a general audience without assuming any knowledge beyond multivariable calculus. As a result, much of this paper is spent explaining intuition behind certain concepts rather than diving deep into mathematical jargon. A reader coming in with a stronger mathematical background is welcome to skip some of the more wordy segments. Naturally, to make the scope of the paper more manageable, we focus on the most basic objects in differential geometry, curves. Contents 1. Introduction 1 2. Preliminaries 2 2.1. What is a Curve? 2 2.2. Basic Local Properties 3 3. Plane Curves 5 3.1. Curvature 5 3.2. Basic Global Properties 7 3.3. Rotation Index and Winding Number 7 3.4. The Jordan Curve Theorem 8 3.5. The Four-Vertex Theorem 10 4. Space Curves 15 4.1. Curvature, Torsion, and the Frenet Frame 16 4.2. Total Curvature and Global Theorems 18 4.3. Knots and the Fary-Milnor Theorem 23 5. Acknowledgements 26 6. References 26 1. Introduction A key element of this paper is the distinction between local and global properties of curves. Roughly speaking, local properties refer to small parts of the curve, and global properties refer to the curve as a whole. Examples of local properties include regularity, curvature, and torsion, all of which can be defined at an individual point. The global properties we reference include theorems like the Jordan Curve Theorem, Fenchel's Theorem, and the Fary- Milnor Theorem.
    [Show full text]
  • THE HESSE PENCIL of PLANE CUBIC CURVES 1. Introduction In
    THE HESSE PENCIL OF PLANE CUBIC CURVES MICHELA ARTEBANI AND IGOR DOLGACHEV Abstract. This is a survey of the classical geometry of the Hesse configuration of 12 lines in the projective plane related to inflection points of a plane cubic curve. We also study two K3surfaceswithPicardnumber20whicharise naturally in connection with the configuration. 1. Introduction In this paper we discuss some old and new results about the widely known Hesse configuration of 9 points and 12 lines in the projective plane P2(k): each point lies on 4 lines and each line contains 3 points, giving an abstract configuration (123, 94). Through most of the paper we will assume that k is the field of complex numbers C although the configuration can be defined over any field containing three cubic roots of unity. The Hesse configuration can be realized by the 9 inflection points of a nonsingular projective plane curve of degree 3. This discovery is attributed to Colin Maclaurin (1698-1746) (see [46], p. 384), however the configuration is named after Otto Hesse who was the first to study its properties in [24], [25]1. In particular, he proved that the nine inflection points of a plane cubic curve form one orbit with respect to the projective group of the plane and can be taken as common inflection points of a pencil of cubic curves generated by the curve and its Hessian curve. In appropriate projective coordinates the Hesse pencil is given by the equation (1) λ(x3 + y3 + z3)+µxyz =0. The pencil was classically known as the syzygetic pencil 2 of cubic curves (see [9], p.
    [Show full text]
  • A Conic Sections
    A Conic Sections The ellipse, hyperbola, and parabola (and also the circle, which is a special case of the ellipse) are called the conic section curves (or the conic sections or just conics), since they can be obtained by cutting a cone with a plane (i.e., they are the intersections of a cone and a plane). The conics are easy to calculate and to display, so they are commonly used in applications where they can approximate the shape of other, more complex, geometric figures. Many natural motions occur along an ellipse, parabola, or hyperbola, making these curves especially useful. Planets move in ellipses; many comets move along a hyperbola (as do many colliding charged particles); objects thrown in a gravitational field follow a parabolic path. There are several ways to define and represent these curves and this section uses asimplegeometric definition that leads naturally to the parametric and the implicit representations of the conics. y F P D P D F x (a) (b) Figure A.1: Definition of Conic Sections. Definition: A conic is the locus of all the points P that satisfy the following: The distance of P from a fixed point F (the focus of the conic, Figure A.1a) is proportional 364 A. Conic Sections to its distance from a fixed line D (the directrix). Using set notation, we can write Conic = {P|PF = ePD}, where e is the eccentricity of the conic. It is easy to classify conics by means of their eccentricity: =1, parabola, e = < 1, ellipse (the circle is the special case e = 0), > 1, hyperbola.
    [Show full text]
  • Algebraic Plane Curves Deposited by the Faculty of Graduate Studies and Research
    PLUCKER'3 : NUMBERS: ALGEBRAIC PLANE CURVES DEPOSITED BY THE FACULTY OF GRADUATE STUDIES AND RESEARCH Iw • \TS • \t£S ACC. NO UNACC.'»"1928 PLITCOR'S FOOTERS IE THE THEORY 0? ALGEBRAIC PLAITS CURVES A Thesis presented in partial fulfilment for the degree of -Master of Arts, Department of Mathematics. April 28, 1928. by ALICiD WI1LARD TURIIPP. Acknowledgment Any commendation which this thesis may merit, is in large measure due to Dr. C..T. Sullivan, Peter Re&path Professor of Pure Mathematics; and I take this opportunity to express my indebtedness to him. April 25, 1928. I IT D A :: IITTPODIICTIOI? SECTIOH I. • pp.l-S4 Algebraic Curve defined. Intersection of two curves. Singular points on curves. Conditions for multiple points. Conditions determining an n-ic. Maximum number of double points. Examples. SECTION II ...... pp.25-39 Class of curve. Tangerfcial equations. Polar reciprocation. Singularities on a curve and its reciprocal. Superlinear branches, with application to intersections of two curves at singular points. Examples. 3SCTI0IT III pp.40-52 Polar Curves. Intersections of Curve and Pirst Polar. Hessian.Intersections of Hessian and Curve. Examples. 3ECTI0TT IV . .................. pp.52-69 Pliicker's numbers and Equations for simple singularities. Deficiency. Unicursal Curves. Classification of cubies and quartics. Extension of Plucker's relations to k-ple points with distinct tangents, and to ordinary superlinear branch points. Short discussion of Higher Singularities. Examples. I PhTJCPEirS PTE.3EE3 IE PEE EHSOHY CF ALGEBRAIC Ph-TITE CUPYE3. IPPEODUCPIOH Pith the advent of the nineteenth century,a new era dawned in the progress of analytic geometry. The appearance of poiiceletTs, "Traite des proprietes project ives des figures", in 1822, really initiated modern geometry.
    [Show full text]
  • RETURN of the PLANE EVOLUTE 1. Short Historical Account As We
    RETURN OF THE PLANE EVOLUTE RAGNI PIENE, CORDIAN RIENER, AND BORIS SHAPIRO “If I have seen further it is by standing on the shoulders of Giants.” Isaac Newton, from a letter to Robert Hooke Abstract. Below we consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree d 2, we provide ≥ lower bounds for the following four numerical invariants: 1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree d;2)themaximalnumberofreal cusps which can occur on the evolute of a real-algebraic curve of degree d;3)themaximalnumber of (cru)nodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree d;4)themaximalnumberof(cru)nodeswhichcanoccurontheevoluteofareal-algebraiccurve of degree d. 1. Short historical account As we usually tell our students in calculus classes, the evolute of a curve in the Euclidean plane is the locus of its centers of curvature. The following intriguing information about evolutes can be found on Wikipedia [35]: “Apollonius (c. 200 BC) discussed evolutes in Book V of his treatise Conics. However, Huygens is sometimes credited with being the first to study them, see [17]. Huygens formulated his theory of evolutes sometime around 1659 to help solve the problem of finding the tautochrone curve, which in turn helped him construct an isochronous pendulum. This was because the tautochrone curve is a cycloid, and cycloids have the unique property that their evolute is a cycloid of the same type.
    [Show full text]