On Certain Subgroups of E8(2) and Their Brauer Character Tables

Total Page:16

File Type:pdf, Size:1020Kb

On Certain Subgroups of E8(2) and Their Brauer Character Tables ON CERTAIN SUBGROUPS OF E8(2) AND THEIR BRAUER CHARACTER TABLES A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2018 Peter J Neuhaus School of Mathematics Contents Abstract 5 Declaration 6 Copyright Statement 7 Acknowledgements 8 1 Introduction 9 2 Background Material 16 2.1 MaximalSubgroupsofAlgebraicGroups . 19 3 Preliminary Results 23 3.1 E8(2)..................................... 23 3.1.1 Maximal Subgroups . 23 3.1.2 Elements of E8(2) . 26 3.2 Brauer Characters . 32 3.2.1 Conway Polynomials . 33 3.2.2 Brauer Character of L(G)..................... 34 3.2.3 Feasible Decompositions . 35 3.3 Irreducible Modules of Groups of Lie Type . 36 3.3.1 DimensionsofHighestWeightModules . 38 3.4 Determining Maximality . 39 4 Proof of Theorems 1.2 and 1.3 45 4.1 L2(7)..................................... 45 2 4.2 L2(11) . 46 4.3 L2(13) . 46 4.4 L2(17) . 46 4.5 L2(25) . 47 4.6 L2(27) . 48 4.7 L4(3)..................................... 49 4.8 U3(3)..................................... 49 4.9 G2(3)..................................... 49 4.10 M11 ..................................... 49 4.11 M12 ..................................... 50 4.12 L3(8)..................................... 50 4.13 F4(2)..................................... 50 2 4.14 F4(2)0 .................................... 50 3 4.15 D4(2).................................... 51 4.16 L3(3)..................................... 51 4.16.1 Case (ii) . 51 4.16.2 Case (i) . 52 4.17 L3(4)..................................... 56 4.18 U3(8)..................................... 57 4.18.1 Case (ii) . 57 4.18.2 Case (i) . 58 4.19 U3(16) . 61 5 Proof of Theorem 1.4 62 5.1 Methodology . 62 5.2 L2(128) . 66 5.3 L2(32) . 67 5.3.1 P(1234) . 67 5.3.2 P(1345) . 68 5.3.3 P(2456) . 68 5.3.4 P(3456) . 69 5.3.5 P(4567) . 69 3 5.3.6 P(5678) . 70 6 Brauer Character Tables 71 7 Further Work 123 Bibliography 124 APrograms 130 A.1 FeasibleCharacterCode . 130 A.2 IndecomposableModuleCode . 135 N A.3 L2(2 )code................................. 138 B Supplementary Code 149 B.1 E8(2) setup . 149 4 The University of Manchester Peter J Neuhaus Doctor of Philosophy On Certain Subgroups of E8(2) and their Brauer Character Tables December 4, 2018 For the exceptional group of Lie type E8(2) a maximal subgroup is either one of a known set or it is almost simple. In this thesis we compile a complete list of almost simple groups that may have a maximal embedding in E8(2) and in many cases it is proved that such an embedding does not exist. For the groups L2(32) and L2(128) we go further and find all conjugacy classes of their embeddings in E8(2). Extensive use is made of the theory of Brauer characters and modular representation theory, and as such include Brauer character tables in characteristic 2 for many small rank simple groups. The work in this thesis relies heavily on the computer package Magma and includes a collection of useful procedures for computational group theory. The results presented are the author’s contribution to the ongoing attempt to classify the maximal subgroups of E8(2). 5 Declaration No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. 6 Copyright Statement i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes. ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made. iii. The ownership of certain Copyright, patents, designs, trade marks and other intel- lectual property (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions. iv. Further information on the conditions under which disclosure, publication and com- mercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele- vant Thesis restriction declarations deposited in the University Library, The Univer- sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul- ations) and in The University’s Policy on Presentation of Theses. 7 Acknowledgements First and foremost, I would like to thank Peter Rowley, for his guidance throughout my time at Manchester, his invaluable expertise and mathematical advice, as well as his patience and understanding. Without him this thesis would certainly not exist. I also wish to thank the other members of my research group; John Ballantyne for sharing his expertise in Magma so clearly, Jamie Phillips and David Ward for showing me the ropes and making me feel so welcome when I was just starting, and Alexander McGaw, for being a constant friend throughout, willing to be a sounding board for new ideas and frustrations alike. IwouldliketothankMatthewGwynneforhisfriendshipandhelpinnavigating the stresses that a PhD entails. Finally, I would like to thank my parents, without whose unwavering support and belief I could not have achieved any of what I have done. 8 Chapter 1 Introduction When studying finite groups and their properties there is a natural desire to obtain classifications of the objects in question, and in the case of simplicity this has been achieved by the classification of finite simple groups. This remarkable result was the work of countless mathematicians over more than a century, starting with Galois in 1830 and generally being considered to be finally complete with two volumes by As- chbacher and Smith in 2004 [5]. Whilst this classification provides constructions for all the groups, for example see Wilson [58], there is still much that is not known about their properties. For almost as long as they have been studied, the structure of the maximal sub- groups of these finite simple groups has been of great interest, and whilst a complete classification has not been achieved much progress has been made. In 1901 the max- a imal subgroups of L2(q), for q = p a power of a prime, were classified by Dickson [20], and this was followed up by the classification of maximal subgroups for L3(q) by Mitchell [53], for q odd, and Hartley [29], for q even. Since then, after extensive study, the maximal subgroups of the finite simple groups have either been classified or categorised with the exception of the Monster group. The categorising of maximal subgroups was first achieved by the O’Nan-Scott the- orem, initially proved independently by O’Nan and Scott; however, due to the impor- tance of the result, there are now many proofs, for example by Aschbacher [3]. In this theorem it is proved that any maximal subgroup of a symmetric group is one 9 CHAPTER 1. INTRODUCTION 10 of five well understood types, or is almost simple. This is a common theme in the classification of maximal subgroups and is mirrored by Liebeck, Praeger and Saxl in their classification of the maximal subgroups of the finite (simple) alternating groups [40]. In 1984 Aschbacher [2] proved a similar theorem for the finite simple groups of classical Lie type. The sporadic simple groups can have full classifications as they are finite in number. They have been tackled in a more piecemeal fashion across many papers by several authors, although the majority can be attributed to Wilson. For the classifications of maximal subgroups of sporadic simple groups one can read the following papers; M24 [15] [19], J1 [32], J2 [25], J3 [26], J4 [38], Co1 [59], Co2 [60], Co3 and McL [24], Fi22 [61], Fi23 [37], Fi240 [47], HS [52], He [13], Ru [62], Suz [63], O0N [64], HN [54], Ly [65], Th [46] and B the baby monster group [66]. The last of these is of particular interest as it was achieved using a 4370-dimensional GF (2)B-module. There are five sporadic groups not yet covered, M11, M12, M22, M23 and M, the monster group. For the first four of these there seems to be no paper giving their maximal subgroups, although the information is well known and can be found easily using modern com- putational methods. The last, M, is the only sporadic group for which the maximal subgroups are as yet unknown, with the current state of a↵airs described by Wilson [67]. This leaves just the groups of exceptional Lie type to cover, and here progress is more recent. Extensive work by Liebeck and Seitz [44], among others, has yielded a categorisation of the maximal subgroups of the simple exceptional groups of Lie type. Maximal subgroups for G2(q)wereclassifiedin1981byCooperstein[17]forq even and in 1988 by Kleidman [35] for q odd. The only other families of exceptional groups 3 whose maximal subgroups have been classified are D4(q), also by Kleidman [36], and F4(q)forqnotapowerof2or3byMagaard[51].Thereareahandfulofcomparatively small exceptional groups outside of these families for which the maximal subgroups have been classified, the first of which is F4(2) by Norton and Wilson in 1989 [55].
Recommended publications
  • ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆.
    [Show full text]
  • ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • (Hereditarily) Just Infinite Property in Profinite Groups
    Inverse system characterizations of the (hereditarily) just infinite property in profinite groups Colin D. Reid October 6, 2018 Abstract We give criteria on an inverse system of finite groups that ensure the limit is just infinite or hereditarily just infinite. More significantly, these criteria are ‘universal’ in that all (hereditarily) just infinite profinite groups arise as limits of the specified form. This is a corrected and revised version of [8]. 1 Introduction Notation. In this paper, all groups will be profinite groups, all homomorphisms are required to be continuous, and all subgroups are required to be closed; in particular, all references to commutator subgroups are understood to mean the closures of the corresponding abstractly defined subgroups. For an inverse system Λ= {(Gn)n>0, ρn : Gn+1 ։ Gn} of finite groups, we require all the homomorphisms ρn to be surjective. A subscript o will be used to indicate open inclusion, for instance A ≤o B means that A is an open subgroup of B. We use ‘pronilpotent’ and ‘prosoluble’ to mean a group that is the inverse limit of finite nilpotent groups or finite soluble groups respectively, and ‘G-invariant subgroup of H’ to mean a subgroup of H normalized by G. A profinite group G is just infinite if it is infinite, and every nontrivial normal subgroup of G is of finite index; it is hereditarily just infinite if in addition every arXiv:1708.08301v1 [math.GR] 28 Aug 2017 open subgroup of G is just infinite. At first sight the just infinite property is a qualitative one, like that of simplicity: either a group has nontrivial normal subgroups of infinite index, or it does not.
    [Show full text]
  • Arxiv:1509.08090V1 [Math.GR]
    THE CLASS MN OF GROUPS IN WHICH ALL MAXIMAL SUBGROUPS ARE NORMAL AGLAIA MYROPOLSKA Abstract. We investigate the class MN of groups with the property that all maximal subgroups are normal. The class MN appeared in the framework of the study of potential counter-examples to the Andrews-Curtis conjecture. In this note we give various structural properties of groups in MN and present examples of groups in MN and not in MN . 1. Introduction The class MN was introduced in [Myr13] as the class of groups with the property that all maximal subgroups are normal. The study of MN was motivated by the analysis of potential counter-examples to the Andrews-Curtis conjecture [AC65]. It was shown in [Myr13] that a finitely generated group G in the class MN satisfies the so-called “generalised Andrews- Curtis conjecture” (see [BLM05] for the precise definition) and thus cannot confirm potential counter-examples to the original conjecture. Apart from its relation to the Andrews-Curtis conjecutre, the study of the class MN can be interesting on its own. Observe that if a group G belongs to MN then all maximal subgroups of G are of finite index. The latter group property has been considered in the literature for different classes of groups. For instance in the linear setting, Margulis and Soifer [MS81] showed that all maximal subgroups of a finitely generated linear group G are of finite index if and only if G is virtually solvable. The above property also was considered for branch groups, however the results in this direction are partial and far from being as general as for linear groups.
    [Show full text]
  • The Cohomologies of the Sylow 2-Subgroups of a Symplectic Group of Degree Six and of the Third Conway Group
    THE COHOMOLOGIES OF THE SYLOW 2-SUBGROUPS OF A SYMPLECTIC GROUP OF DEGREE SIX AND OF THE THIRD CONWAY GROUP JOHN MAGINNIS Abstract. The third Conway group Co3 is one of the twenty-six sporadic finite simple groups. The cohomology of its Sylow 2-subgroup S is computed, an important step in calculating the mod 2 cohomology of Co3. The spectral sequence for the central extension of S is described and collapses at the sixth page. Generators are described in terms of the Evens norm or transfers from subgroups. The central quotient S0 = S=2 is the Sylow 2-subgroup of the symplectic group Sp6(F2) of six by six matrices over the field of two elements. The cohomology of S0 is computed, and is detected by restriction to elementary abelian 2-subgroups. 1. Introduction A presentation for the Sylow 2-subgroup S of the sporadic finite simple group Co3 is given by Benson [1]. We will use a different presentation, with generators which can be described in terms of Benson's generators fa1; a2; a3; a4; b1; b2; c1; c2; eg as follows. w = c3; x = b2c1c2; y = ec3; z = a4; a = a3a4c2; b = a3a4b1c2; c = a3; t = a4c1; u = a2; v = a1: We have the following set of relations for the generators fw; x; y; z; a; b; c; t; u; vg. w2 = x2 = y2 = z2 = c2 = u2 = v2 = [w; y] = [w; z] = [w; c] = [w; v] = [x; z] = [x; u] = [x; v] = [y; c] = [y; u] = [y; v] = [a; z] = [c; z] = [u; z] = [v; z] = [c; t] = [c; u] = [c; v] = [a; u] = [a; v] = [b; c] = [b; t] = [b; u] = [b; v] = [t; u] = [t; v] = [u; v] = 1; tu = [a; y]; t = [w; b]; av = [w; x]; b = [x; y]; c = [y; z] u = b2 = [x; c] = [b; z] = [b; y] = [b; x]; uv = [t; x] = [a; b]; v = t2 = a2 = [w; u] = [a; c] = [t; z] = [a; w] = [t; w] = [t; a] = [t; y] = [a; x]: The group S has order 1024 and a center Z(S) of order two, generated by v = a1.
    [Show full text]
  • Math 602 Assignment 1, Fall 2020 Part A
    Math 602 Assignment 1, Fall 2020 Part A. From Gallier{Shatz: Problems 1, 2, 6, 9. Part B. Definition Suppose a group G operates transitively on the left of a set X. (i) We say that the action (G; X) is imprimitive if there exists a non-trivial partition Q of X which is stable under G. Here \non-trivial" means that Q 6= fXg and Q 6= ffxg : x 2 Xg : Such a partition Q will be called a system of imprimitivity for (G; X). (ii) We say that the action (G; X) is primitive if it is not imprimitive. 1. (a) Suppose that (G; X; Q) is a system of imprimitivity for a transitive left action (G; X), Y 2 Q, y 2 Y . Let H = StabG(Y ), K = StabG(y). Prove the following statements. • K < H < G and H operates transitively on Y . • jXj = jY j · jQj, jQj = [G : H], jY j = [H : K]. (These statements hold even if X is infinite.) (b) Suppose that (G; X) is a transitive left action, y 2 X, K := StabG(y), and H is a subgroup of G such that K < H < G. Let Y := H · y ⊂ X, and let Q := fg · Y j g 2 Gg. (Our general notation scheme is that StabG(Y ) := fg 2 G j g · Y = Y g.) Show that (G; X; Q) is a system of imprimitivity. (c) Suppose that (G; X) is a transitive left action, x 2 X. Show that (G; X) is primitive if and only if Gx is a maximal proper subgroup of G.
    [Show full text]
  • Computing the Maximal Subgroups of a Permutation Group I
    Computing the maximal subgroups of a permutation group I Bettina Eick and Alexander Hulpke Abstract. We introduce a new algorithm to compute up to conjugacy the maximal subgroups of a finite permutation group. Or method uses a “hybrid group” approach; that is, we first compute a large solvable normal subgroup of the given permutation group and then use this to split the computation in various parts. 1991 Mathematics Subject Classification: primary 20B40, 20-04, 20E28; secondary 20B15, 68Q40 1. Introduction Apart from being interesting themselves, the maximal subgroups of a group have many applications in computational group theory: They provide a set of proper sub- groups which can be used for inductive calculations; for example, to determine the character table of a group. Moreover, iterative application can be used to investigate parts of the subgroups lattice without the excessive resource requirements of com- puting the full lattice. Furthermore, algorithms to compute the Galois group of a polynomial proceed by descending from the symmetric group via a chain of iterated maximal subgroups, see [Sta73, Hul99b]. In this paper, we present a new approach towards the computation of the conju- gacy classes of maximal subgroups of a finite permutation group. For this purpose we use a “hybrid group” method. This type of approach to computations in permu- tation groups has been used recently for other purposes such as conjugacy classes [CS97, Hul], normal subgroups [Hul98, CS] or the automorphism group [Hol00]. For finite solvable groups there exists an algorithm to compute the maximal sub- groups using a special pc presentation, see [CLG, Eic97, EW].
    [Show full text]
  • Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
    IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain.
    [Show full text]
  • 2 Cohomology Ring of the Third Conway Groupis Cohen--Macaulay
    Algebraic & Geometric Topology 11 (2011) 719–734 719 The mod–2 cohomology ring of the third Conway group is Cohen–Macaulay SIMON AKING DAVID JGREEN GRAHAM ELLIS By explicit machine computation we obtain the mod–2 cohomology ring of the third Conway group Co3 . It is Cohen–Macaulay, has dimension 4, and is detected on the maximal elementary abelian 2–subgroups. 20J06; 20-04, 20D08 1 Introduction There has been considerable work on the mod–2 cohomology rings of the finite simple groups. Every finite simple group of 2–rank at most three has Cohen–Macaulay mod–2 cohomology by Adem and Milgram [2]. There are eight sporadic finite simple groups of 2–rank four. For six of these, Adem and Milgram already determined the mod–2 cohomology ring, at least as a module over a polynomial subalgebra [3, VIII.5]. In most cases the cohomology is not Cohen–Macaulay. For instance, the Mathieu groups M22 and M23 each have maximal elementary abelian 2–subgroups of ranks 3 and 4, meaning that the cohomology cannot be Cohen–Macaulay: see [3, page 269]. The two outstanding cases have the largest Sylow 2–subgroups. The Higman–Sims group HS has size 29 Sylow subgroup, and the cohomology of this 2–group is known 10 by Adem et al [1]. The third Conway group Co3 has size 2 Sylow subgroup. In this paper we consider Co3 . It stands out for two reasons, one being that it has the largest Sylow 2–subgroup. The second reason requires a little explanation. The Mathieu group M12 has 2–rank three.
    [Show full text]
  • MAT 511 Notes on Maximal Ideals and Subgroups 9/10/13 a Subgroup
    MAT 511 Notes on maximal ideals and subgroups 9/10/13 A subgroup H of a group G is maximal if H 6= G, and, if K is a subgroup of G satisfying H ⊆ K $ G, then H = K. An ideal I of a ring R is maximal if I 6= R, and, if J is an ideal of R satisfying I ⊆ J $ R, then I = J. Zorn's Lemma Suppose P is a nonempty partially-ordered set with the property that every chain in P has an upper bound in P. Then P contains a maximal element. Here a chain C ⊆ P is a totally-ordered subset: for all x; y 2 C, x ≤ y or y ≤ x.A maximal element of P is an element x 2 P with the property x ≤ y =) x = y for all y 2 P. Partially-ordered sets can have several different maximal elements. Zorn's Lemma says, intuitively, if one cannot construct an ever-increasing sequence in P whose terms get arbitrarily large, then there must be a maximal element in P. It is equivalent to the Axiom of Choice: in essence we assume that Zorn's Lemma is true, when we adopt the ZFC axioms as the foundation of mathematics. Theorem 1. If I0 is an ideal of a ring R, and I0 6= R, then there exists a maximal ideal I of R with I0 ⊆ I. Proof. Let P be the set of proper (i.e., 6= R) ideals of R containing I0, ordered by inclusion. Then S P is nonempty, since I0 2 P.
    [Show full text]
  • A New Maximal Subgroup of E8 in Characteristic 3
    A New Maximal Subgroup of E8 in Characteristic 3 David A. Craven, David I. Stewart and Adam R. Thomas March 22, 2021 Abstract We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type E8 in characteristic 3. This has type F4, and was missing from previous lists of maximal subgroups 3 produced by Seitz and Liebeck–Seitz. We also prove a result about the finite group H = D4(2), that if H embeds in E8 (in any characteristic p) and has two composition factors on the adjoint module then p = 3 and H lies in this new maximal F4 subgroup. 1 Introduction The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is a cornerstone of group theory. In the course of understanding subgroups of the finite groups E8(q) in [3], the first author ran into a configuration that should not occur according to the tables in [13]. We elicit a previously undiscovered maximal subgroup of type F4 of the algebraic group E8 over an algebraically closed field of characteristic 3. This discovery corrects the tables in [13], and the original source [17] on which it depends. Theorem 1.1. Let G be a simple algebraic group of type E8 over an algebraically closed field of char- acteristic 3. Then G contains a unique conjugacy class of simple maximal subgroups of type F4. If X is in this class, then the restriction of the adjoint module L(E8) to X is isomorphic to LX(1000) ⊕ LX(0010), where the first factor is the adjoint module for X of dimension 52 and the second is a simple module of dimension 196 for X.
    [Show full text]