The Tension Between Agile and Architecture Useful Definitions on Software Design and Architecture

Total Page:16

File Type:pdf, Size:1020Kb

The Tension Between Agile and Architecture Useful Definitions on Software Design and Architecture The tension between agile and architecture Useful definitions on software design and architecture Peter Hendriks IT Architect at Info Support B.V. [email protected] @PeterHendriks80 blogs.infosupport.com/peterhe/ Agile and architecture: cats and dogs? Agile and architecture are often considered cats and dogs. Many "classic" software architecture methods are considered an enemy of agile principles: often describing heavyweight, upfront documents and decisions, and a hierarchy with architects wielding all technical decision power and responsibility. Although there are some new "agile architecture" concepts out there, these typically only address small parts of the problem and often require significant skill to practice correctly. There is even the notion that architecture is not needed anymore when applying agile practices. But what is "architecture" anyway? Architecture: a concept, process and role Like so many software development terms, "architecture" is not a very well defined thing. For starters, the term architecture is used for wildly different categories: The architecture concept: the notion that certain aspects and design choices of a system are more important and fundamental. The architecture process: the way architecture concerns are addressed in the way teams The architect role: the person considered responsible for architecture We’ll look at each category to establish how "agile friendly" architecture actually is. A definition of architecture: the concept "Worries about the hard stuff - whatever that organization thinks is hard“ - Martin Fowler and Ralph Johnson, thought leaders in agile and design, on architecture "Design is the structure or behavior of an system whose presence resolves or contributes to the resolution of forces on that system.“ - Grady Booch, one of the fathers of modern software design, on design "All architecture is design but not all design is architecture. Architecture represents the significant design decisions that shape a system, where significant is measured by cost of change.“ - Grady Booch, now on architecture Architecture versus design A design has correlated, but different goals. Design may be needed to allow communication, collaboration and complex problem solving. Since all architecture is design, these goals matter for architectural significant design decisions as well. Design often exists in multiple levels of detail, with the lowest level being the code. High level design is often considered the architecture. Most of the time this makes sense: high level design naturally contain a lot of decisions that are hard to change after the system is built. Considering high level design as the only architecture is risky: you might want to do too much of it, while missing decisions with a high cost of change at lower levels. Architecture in the context of system design An example model of system design, relevant forces, and architecture Features Laws Operational costs Security Monitoring & control Performance Stakeholder needs Existing systems System Technology changes Common practices Team changes Environment Future Design Design Productivity Licensing deals Extendable Corporate standards Design Design Design Achievability Technology capabilities Team skills Project budget (time/money) Framework support The need for the architecture concept in agile Architecture-as-a-concept assumes that certain parts of a system will be hard to change. It also assumes that design decisions here will be considered more significant, because of the greater short-term risk and possible long-term limitations for the evolution of the system. It's safe to say these assumptions are still valid for systems built in an agile fashion. Common agile practices, like automated testing and short iterations, drive down the overall cost of change. In that sense, agile reduces the amount of architecture needed. But there is no silver bullet here, there will still be "hard stuff". Making wrong decisions here will still seriously hurt or kill an agile project. The other way around, agile practices, like working in small teams, releasing early and often or being testable, often add extra demands on the system design, even at the architecture level. Also, some architectural design decisions, like applying modularity, may reduce cost of change and support other important agile values. In order for agile to be a successful approach to building a system, the architecture must support it. So, where is the problem? Architecture still matters for agile projects. Some things that need to be built in almost every system just don't change easily after the fact. Only relying on "refactoring" will not cut it. There is very little debate on the need for architecture-as-a- concept in an agile project, once you focus on design decisions with a high cost of change. In some aspects, architecture is even a critical element for the success of important agile practices. However, when we look at architecture as a process, the tension becomes more apparent. Defining the architecture process If we consider that architecture is about design decisions that have a high cost of change, then an architecture process should strive to lower the rate of change on these decisions once they are committed to. As a secondary goal, the process should help to identify what changes will be more costly to make, making the software development process more predictable and improving the confidence of the team. Agilists should feel a tension here. Lowering rates of change and long term predictions does not feel very agile. It isn't, and in a way, this is where the ideals of agile meet the boundaries of practical reality. Why change a design decision? Reason for change: Considering these goals, it becomes apparent • The decision was wrong; the resulting system does not work that the architecture process should involve all disciplines in a software development team. • A change in a force invalidates the decision • A more optimal decision is found Investigating and negotiating stable insight is key to predict whether the design decision will last Some countermeasures: for a longer period. • Investigate unclear and changing forces Testing design assumptions as soon as possible • Consult existing experience and expertise and fixing problems before building an entire • Early evaluation of the decision system on them can help immensely. • Delay the decision • Add abstractions that are more stable Planning the system evolution around tough choices, or adding abstractions, can postpone or alleviate effects of change. Deliberate vs accidental architecture During the evolution of a system, not all design decisions with a high cost of change are deliberately made using an architecture process. This design that just happens is often called “accidental architecture”. Accidental architecture can be a judgment- or communication problem, but also a learning effect of building the system. We should expect that while the system is being built, we may periodically need to evaluate which design decisions matter most, and if existing decisions need adjustments. Agile places heavy emphasis on feedback early and often. This is a big help for an architecture process. We can continuously evaluate design decisions using the real system as it’s built. Also, we learn what matters for decisions that come up later. Tools and practices for architecture processes There are many established software architecture tools and practices available. These vary from complete and specialized process frameworks like TOGAF to various notations and metamodels, like UML and ArchiMate, to best practices, like design patterns and the SOLID design principles. There are design tools, like Enterprise Architect, or code analysis tools like Structure101, that can be very useful, but require skill to use. Often, a whiteboard is used, easy for everyone to participate, without the distractions of having to operating a complex tool while thinking about a difficult problem. Personally, I believe all these methods and tools can be applied in an agile fashion, if used in a small package form. However, they are often marketed as big and overarching things. This results in a lot of resistance in agile teams. The role of the architect So who is driving the architecture process? In the "classical" architecture process, an architect creates a detailed Big Design Up Front (BDUF). The architect is a senior specialist, who knows what's the best way to build the system and anticipates how design forces will behave during the lifetime of the system. He/she designs the system before the "construction" team starts, so they don’t have to wait during the period needed to create the BDUF. Then, the process aggressively limits any deviation to the original architecture. As an industry, we have learned that this is an naïve approach. It assumes an all-knowing architect, a completely predictable future, and a team that just reads a document and then knows what to do. However, consider the architecture process we've just discussed. Even in an agile team, this definitely There is complex decision making, multi-discipline collaboration seems like a candidate for a specialist role, and communication, and specialized design methods and tools. especially for larger systems, where the Experience with both the problem domain and the technologies amount of architecture rapidly increases used to build the system are essential to effectively predict and and the stakes are much higher. communicate design decisions and their effects. Is the architect
Recommended publications
  • IBM Research Report Software Development As a Service: Agile
    RJ10476 (A1011-022) November 19, 2010 Other IBM Research Report Software Development as a Service: Agile Experiences Tobin J. Lehman IBM Research Division Almaden Research Center 650 Harry Road San Jose, CA 95120-6099 USA Akhilesh Sharma IBM Global Services IBM Almaden Research Center 650 Harry Road San Jose, CA 95120-6099 USA Research Division Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Software Development as a Service: Agile Experiences Tobin J. Lehman Akhilesh Sharma Almaden Services Research IBM Global Services IBM Almaden Research Center IBM Almaden Research Center San Jose, California, U.S.A. San Jose, California, U.S.A [email protected] [email protected] Abstract— At the IBM Almaden Research Center, we have projects from our past as examples, we show that the level of been working with other divisions of IBM, offering Software program technology and requirement understanding Development as a Service (SDaaS).
    [Show full text]
  • Designing Software Architecture to Support Continuous Delivery and Devops: a Systematic Literature Review
    Designing Software Architecture to Support Continuous Delivery and DevOps: A Systematic Literature Review Robin Bolscher and Maya Daneva University of Twente, Drienerlolaan 5, Enschede, The Netherlands [email protected], [email protected] Keywords: Software Architecture, Continuous Delivery, Continuous Integration, DevOps, Deployability, Systematic Literature Review, Micro-services. Abstract: This paper presents a systematic literature review of software architecture approaches that support the implementation of Continuous Delivery (CD) and DevOps. Its goal is to provide an understanding of the state- of-the-art on the topic, which is informative for both researchers and practitioners. We found 17 characteristics of a software architecture that are beneficial for CD and DevOps adoption and identified ten potential software architecture obstacles in adopting CD and DevOps in the case of an existing software system. Moreover, our review indicated that micro-services are a dominant architectural style in this context. Our literature review has some implications: for researchers, it provides a map of the recent research efforts on software architecture in the CD and DevOps domain. For practitioners, it describes a set of software architecture principles that possibly can guide the process of creating or adapting software systems to fit in the CD and DevOps context. 1 INTRODUCTION designing new software architectures tailored for CD and DevOps practices. The practice of releasing software early and often has For clarity, before elaborating on the subject of been increasingly more adopted by software this SLR, we present the definitions of the concepts organizations (Fox et al., 2014) in order to stay that we will address: Software architecture of a competitive in the software market.
    [Show full text]
  • Best Practices in Agile Software Development
    Universiteit Leiden ICT in Business Best practices in Agile software development A qualitative study on how organizations identify, analyze, improve, represent and document (best) practices to improve their software development processes. Name: Ing. R.H.J.C. (Roy) van Wel Student-no: 1310194 Date: 25/08/2013 1st supervisor: C.J. (Christoph) Stettina MSc. 2nd supervisor: Dr. L.P.J. (Luuk) Groenewegen MASTER'S THESIS Leiden Institute of Advanced Computer Science (LIACS) Leiden University Niels Bohrweg 1 2333 CA Leiden The Netherlands Acknowledgements By completing this Thesis I finished my education and will receive my Master of Science degree. Of course, I was not able to finish my Thesis without supervision. Therefore I would like to first thank Dr. Luuk Groenewegen, especially for making time available on short notice. Also I would like to give special thanks to Christoph Stettina MSc. for his supervision and coaching skills. You were there when I needed your help and you always gave me enough space for self-deployment. Although my background is ICT-related, I found the Thesis proposal from Christoph very intriguing. The initial objective was to look on currently available Agile practices and compare the applicability of existing process model descriptions to document Agile practices in an accessible but complete manner. During my literature study I got really enthusiastic about the subject Agile software development and decided to also examine how organizations identify, analyze and improve their practices. During my literature research I found very interesting literature how practices can be identified by executing workshops. Because I was really curious how this would work in practice, I asked André Lauwerijssen, a very skilled Scrum Master, to execute the workshop with me.
    [Show full text]
  • Extreme Programming from Wikipedia, the Free Encyclopedia
    Create account Log in Article Talk Read Edit View history Search Extreme programming From Wikipedia, the free encyclopedia Main page Extreme programming (XP) is a software development methodology which is Contents intended to improve software quality and responsiveness to changing customer Featured content requirements. As a type of agile software development,[1][2][3] it advocates frequent Current events "releases" in short development cycles, which is intended to improve productivity Random article and introduce checkpoints at which new customer requirements can be adopted. Donate to Wikipedia Wikipedia store Other elements of extreme programming include: programming in pairs or doing Interaction extensive code review, unit testing of all code, avoiding programming of features Help until they are actually needed, a flat management structure, simplicity and clarity in About Wikipedia code, expecting changes in the customer's requirements as time passes and the Community portal problem is better understood, and frequent communication with the customer and Recent changes among programmers.[2][3][4] The methodology takes its name from the idea that the Contact page Planning and feedback loops in beneficial elements of traditional software engineering practices are taken to extreme programming. Tools "extreme" levels. As an example, code reviews are considered a beneficial What links here practice; taken to the extreme, code can be reviewed continuously, i.e. the practice Related changes Software development of pair programming. Upload file process Special pages Critics have noted several potential drawbacks,[5] including problems with Core activities Permanent link unstable requirements, no documented compromises of user conflicts, and a Requirements · Design · Construction · Testing · Debugging · Deployment · Page information lack of an overall design specification or document.
    [Show full text]
  • Agile Automated Software Testing Into Automotive V-Model Process
    Agile automated software testing into automotive V-Model process: A practical case Xavier Martin Artal Software QA Manager [email protected] es.linkedin.com/pub/xavier-martin/6/a89/723/ Agenda • Introduction • Automotive Trends: Car Connectivity • Car Telematics project Challenges • Use Case Solution: From V-Model to Agile Testing • Results and Conclusions Introduction What is this presentation about? • Expose a practical case of adoption of Agile techniques in automotive testing • Converge Spice automotive V-Model to Agile Spice V-Model Agile • Present Technical Solution adopted: Automation Test Framework • Discuss results and Agile adequacy to Automotive industry Automotive Trends: Vehicle Connectivity Car Telematics • Car Manufacturers start to add 3G/4G capabilities • Connectivity opens new opportunities to develop services for both clients and manufacturers Connectivity Services – Emergency Call – Fleet Management – Car Sharing – Remote Car Diagnostics – Stolen Vehicle Tracking (SVT) – WOTA Update – Dealer Services – User Premium Services Car telematics: eCall • Emergency Call Service for Europe • U.E Council proposes eCall obligatory in European Cars for end 2017 • Automatic call in case of accident or emergency will force car manufacturers to add IVTU to every new car for European Service • Similar regulations for Russia, USA, BRA and PRC Car Telematics Project Challenges What is an iVTU? iVTU = in Vehicle Telematics Unit - Electronic Unit in charge of granting 2G/3G/LTE connectivity to vehicles - Two Main processors architecture:
    [Show full text]
  • A Brief History of Devops by Alek Sharma Introduction: History in Progress
    A Brief History of DevOps by Alek Sharma Introduction: History in Progress Software engineers spend most of their waking hours wading George Santayana wrote that “those who cannot remember the through the mud of their predecessors. Only a few are lucky past are condemned to repeat it.” He was definitely not thinking enough to see green fields before conflict transforms the about software when he wrote this, but he’s dead now, which terrain; the rest are shipped to the front (end). There, they means he can be quoted out of context. Oh, the joys of public languish in trenches as shells of outages explode around them. domain! Progress is usually glacial, though ground can be covered This ebook will be about the history of software development through heroic sprints. methodologies — especially where they intersect with traditional best practices. Think of it as The Silmarillion of Silicon Valley, But veterans do emerge, scarred and battle-hardened. They except shorter and with more pictures. Before plunging into this revel in relating their most daring exploits and bug fixes to new rushing river of time, please note that the presented chronology recruits. And just as individuals have learned individual lessons is both theoretically complete and practically in progress. In other about writing code, our industry has learned collective lessons words, even though a term or process might have been coined, it about software development at scale. It’s not always easy to always takes more time for Best Practices to trickle down to Real see these larger trends when you’re on the ground — buried in Products.
    [Show full text]
  • 32Principles and Practices of Successful
    32 PRINCIPLES AND PRACTICES OF SUCCESSFUL CONTINUOUS INTEGRATION, CONTINUOUS DELIVERY, & DEVOPS De·vel·op·ment (dĭ-vĕl′әp-mәnt) is the application of systematic, disciplined, and quantifiable principles to the development, operation, and maintenance of new software-based products and services. It entailed project planning, requirements synthesis, architecture and design, coding and unit testing, integration, system, and acceptance testing, and operations and maintenance. Much of this involved synthesizing market, customer, and end-user needs ad nauseum, detailed architectures and designs, methodical coding practices, exhaustive test planning and execution, and dozens of software lifecycle documents. The term “synthesis” is applied because managers and analysts often derived, predicted, or manufactured bloated requirements leading to over scoping, uncertainty, risk, cost, duration, and poor quality. Traditional project failure rates were extremely high and the few that made it into production were either abandoned due to technological obsolescence or were extremely expensive to operate and maintain surviving on life support. Since operations and maintenance was 80% of total software life cycle costs spanning decades, expensive libraries were created to capture tacit developer knowledge and assumptions in explicit software documents, exceeding the cost of the computer programming itself. Thousands of hours were required to test bloated requirements leading to complex, open-looped systems with infinite states, latent defects, and unpredictable failures. Each development phase or activity was functionally organized and performed by a separate firm, business unit, department or team, spread across multiple states, countries, and time zones leading to unnecessarily slow handoffs. Manual lean and agile methods emerged to reduce the scope, complexity, risk, cost, duration, handoffs, and failure using medium-sized batches or product backlogs and vertical feature teams.
    [Show full text]
  • Strategies for Streamlining Enterprise Architecture in the Age of Agile John Mallinger & Paul Newell 22Nd Annual NDIA SE Symposium 10/24/2019
    Strategies for Streamlining Enterprise Architecture in the Age of Agile John Mallinger & Paul Newell 22nd Annual NDIA SE Symposium 10/24/2019 Approved for Public Release Right Sizing Architecture for Agile The Case for Architecture on Agile Projects Acquisition Strategies – Contracting for Agile Success Aggressive Tailoring – Driving Architecture Value Changing at the Speed of Agile – Planning for Evolution Approved for Public Release The agile challenge… The Agile Manifesto challenges software design and architecture to add value Prioritizes collaboration and responding to change Deemphasizes documentation and processes Architecture activities need to add clear and recognizable return on effort invested Team strategy may leverage emergent design Agile development strives for a balanced approach to documentation Avoid creating documentation shelfware Approved for Public Release The Case for Defining Architecture Eliminating all design and architecture efforts drives substantial risk into agile development Emergent designs fail to meet undefined quality attributes Poorly aligned teams build incompatible interfaces Incomplete system decomposition fails to satisfy user needs Defined architecture drives greater efficiency in agile Architecture supports reuse, commonality, and adoption of common patterns Coordinated approach helps agile scale to larger projects and teams Approved for Public Release Agile Done Wrong Big Design Up Front – developing 600+ requirement System Spec Agile principles undermined by defining large
    [Show full text]
  • Architecture and Design Practices for Agile Project Management by Dr
    Architecture and Design Practices for Agile Project Management by Dr. David F. Rico, PMP, ACP, CSM A major principle within lean and agile methods is "No Big Design Up Front (BDUF)." Instead, agile teams promote the notion of evolutionary, emergent, and iterative design. Proponents of traditional methods believe a comprehensive top-down architecture and design are tantamount to system quality and project success. However, the lean and agile community has since learned that large architectures and designs are a form of "waste." That is, traditional teams over-specify the system architecture and design by gold-plating it with unnecessary features that undermine system quality and project success. How do agile teams perform architecture and design? Is there such a thing? What are its associated practices? When is it performed? How much effort is applied? Try to remember some of the characteristics of agile projects. Their goal is to rapidly produce a precious few system capabilities and customer requirements that have the biggest bang for the buck! That is, produce something with high business value or great return on investment. Furthermore, system quality, project success, and customer satisfaction are ultimately achieved by significantly reducing the scope of the system architecture and design. "Less is more" for agile projects! Recapping, agile projects address a smaller scope, fewer requirements, and shorter time horizons. They focus on a few critical customer needs, business functions, and capabilities. They are optimized for project success, system quality, customer satisfaction, and business value. Conversely, traditional methods are based on the theory of comprehensive, all-encompassing architectures and designs to anticipate every conceivable customer need.
    [Show full text]
  • "Right-Sized Architecture: Integrity for Emerging Designs"
    AW7 Concurrent Session 11/7/2012 2:15 PM "Right-sized Architecture: Integrity for Emerging Designs" Presented by: Ken Kubo Northrop Grumman Corporation Brought to you by: 340 Corporate Way, Suite 300, Orange Park, FL 32073 888‐268‐8770 ∙ 904‐278‐0524 ∙ [email protected] ∙ www.sqe.com Ken Kubo Northrop Grumman Electronic Systems Ken Kubo is director of software engineering with twenty years of service at Northrop Grumman Electronic Systems, Intelligence, Surveillance, Reconnaissance, and Targeting Systems Division, Azusa campus. His work has focused on the development of satellite ground systems, building the bigger picture from individual bits of data. Information radiators are Ken’s natural focus in agile development. A certified Lean-Agile ScrumMaster and Certified ICAgile Professional, he developed and teaches a Lean-Agile Development overview course for NGES. Ken firmly believes that lean-agile and government acquisition processes are not completely incompatible. Right-Sized Architecture Integrity for Emerging Designs AW7 - 7 November 2012 – 2:15 PM Ken Kubo, James Yoshimori, Jason Liu Agenda • Software Engineering and Lean-Agile • Right-Sized Architecture • Collaborative Design • Extending the Metaphor • Retrospective Acknowledgements • The team gratefully acknowledges the support and interest of the Sensor Exploitation Systems/SAIG business area leadership. 3 But First…A Word From Our Sponsor • Northrop Grumman Corporation (NYSE: NOC) is a leading global security company providing innovative systems, products and solutions in aerospace, electronics, information systems, and technical services to government and commercial customers worldwide. The company has over 120,000 employees in all 50 states and 25 countries around the world. • Our core competencies are aligned with the current and future needs of our customers and address emerging global security challenges in key areas, such as unmanned systems, cyber-security, C4ISR, and logistics that are critical to the defense of the nation and its allies.
    [Show full text]
  • Designing Software Architecture to Support Continuous Delivery and Devops: a Systematic Literature Review
    Designing Software Architecture to Support Continuous Delivery and DevOps: A Systematic Literature Review Robin Bolscher and Maya Daneva University of Twente, Drienerlolaan 5, Enschede, The Netherlands Keywords: Software Architecture, Continuous Delivery, Continuous Integration, DevOps, Deployability, Systematic Literature Review, Micro-services. Abstract: This paper presents a systematic literature review of software architecture approaches that support the implementation of Continuous Delivery (CD) and DevOps. Its goal is to provide an understanding of the state- of-the-art on the topic, which is informative for both researchers and practitioners. We found 17 characteristics of a software architecture that are beneficial for CD and DevOps adoption and identified ten potential software architecture obstacles in adopting CD and DevOps in the case of an existing software system. Moreover, our review indicated that micro-services are a dominant architectural style in this context. Our literature review has some implications: for researchers, it provides a map of the recent research efforts on software architecture in the CD and DevOps domain. For practitioners, it describes a set of software architecture principles that possibly can guide the process of creating or adapting software systems to fit in the CD and DevOps context. 1 INTRODUCTION designing new software architectures tailored for CD and DevOps practices. The practice of releasing software early and often has For clarity, before elaborating on the subject of been increasingly more adopted by software this SLR, we present the definitions of the concepts organizations (Fox et al., 2014) in order to stay that we will address: Software architecture of a competitive in the software market. Its popularity system is the set of structures needed to reason about fueled the development of practices collectively the system, which comprise software elements, labeled as Continuous Delivery (CD) Chen, 2015a).
    [Show full text]
  • Process Agility and Software Usability: Toward Lightweight Usage-Centered Design Larry L
    Constantine & Lockwood, Ltd. Process Agility and Software Usability: Toward Lightweight Usage-Centered Design Larry L. Constantine Constantine & Lockwood, Ltd. University of Technology, Sydney Abstract. A streamlined and simplified variant of the usage -centered process that is readily integrated with lightweight methods is outlined. Extreme programming and other so -called agile or lightweight methods promise to speed and simplify applications development. However, as this paper highlights, they share with the "unified process" and other heavyweight brethren some common shortcomings in the areas of usability and user interface design. Usage -centered design is readily integrated with these lightweight methods. As in extreme programming , ordinary index cards help streamline the process of modeling and prioritizing for design and implementation in successive increments. Links to selected Web resources on extreme programming, agile modeling, and other agile processes are also provided. Keywords: usability, user interface design, usage -centered design, extreme programming, lightweight methods, agile methods, iterative development] Learn more about agile usage-centered design at http://www.forUse.com. Software and Web applications development today can seem like a strange game. At one end of the playing field, in scruffy jerseys of assorted color and stripe, are the unruly rabble representing the method-less chaos that all too often passes for programming in many organizations; at the other end we see the advancing phalanx of the heavyweight team, a bright letter U (for Unified) emblazoned on the chest of each hulking goliath. These true heavyweights of modern software development—the Unified Process and its supporting player, the Unified Modeling Language —have shrugged off scholarly scrutiny and competition alike to lead the league in goals scored [Constantine, 2000b].
    [Show full text]