A New Conceptual Model for Social-Ecological Environment Capacity of Debris Flow Waste-Shoal Land Based on Sustainable Development in Mountainous Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Overview of Landslide Hydrology
water Editorial Overview of Landslide Hydrology Roy C. Sidle 1,2,* , Roberto Greco 3 and Thom Bogaard 4 1 Mountain Societies Research Institute, University of Central Asia, Khorog GBAO 736000, Tajikistan 2 Sustainability Research Centre, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs 4556, Queensland, Australia 3 Dipartimento di Ingegneria, Università degli Studi della Campania ‘L. Vanvitelli’, via Roma 9, 81031 Aversa (CE), Italy; [email protected] 4 Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +996-770-822-144 Received: 11 January 2019; Accepted: 15 January 2019; Published: 16 January 2019 Most landslides and debris flows worldwide occur during or following periods of rainfall, and many of these have been associated with major disasters causing extensive property damage and loss of life [1–9]. Given concerns about the effects of climate change on precipitation regime, in the future, some mountainous areas may likely experience more landslides with a faster response to rainfall; however, most such projections are weakly based and remain untested [10,11]. Subsurface hydrology is usually the main triggering mechanism of these landslides and associated debris flows. While the effects of hillslope hydrology on runoff generation have been thoroughly studied, much less attention has been paid to these effects on landslide and debris flow initiation. Recent syntheses demonstrate that it is no longer appropriate to view the subsurface as a static media which facilitates the transit of subsurface water, rather a variety of factors affecting the dynamics of subsurface hydrology need to be considered [12,13]. -
Effects of Sediment Pulses on Channel Morphology in a Gravel-Bed River
Effects of sediment pulses on channel morphology in a gravel-bed river Daniel F. Hoffman† Emmanuel J. Gabet‡ Department of Geosciences, University of Montana, Missoula, Montana 59802, USA ABSTRACT available to it. The delivery of sediment to riv- channel widening, braiding, and fi ning of bed ers and streams in mountain drainage basins material, followed by coarsening, construction Sediment delivery to stream channels in often comes in large, infrequent pulses from of coarse grained terraces, and formation of mountainous basins is strongly episodic, landslides and debris fl ows (Benda and Dunne, new side channels. After the sediment wave had with large pulses of sediment typically 1997; Gabet and Dunne, 2003). This sediment passed, they observed channel incision down to delivered by infrequent landslides and debris supply regime differs from that of channels an immobile bed and bedrock. Cui et al. (2003) fl ows. Identifying the role of large but rare in lowland environments with a more regular conducted fl ume experiments to investigate sed- sediment delivery events in the evolution of sediment supply and is refl ected in the form iment pulses and found that in a channel with channel morphology and fl uvial sediment and textural composition of the channel and alternate bars, the bed relief decreased with the transport is crucial to an understanding of fl oodplain. Processing large pulses of sediment arrival of the downstream edge of the sediment the development of mountain basins. In July can be slow and leave a lasting legacy on the wave, and increased as the upstream edge of the 2001, intense rainfall triggered numerous valley fl oor. -
Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington
77 TFW-SH7-94-001 Bedload Transport and Large Organic Debris in Steep Mountain Streams in Forested Watersheds on the Olympic Penisula, Washington Final Report By Matthew O’Connor and R. Dennis Harr October 1994 BEDLOAD TRANSPORT AND LARGE ORGANIC DEBRIS IN STEEP MOUNTAIN STREAMS IN FORESTED WATERSHEDS ON THE OLYMPIC PENINSULA, WASHINGTON FINAL REPORT Submitted by Matthew O’Connor College of Forest Resources, AR-10 University of Washington Seattle, WA 98195 and R. Dennis Harr Research Hydrologist USDA Forest Service Pacific Northwest Research Station and Professor, College of Forest Resources University of Washington Seattle, WA 98195 to Timber/Fish/Wildlife Sediment, Hydrology and Mass Wasting Steering Committee and State of Washington Department of Natural Resources October 31, 1994 TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGEMENTS vii OVERVIEW 1 INTRODUCTION 2 BACKGROUND 3 Sediment Routing in Low-Order Channels 3 Timber/Fish/Wildlife Literature Review of Sediment Dynamics in Low-order Streams 5 Conceptual Model of Bedload Routing 6 Effects of Timber Harvest on LOD Accumulation Rates 8 MONITORING SEDIMENT TRANSPORT IN LOW-ORDER CHANNELS 11 Monitoring Objectives 11 Field Sites for Monitoring Program 12 BEDLOAD TRANSPORT MODEL 16 Model Overview 16 Stochastic Model Outputs from Predictive Relationships 17 24-Hour Precipitation 17 Synthesis of Frequency of Threshold 24-Hour Precipitation 18 Peak Discharge as a Function of 24-Hour Precipitation 21 Excess Unit Stream Power as a Function of Peak Discharge 28 Mean Scour -
Landslides, and Affected the Eruption Patterns of Some Geysers
Earthquake Annex I Colorado State Emergency Operations Plan LEAD AGENCY: Dept. of Local Affairs, Office of Emergency Management SUPPORTING AGENCIES: Governor's Office, Personnel & Administration, Corrections, Labor & Employment, Military Affairs, Natural Resources, Public Safety, Transportation, Education, Human Services, Red Cross, Salvation Army, COVOAD I. PURPOSE This annex has been prepared to ensure a coordinated response by state agencies to requests from local jurisdictions to reduce potential loss of life and to ensure we maintain or quickly restore essential services following an earthquake. It is designed to supplement the operational strategy outlined in the Basic Plan. II. SITUATION The Southern and Middle Rocky Mountains extend from the mountainous parts of central and western Wyoming and northeastern Utah, through the rugged mountains of central Colorado, southward into extreme north-central New Mexico. Large, damaging earthquakes in this region are uncommon, but significant historical earthquakes have caused damage. The largest earthquake in the Southern and Middle Rocky Mountains occurred on November 8, 1882, and, although poorly located, probably was in north-central Colorado, west of Fort Collins and northwest of Denver. The earthquake occurred before the development of seismometers, but it had an estimated magnitude of 6.6 and was felt throughout most of Colorado and in adjacent parts of Wyoming, Utah, Idaho, and Nebraska. The most seismically active part of the Southern and Middle Rocky Mountains is in northwestern Wyoming near Yellowstone National Park, where ongoing volcanic activity is responsible for the spectacular geysers and other unique geologic features in the park. On June 30, 1975, a magnitude 6.4 earthquake shook the park, caused rockfalls and landslides, and affected the eruption patterns of some geysers. -
Ecological Thresholds: the Key to Successful Environmental Management Or an Important Concept with No Practical Application?
Ecosystems (2006) 9: 1–13 DOI: 10.1007/s10021-003-0142-z MINI REVIEW Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application? Peter M. Groffman,1* Jill S. Baron,2 Tamara Blett,3 Arthur J. Gold,4 Iris Goodman,5 Lance H. Gunderson,6 Barbara M. Levinson,5 Margaret A. Palmer,7 Hans W. Paerl,8 Garry D. Peterson,9 N. LeRoy Poff,10 David W. Rejeski,11 James F. Reynolds,12 Monica G. Turner,13 Kathleen C. Weathers,1 and John Wiens14 1Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545, USA; 2Natural Resource Ecology Laboratory, US Geological Survey, Colorado State University, Fort Collins, Colorado 80523-1499, USA; 3Air Resources Division, USDI-National Park Service, Academy Place, Room 450, P.O. Box 25287 Denver, Colorado 80225-0287, USA; 4Department of Natural Resources Science, 105 Coastal Institute in Kingston, University of Rhode Island, One Greenhouse Road, Kingston, Rhode Island 02881, USA 5US Environmental Protection Agency Headquarters, Ariel Rios Building, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA; 6Department of Environmental Studies, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA; 7University of Maryland, Plant Sciences Building 4112, College Park, Maryland 20742-4415, USA; 8Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, North Carolina 28557, USA; 9Center for Limnology, University of Wisconsin, 680 N. Park St., Madison, Wisconsin 53706, USA; 10Department of -
Environmental Limits Page 1
POST Report 370 January 2011 Living with Environmental Limits Page 1 Summary Human well-being is dependent upon assessment approaches. However, where renewable natural resources. Agricultural there is a risk of thresholds being systems, for example, depend upon plant breached and potentially irreversible productivity, soil, the water cycle, the impacts occurring, additional policy nitrogen, sulphur and phosphorus nutrient safeguards to maintain natural resource cycles and a stable climate. Renewable systems within environmental limits are natural resources can be subject to required. biological and physical thresholds beyond which irreversible changes in benefit Managing ecosystems to maximise one provision may occur. These are difficult to particular benefit, such as food provision, define and many are likely to be identified can result in declines in other benefits. only once crossed. An environmental limit The evidence base is not yet sufficient to is usually interpreted as the point or range determine the most effective ways to of conditions beyond which there is a maintain benefit provision within significant risk of thresholds being environmental limits, but a range of policy exceeded and unacceptable changes responses are seeking to optimise multiple occurring.1 benefit provision, including: Biodiversity loss, climate change and a agri-environment schemes range of other pressures are affecting generic measures to enhance renewable natural resources. If biodiversity, which may increase governments do not effectively monitor the the capacity of natural resource use and degradation of natural resource systems to adapt to environmental systems in national account frameworks, change the probability of costs arising from the use of ecological processes to exploiting natural resources beyond increase overall natural system environmental limits is not taken into resilience to address problems account. -
Physico-Chemical Thresholds in the Distribution of Fish Species Among
Knowl. Manag. Aquat. Ecosyst. 2017, 418, 41 Knowledge & © V. Roubeix et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017032 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Physico-chemical thresholds in the distribution of fish species among French lakes Vincent Roubeix1,*, Martin Daufresne1, Christine Argillier1, Julien Dublon1, Anthony Maire1,a, Delphine Nicolas1,b, Jean-Claude Raymond2,3 and Pierre-Alain Danis2 1 Irstea, UR RECOVER, Pôle AFB-Irstea hydroécologie plans d’eau, Centre d’Aix-en-Provence, 3275 route Cézanne, 13182 Aix-en-Provence, France 2 Agence française pour la biodiversité, Pôle AFB-Irstea hydroécologie plans d’eau, 13182 Aix-en-Provence, France 3 Agence française pour la biodiversité, Délégation Régionale Rhône-Alpes, Unité Spécialisée Milieux Lacustres, 74200 Thonon-les-Bains, France Abstract – The management of lakes requires the definition of physico-chemical thresholds to be used for ecosystem preservation or restoration. According to the European Water Framework Directive, the limits between physico-chemicalquality classes must be set consistently with biological quality elements. Onewayto do this consists in analyzing the response of aquatic communities to environmental gradients across monitoring sites and in identifying ecological community thresholds, i.e. zones in the gradients where the species turnover is the highest. In this study, fish data from 196 lakes in France were considered to derive ecological thresholds using the multivariate method of gradient forest. The analysis was performed on 25 species and 36 environmental parameters. The results revealed the highest importance of maximal water temperature in the distributionoffishspecies.Otherimportantparametersincludedgeographicalfactors,dissolvedorganiccarbon concentrationandwater transparency,whilenutrients appearedto have lowinfluence. -
Defining and Identifying Environmental Limits for Sustainable Development
Defining and Identifying Environmental Limits for Sustainable Development A Scoping Study Funded by Full Technical Report Project Team: Prof. Roy Haines-Young PD Dr. Marion Potschin Duncan Cheshire Centre for Environmental Management School of Geography, University of Nottingham Nottingham NG7 2RD [email protected] March 2006 Project Code NR0102 Defining and Identifying Environmental Limits for Sustainable Development: Final Report Citation: HAINES-YOUNG, R.; POTSCHIN, M. and D. CHESHIRE (2006): Defining and identifying Environmental Limits for Sustainable Development. A Scoping Study. Final Full Technical Report to Defra, 103 pp + appendix 77 pp, Project Code NR0102. Defining and Identifying Environmental Limits for Sustainable Development: Final Technical Report Contents Page Acknowledgements ii Executive Summary iv Part I Introduction 1 Chapter 1: Context and Aim 1 Part II: Conceptual Frameworks 4 Chapter 2: Limits and Thresholds: Definitions 4 Chapter 3: Identifying Limits and Thresholds 12 Chapter 4: Values and the Problem of Limits and Thresholds 29 Part III: Exploring the Evidence Base 33 Chapter 5: Biodiversity 33 Chapter 6: Land Use and Landscape 42 Chapter 7: Recreation 52 Chapter 8: Marine Environment 57 Chapter 9: Water - supply and demand 62 Chapter 10: Climate Change 68 Chapter 11: Pollution Loads 75 Part IV: Conclusions and Recommendations 82 Chapter 12: Respecting Environmental Limits 82 References 94 Appendix A: Briefing and Position Papers by external experts 104 i Defining and Identifying Environmental Limits for Sustainable Development: Final Technical Report Acknowledgements Part III of this report “Exploring the Evidence Base” draws heavily upon a set of position papers from invited scientists, which are presented in their original form in the appendix of this full technical report. -
Potential for Debris Flow and Debris Flood Along the Wasatch Front Between Salt Lake City and Willard, Utah, and Measures for Their Mitigation
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Potential for debris flow and debris flood along the Wasatch Front between Salt Lake City and Willard, Utah, and measures for their mitigation by Gerald F. Wieczorek, Stephen Ellen, Elliott W. Lips, and Susan H. Cannon U.S. Geological Survey Menlo Park, California and Dan N. Short Los Angeles County Flood Control District Los Angeles, California with assistance from personnel of the U.S. Forest Service Open-File Report 83-635 1983 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature, Contents Introduction Purpose, scope, and level of confidence Historical setting Conditions and events of this spring The processes of debris flow and debris flood Potential for debris flow and debris flood Method used for evaluation Short-term potential Ground-water levels Partly-detached landslides Evaluation of travel distance Contributions from channels Contributions from landslides Recurrent long-term potential Methods recommended for more accurate evaluation Mitigation measures for debris flows and debris floods Approach Existing measures Methods used for evaluation Hydrologic data available Debris production anticipated Slopes of deposition General mitigation methods Debris basins Transport of debris along channels Recommendations for further studies Canyon-by-canyon evaluation of relative potential for debris flows and debris floods to reach canyon mouths, and mitigation measures Acknowledgments and responsibility References cited Illustrations Plate 1 - Map showing relative potential for both debris flows and debris floods to reach canyon mouths; scale 1:100,000, 2 sheets Figure 1 - Map showing variation in level of confidence in evaluation of potential for debris flows and debris floods; scale 1:500,000. -
The Challenge of Explaining Meander Bends in the Eberswalde Delta
Lunar and Planetary Science XXXIX (2008) 1897.pdf THE CHALLENGE OF EXPLAINING MEANDER BENDS IN THE EBERSWALDE DELTA. E. R. Kraal1 and G. Postma2, 1Department of Geoscience, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 2406 ([email protected]), 2Faculty of Geosciences, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands ([email protected]). Introduction: Curved, semi- concentric loops, hypothesis and have conducted research in alternative interpreted as meander bends (point bars) have been formation mechanisms (Kraal and Postma, in prep). recognized in the delta plain of the Eberswalde Delta, Methodology: An alternative for bed-load Holden NE crater (Wood, 2005, Jerolmack et al., transport is ‘en-masse’ sediment transport triggered 2004, Malin & Edgett 2003, Moore et al. 2003). The by catastrophic events of water discharge. This structures have led to important and already deep- would require significantly less water, both within rooted paleo-climate interpretations of a long-lived, the flowing deposit and not require deposition in a Noachian-aged crater lake with persistent liquid standing body of water. To verify if similar bends as water on the Martian surface (Malin and Edgett, in Fig. 1A can be produced by ‘en-masse’ sediment 2003; Moore et al., 2003; Pondrelli et al., 2005) or as transport, we conducted a series of experiments that formation of meander bends with alluvial fans focused on morphological development of debris (Jerolmack et al., 2004). flows of variable water content. Since the ratio sediment/water exerts a primary control on viscosity Background: Meanders, while common in and strength of the flow, we thus obtained a range of some places on the earth, are non-trival features to morphologies that expresses the relative amount form. -
Geysers Valley Hydrothermal System (Kamchatka): Recent Changes Related to Landslide of June 3, 2007
Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Geysers Valley Hydrothermal System (Kamchatka): Recent Changes Related to Landslide of June 3, 2007 A.V. Kiryukhin, T.V. Rychkova, V.A. Droznin, E.V. Chernykh, M.Y. Puzankov, L.P. Vergasova Institute of Volcanology and Seismology FEB RAS, Piip-9, P-Kamchatsky, Russia 683006 [email protected] Keywords: Geysers, landslide, Kamchatka. landslide – the Vodopadny Creek Basin, which does not have the steep slopes and hydrothermal activity exhibited by ABSTRACT the rest of the Geysers Valley. This raises a key question – why did this landslide, which shifted 20 mln m3 of rocks 2 On June 3, 2007 catastrophic landslide took place in Geysers km downstream of the Geysernaya river, bury eight major Valley, Kamchatka. It started with steam explosion and was geysers at lower elevations under 20 - 40 m of mud debris then was transformed into debris mudflow. Within 2 minutes and flood eleven geysers located 20 m beneath Podprudnoe (D. Shpilenok, pers.com. 2007), 20 mln m3 of mud, debris, Lake? and blocks of rock were shifted away. As a result of this, eight major geysers located at lower elevations were sealed The caprock of the hydrothermal reservoir is composed of under 20-40 m of thick mud debris flow, and eleven geysers 4 Geysernya Unit (Q3 grn) lake caldera deposits (pumice sank beneath the 20 m deep Podprudnoe Lake created by tuffs, tuff gravels, tuff sandstones and lenses of breccias), rock dam across the Geysernaya river. Analysis of the dipping at an angle of 8 - 25о to North-West (Fig. -
Homeowner's Guide for Flood, Debris and Erosion
Homeowner’s Guide for Flood, Debris, and Erosion Control after Fires The assistance of the following agencies and publications in preparing this guide is gratefully acknowledged: Homeowner’s Guide for Flood, Debris, and Erosion Control published by the Los Angeles County Department of Public Works Homeowners Guide for Flood Prevention and Response published by Santa Barbara County Flood Control and Water Conservation District Stormwater Best Management Practice Handbook for Construction Activities California Stormwater Quality Association (CASQA), January 2003 Table of Contents After the Fire .................................................................... 1 Getting Prepared ............................................................. 3 Methods for Protecting Your Property .......................... 6 Flood Insurance ............................................................. 11 Glossary of Terms ......................................................... 12 *This information is provided to assist residents with erosion control, but not all circumstances are alike. Home owners should consult an erosion control professional for assistance with more difficult circumstances. After the Fire The effects of fire can be felt long after the flames are extinguished. Rates of erosion and runoff can increase to unsafe levels when trees, shrubs, grasses and other groundcover are no longer present. Under normal circumstances, roots help to stabilize soil, while stems and leaves slow water down, giving it time to absorb or soak into the soil. These protective functions can be severely compromised or even eliminated by fires. In the aftermath of a fire, the potential for flooding, debris flows, and erosion is greatly increased. Fortunately there are many things you can do to protect your home or business from the damaging effects of a fire: Flooding - Flooding may occur even during moderate storms as rain falls on areas where vegetation has been destroyed by fire.