Microhabitat Use, Seasonal Activity and Diet of the Snake-Eyed Skink (Ablepharus Kitaibelii fitzingeri)Incomparison with Sympatric Lacertids in Hungary

Total Page:16

File Type:pdf, Size:1020Kb

Microhabitat Use, Seasonal Activity and Diet of the Snake-Eyed Skink (Ablepharus Kitaibelii fitzingeri)Incomparison with Sympatric Lacertids in Hungary Biologia, Bratislava, 62/4: 482—487, 2007 Section Zoology DOI: 10.2478/s11756-007-0092-6 Microhabitat use, seasonal activity and diet of the snake-eyed skink (Ablepharus kitaibelii fitzingeri)incomparison with sympatric lacertids in Hungary Gábor Herczeg1,TiborKovács1,ZoltánKorsós2 & János Tor¨ ok¨ 1 1Behavioural Ecology Group, Department of Systematic Zoology and Ecology, E¨otv¨os Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; e-mail: [email protected] 2Department of Zoology, Hungarian Natural History Museum, Baross u. 13,H-1088 Budapest, Hungary Abstract: Microhabitat selection and seasonal activity of the snake-eyed skink, Ablephaus kitaibelii fitzingeri,arecompared to the two lacertid lizards (Lacerta viridis and Podarcis muralis) that co-occur in many of its habitats. The food composition of A. k. fitzingeri is also described. Significant differences in microhabitat selection and seasonal activity among the three species were found. The snake-eyed skink was associated with open grasslands, and with a low level of scrub, bare soil and rock cover. The microhabitat preference of L. viridis was quite similar to that of the skink, but with a higher preference for scrub. P. muralis occurred in places with greater rock and bare soil cover, and more scrub than A. k. fitzingeri. Activity of the snake-eyed skink decreased dramatically in summer, probably because of the reduced thermal inertia originating from the extremely small size of this species, but its seasonal activity overlapped with those of the lacertids. Stomach content analysis of the snake-eyed skink suggests that it is a generalist predator of small, mainly flightless arthropod prey. Competition with juvenile lacertids and predation by adult L. viridis are conceivable for the snake-eyed skink. Key words: Ablepharus kitaibelii fitzingeri; diet composition; Lacerta viridis; microhabitat use; Podarcis muralis;seasonal activity Introduction rent distribution and possible threatening factors of A. k. fitzingeri in Hungary was published recently (Herczeg The snake-eyed skink, Ablepharus kitaibelii Bibron et et al. 2004). Its general ecology is virtually unknown Bory, 1833 is the only representative of the genus in except from some anecdotal observations, and even its Europe and also the northernmost European represen- current demographic status is based on inadequate cen- tative of the family Scincidae. Despite the unique status sus data, and most local populations are subject to of the snake-eyed skink in the European herpetofauna, continued human disturbance (Korsós 1994; Herczeg & almost all aspects of its biology have remained unstud- Korsós 2003). Before any sound conservation plan can ied (Gasc et al. 1997; Pasuljevič 1965, 1976), proba- be developed, a basic knowledge of its general ecology bly because of its secretive habits. Ablepharus kitaibelii is required. fitzingeri Mertens, 1952, which occupies the northern Community structure and resource utilisation / range of the species’ distribution area, occurs mainly partition patterns of lizards have been an attrac- in Hungary, with sporadic records in southern Slovakia tive topic for ecologists in the last half century (e.g., and northern Serbia (Mertens 1952; Fuhn 1969; Gruber Schoener 1968; Pianka 1973; Vitt et al. 1981, 2000). 1981; Ljubisavljevic et al. 2002). From this work it was suggested that space, time and In Europe, the species is listed in the Bern Con- diet are perhaps the most important limiting factors vention (Council of Europe 1994), Appendix 2 and in where segregation in lizard assemblages could be de- the European Union Habitat Directive (European Com- tected (e.g., Schoener 1968; Pianka 1973; Toft 1985; mission 1992), Annex IV, as a species in need of strict Vrcibradic & Rocha 1996). The tools developed in these protection. A. k. fitzingeri is strictly protected in Hun- studies are widely used to answer conservation ques- gary and is listed in the Hungarian Red Data Book tions (e.g., Sartorius et al. 1999; Vega et al. 2000) or as a potentially endangered taxon (Rakonczay 1989). for describing the ecological requirements of endangered However, most previous studies have dealt only with species (e.g., Martín & Salvador 1995). In this paper, its morphology and distribution (e.g., Fitzinger 1829; we present the first report of microhabitat use, sea- Lendl 1899; Fejérváry 1912, 1917, 1925; Bolkay 1914; sonal activity and diet of the snake-eyed skink. With Méhely 1918; Fejérváry-Lángh 1943; Szunyoghy 1954; respect to microhabitat use and seasonal activity, we Dely 1978; Solti & Varga 1988). A summary of the cur- compared A. k. fitzingeri with the sympatric Lacerta c 2007 Institute of Zoology, Slovak Academy of Sciences Ecological notes on Ablepharus kitaibelii fitzingeri 483 viridis Laurenti, 1768 and Podarcis muralis Laurenti, the sample sizes were too small for biologically meaningful 1768, the lacertid lizards that co-occur with the snake- interpretations. Taxonomic diet composition was summa- eyed skink at most of its Hungarian sites (Herczeg & rized as the proportion of prey items from a given taxon Korsós 2003). Our goal was to provide some ecological in the total number of prey items (n%) and the proportion data on the snake-eyed skink, which conservationists of lizard individuals eating a prey taxon (F), after James (1991) and Maragou et al. (1996). can use for the conservation management of this reptile endemism of the Carpathian Basin. Statistical analyses We used principal components analysis to reduce the six Material and methods original environmental variables to a smaller number of or- thogonal principal components (PCs). We used data only from spring and autumn as A. k. fitzingeri was almost com- Study organisms and sampling pletely absent in summer (n = 2). Three PCs were extracted The northernmost subspecies (A. k. fitzingeri)ofthesnake- from the six original variables according to Kaiser’s criteria. eyed skink (A. kitaibelii) is one of the smallest lizards in To gather biologically interpretable PCs we rotated the ini- Europe, with a snout to vent length (SVL) of 20–55 mm tial factor solutions by the Varimax procedure. We tested (juveniles ca. 22–30 mm) and body mass (BM) of 0.15–1.5 for differences in the PC scores between species using Anal- g. In Hungary, it occurs in different habitats with respect ysis of Variance (ANOVA) followed by the LSD test. Due to substrate: sandstone, limestone, dolomite, andesite, gab- to the low number of observed A. k. fitzingeri individuals, bro, basalt, or even pure sand (Herczeg et al. 2004; for more we did not test for seasonal differences. We compared the details of the species see Gruber 1981). The common wall seasonal activities of the species using χ2 tests. lizard (P. muralis) is a rock-dwelling, insectivorous helio- We calculated Shannon diversity indices and compared therm species and has SVL of 25–65 mm (juveniles ca. 25–35 them with Hutcheson t-tests (Hutcheson 1970). To compare mm) and BM of 0.7–6.5 g, and is widespread in Europe (for the diet composition between the spring and autumn sam- details see Gruschwitz & B¨ohme 1986). The green lizard (L. ples, we calculated Proportional Similarity indices. To ex- viridis) is one of the largest lizards in Europe with SVL of plore the relationship between F and n%, we used the Spear- 30–120 mm (juveniles ca. 30–45 mm) and BM of 0.9–25 g. It man rank correlation test. is a ground-dwelling, insectivorous heliotherm lizard and is Because our purpose was to study interspecific differ- widespread in Europe (for details see Nettmann & Rykena ences, we randomly assigned individuals between sex, age 1984). and size categories. All statistics were computed using STA- Fieldwork was carried out in the Sas Hill Nature Re- TISTICA 7.0 for WINDOWS (StatSoft Inc., Tulsa, Okla- serve, a dolomite hill (maximum elevation 259 m a.s.l.) homa, 1994) software. within the area of Budapest (47◦30 N; 19◦51 E). The habi- tat offered various microhabitat types, such as closed or opened dolomite grasslands, solitary or aggregated scrub, Results forest patches and rocky outcrops. We sampled lizards over six, five and six days in spring, The three PCs together accounted for 75% of the total summer and autumn, respectively, from 12 March to 12 variance (Table 1). According to Norman & Streiner November in 2002 to investigate microhabitat use and sea- (2000), the critical value for the minimum acceptable sonal activity. Sampling days were once every second week factor loading was 0.362 in our case. The first PC was within each season and we chose mostly clear, sunny days. negatively correlated with cover and height of arbo- Sampling was always by the first author from 07.00 to 19.00 real plants and positively with the cover of herbaceous on each day. GH moved slowly through the area and if a lizard was detected, species and microhabitat variables plants (Table 1). Thus PC1 describes a gradient from (cover of herbaceous plants, cover of arboreal/mainly scrub/ grasslands to scrub and forest patches. The second PC plants, rock cover and percentage of bare soil were estimated was positively correlated with the cover and height of to the nearest 5%; height of herbaceous plants and arboreal herbaceous plants and negatively with rock cover (Ta- plants were measured (to the nearest 5 cm) and recorded ble 1), likewise describing a gradient from grassy areas within 2 m of the location where the lizard was first seen. A to rocky outcrops. The third PC was positively corre- constant effort was made to sample each habitat type. Al- lated with the cover of bare soil and negatively with the together 255 lizards (46 A. k. fitzingeri, 113 L. viridis,and cover of herbaceous plants (Table 1), i.e., it represents 96 P. muralis) were recorded. Some additional individuals a gradient from open, patchy grassland to thick, closed were observed without full data recording.
Recommended publications
  • Diversity of Hemipenes and Its Taxonomical Implication in the Genus Ablepharus (Squamata: Scincidae)
    ARPHA Conference Abstracts 2: e39487 doi: 10.3897/aca.2.e39487 Conference Abstract Diversity of hemipenes and its taxonomical implication in the genus Ablepharus (Squamata: Scincidae) Vladislav Vergilov‡, Georgi Popgeorgiev‡§, Boyan Zlatkov ‡ National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria § Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria Corresponding author: Vladislav Vergilov ([email protected]) Received: 27 Aug 2019 | Published: 28 Aug 2019 Citation: Vergilov V, Popgeorgiev G, Zlatkov B (2019) Diversity of hemipenes and its taxonomical implication in the genus Ablepharus(Squamata: Scincidae). ARPHA Conference Abstracts 2: e39487. https://doi.org/10.3897/aca.2.e39487 Abstract The genus Ablepharus encompasses 10 species and 12 subspecies, distributed from Hungary to India. Most species and subspecies have been described from the Middle East and Central Asia, based on external morphology (pholidosis, body size and coloration). The present study is an attempt to demonstrate the hemipenial morphology throughout the genus. Some taxonomical questions arose during comparison of the hemipenes of several subspecies and species, showing the necessity of a revision of the genus. A dendrogram generated from distinctive hemipenial characters revealed rapid divergence of this structure in closely related taxa and discrepancy with the phylogenetic tree based on molecular data from previous studies. Keywords skink, morphology, hemipenis, relationships © Vergilov
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Species List of Amphibians and Reptiles from Turkey
    Journal of Animal Diversity Online ISSN 2676-685X Volume 2, Issue 4 (2020) http://dx.doi.org/10.29252/JAD.2020.2.4.2 Review Article Species list of Amphibians and Reptiles from Turkey Muammer Kurnaz Gümüşhane University, Kelkit Vocational School of Health Services, Department of Medical Services and Techniques 29600, Kelkit / Gümüşhane, Turkey *Corresponding author : [email protected] Abstract Turkey is biogeographically diverse and consequently has a rich herpetofauna. As a result of active herpetological research, the number of species has steadily increased in recent years. I present here a new checklist of amphibian and reptile species distributed in Turkey, revising the nomenclature to reflect the latest taxonomic knowledge. In addition, information about the systematics of many species is also given. In total 35 (19.4%) amphibian and 145 Received: 8 October 2020 (80.6%) reptile species comprise the Turkish herpetofauna. Among amphibians, 16 (45.7%) Accepted: 23 December 2020 anurans and 19 urodelans (54.3%) are present. Among reptiles, 11 (7.6%) testudines, 71 Published online: 31 January 2021 (49%) saurians, 3 (2.1%) amphisbaenians and 60 (41.3%) ophidians are considered part of the herpetofauna. The endemism rate in Turkey is considered relatively high with a total of 34 species (12 amphibian species – 34.3% and 22 reptile species – 15.2%) endemic to Turkey, yielding a total herpetofaunal endemism of 18.9%. While 38 species have not been threat-assessed by the IUCN, 92 of the 180 Turkish herpetofaunal species are of Least Concern (LC), 13 are Near Threatened (NT), 10 are Vulnerable (VU), 14 are Endangered (EN), and 7 are Critically Endangered (CR).
    [Show full text]
  • Distribution of Reptiles in Kosovo and Metohija Province
    UNIVERSITY THOUGHT doi:10.5937/univtho8-16981 Publication in Natural Sciences, Vol. 8, No. 2, 2018, pp. 1-6. Original Scientific Paper CONTRIBUTION TO THE HERPETOFAUNA OF SERBIA - DISTRIBUTION OF REPTILES IN KOSOVO AND METOHIJA PROVINCE LJILJANA TOMOVIĆ1*, MAGDALENA TIMOTIJEVIĆ2, RASTKO AJTIĆ3, IMRE KRIZMANIĆ1, NENAD LABUS2 1Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia 2Faculty of Science and Mathematics, University of Priština, Kosovska Mitrovica, Serbia 3Institute for Nature Conservation of Serbia, Belgrade, Serbia ABSTRACT Kosovo and Metohija have already been recognized as regions with the highest diversity of reptiles in Serbia, where 92% (22 of 24) of existing reptile species can be found (Tomović et al., 2015a). First comprehensive contribution to herpetofauna of Kosovo and Metohija was provided by late Professor Gojko Pasuljević. In this study we present a complete dataset of distribution records for 13 most common reptile species in Kosovo and Metohija, including published and new distribution data compiled, and provide standardized 10 x 10 km UTM maps for these data. Results of this study include 1013 distribution records (278 new and 735 published data) for the following reptiles: Testudo hermanni, Ablepharus kitaibelii, Anguis fragilis, Lacerta agilis, Lacerta viridis, Podarcis muralis, Podarcis tauricus, Coronella austriaca, Dolichophis caspius, Natrix natrix, Natrix tessellata, Zamenis longissimus and Vipera ammodytes. The most widely distributed species, which occupy more than 50 UTM 10 x 10 km squares are: Podarcis muralis and Vipera ammodytes. Species with limited distribution which occupy less than 20 UTM 10 x 10 km are: Dolichophis caspius and Lacerta agilis. The largest numbers of new or confirmed literature data are recorded for: Anguis fragilis, Testudo hermanni and Vipera ammodytes.
    [Show full text]
  • New Locality Records of Ablepharus Kitaibelii Fitzingeri Mertens, 1952 from the Area Surrounding the River Ipel’, in Slovakia and Adjacent Hungary
    North-Western Journal of Zoology Vol. 4, No. 1, 2008, pp.125-128 [Online: Vol.4, 2008: 05] New locality records of Ablepharus kitaibelii fitzingeri Mertens, 1952 from the area surrounding the river Ipel’, in Slovakia and adjacent Hungary Zoltán KORSÓS1, Róbert CSEKÉS2 and Eszter TAKÁCS3 1Department of Zoology, Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary, E-mail: [email protected] 2 U mlékárny 290, 353 01 Mariánské Lázně, Czech Republic 3Zoological Institute, Szent István University, Rottenbiller u. 50, H-1078 Budapest, Hungary Abstract. During a survey in August, 2006, the Ipoly (Ipel’) River region along the Hungarian-Slovakian border was visited for occurrences of the Pannonian Snake-eyed Skink (Ablepharus kitaibelii fitzingeri Mertens, 1952) at the northernmost border of its range. Populations at four localities were found, two of which (one in Slovakia and one in Hungary) proved to be new without previously known records. Key words: Ablepharus kitaibelii fitzingeri, distribution, new localities, Slovakia, Hungary The Snake-eyed skink, Ablepharus In the framework of a Hungarian kitaibelii (Bibron & Bory, 1833), is the nationwide project on the origin and only representative of the genus in evolution of the selected faunal Europe, and the northernmost elements of the Carpathian Basin, we European member of the lizard family surveyed the appropriate area of the Scincidae. The species’ subspecific subspecies’ (Ablepharus kitaibelii fitzin- composition is still under discussion geri) range along the Slovakian-Hunga- (Fuhn 1970, Ljubisavljevic et al. 2002, rian border, determined mainly by the Schmidtler 1997), although a successful valley of the Ipoly (Ipel’) river and the attempt was already made on its adjacent slopes.
    [Show full text]
  • The Herpetofauna of the Island of Rhodes (Dodecanese, Greece)
    HERPETOZOA 21 (3/4): 147 - 169 147 Wien, 30. Jänner 2009 The herpetofauna of the Island of Rhodes (Dodecanese, Greece) Die Herpetofauna der Insel Rhodos (Dodekanes, Griechenland) THOMAS BADER & CHRISTOPH RIEGLER & HEINZ GRILLITSCH KURZFASSUNG Die Herpetofauna von Rhodos wird aufgrund von Literaturdaten, Sammlungsmaterial des Naturhistorischen Museums in Wien sowie Ergebnissen diverser herpetologischer Exkursionen aufgelistet. Verbreitungskarten aller nachgewiesenen Arten sowie eine aktuelle herpetologische Faunenliste werden erstellt. Folgende Arten wurden regelmäßig und wiederholt festgestellt: Bufo viridis, Hyla arborea, Pelophylax cerigensis, Mauremys rivulata, Hemidactylus turcicus, Laudakia stellio, Ophisops elegans, Lacerta trilineata, Anatolacerta oertzeni, Ablepharus kitaibelii, Chalcides ocellatus, Trachylepis aurata, Blanus strauchi, Typhlops vermicularis, Dolichophis sp., Platyceps najadum, Hemorrhois nummifer, Zamenis situla, Natrix natrix, Telescopus fallax. Der taxonomische Status der Springnatter wird diskutiert. Aufgrund mehrerer aktueller Funde wird Mediodactylus kotschyi ergän- zend zur Herpetofauna von Rhodos hinzugefügt und das Auftreten folgender Arten, deren Vorkommen in der Literatur regelmäßig für Rhodos angegeben wurde, in Frage gestellt: Testudo graeca, Pseudopus apodus, Natrix tessellata. Aktuelle Einzelfunde gelangen von Chamaeleo chamaeleon, Malpolon monspessulanus, Testudo grae- ca und Testudo hermanni, deren Status diskutiert wird. ABSTRACT Based on several recent herpetological surveys, as well as data from
    [Show full text]
  • First Evidence for the Snake-Eyed Skink Ablepharus Kitaibelii (Bibron Et Bory De Sant-Vincent, 1833) (Sauria Scincidae) in Astypalea Island (Dodecanese, Greece)
    Biodiversity Journal , 2019, 10 (1): 3–6 https://doi.org/ 10.31396/Biodiv.Jour.2019.10.1.3.6 First evidence for the snake-eyed skink Ablepharus kitaibelii (Bibron et Bory de Sant-Vincent, 1833) (Sauria Scincidae) in Astypalea Island (Dodecanese, Greece) Mauro Grano¹ * & Cristina Cattaneo² ¹Coordinator of Lazio Section Societas Herpetologica Italica ²Via Eleonora d’Arborea 12, 00162 Rome, Italy *Corresponding author, e-mail: [email protected] ABSTRACT The first documentation (also with photos) on the presence of the snake-eyed skink Able - pharus kitaibelii (Bibron et Bory de Saint-Vincet, 1833) (Sauria Scincidae) in Astypalea Island (Dodecanese, Greece) is provided here. Until now, only five specimens in the Natural History Museum of Crete were known. KEY WORDS Ablepharus kitaibelii ; Astypalea; Dodecanese; Snake-eyed skink. Received 13.01.2019; accepted 19.02.2019; published online 28.02.2019 INTRODUCTION budaki , and which could be ascribed to A. budaki anatolicus Schmidtler, 1997 (Skourtanioti et al., The snake-eyed skink Ablepharus kitaibelii 2016). (Bibron et Bory de Saint-Vincent, 1833) (Sauria The occurrence of the snake-eyed skink A. ki - Scincidae) is the only species of the genus distrib - taibelii in the Aegean Island of Astypalea (Dode - uted in Europe and shows a distribution from canese, Greece) is here reported for the first time. southern Slovakia and Hungary, through most of Serbia, the eastern parts of continental Croatia, southern Romania, Bulgaria, Macedonia, Albania MATERIAL AND METHODS (lowland areas), Turkey (western and central), and Greece (Mainland, and many Ionian and Aegean The data here presented came from field obser - Islands). As regards its range in the Aegean Islands, vation made by the authors on Astypalea Island on Kos, Leros, Makronisi (SW of Lipsi), Nisyros, during two different periods: August 2015 and Tilos (Masseti, 1999), Chalki, Alimia, Symi, and April 2016.
    [Show full text]
  • I Online Supplementary Data – Henle, K. & A. Grimm-Seyfarth (2020
    Online Supplementary data – Henle, K. & A. Grimm-Seyfarth (2020): Exceptional numbers of occurrences of bifurcated, double, triple, and quintuple tails in an Australian lizard community, with a review of supernumerary tails in natural populations of reptiles. – Salamandra, 56: 373–391 Supplementary document S1. Database on bifurcation, duplication and multiplication of tails in natural populations of reptiles. We considered only data that were provided at least at the genus level and that explicitly originated from natural populations or for which this was likely, as either the authors indicated for other specimens that they were captive animals, or because museum series were examined (even if data were provided only for the specimens with accessory tails). We relaxed these criteria for pre-1900 publications and included also individuals without determination and data that were not explicitly stated as applying to wild individuals if such an origin was plausible. We extracted the following data (if available): species name, number of individuals with accessory tails, number of individuals with bifurcation, duplication, trifurcation, quadruplication, quintuplication and hexaplication, sample size, geographic origin (usually country but may also be oceanic islands), microhabitat, and the year of publication. Nomenclature follows Cogger (2014) for Australian reptiles and Uetz et al. (2019) for other species regarding generic names, name changes due to priorities and synonymies, and for subspecies identified in the source reference that have been elevated later to full species rank. Name changes due to splitting of taxa into several species were made only if allocation of the data to the new species was obvious from morphological or geographic information provided by the assessed source reference or was already done by other authors.
    [Show full text]
  • Morphology and Reproduction of the Snake-Eyed Skink (Ablepharus Kitaibelii Bibron & Bory De Saint-Vincent, 1833) in the Western Most Parts of Its Range
    NORTH-WESTERN JOURNAL OF ZOOLOGY 14 (2): 185-192 ©NWJZ, Oradea, Romania, 2018 Article No.: e171510 http://biozoojournals.ro/nwjz/index.html Morphology and reproduction of the Snake-eyed Skink (Ablepharus kitaibelii Bibron & Bory De Saint-Vincent, 1833) in the western most parts of its range Olga JOVANOVIĆ GLAVAŠ1, Ana KOLARIĆ2, Mariann EROSS3 and Dušan JELIĆ4,* 1. Department of Biology, University of Osijek, Cara Hadrijana 8A, Osijek, Croatia. 2. Travnik 35, 40000 Čakovec, Croatia. 3. Szent István street 15, 4400 Nyíregyháza, Hungary. 4. Croatian Institute for Biodiversity, Maksimirska cesta 129/5, Zagreb, Croatia. * Corresponding author, D. Jelić, E-mail: [email protected] Received: 28. January 2017 / Accepted: 14. September 2017 / Available online: 23. September 2017 / Printed: December 2018 Abstract. The most western populations of the Snake-eyed Skink, discovered recently on Papuk Mountain and Ilok area in Croatia, has never been studied before. Here we examined the morphology and age structure, reproduction, and prevalence of injuries in both populations. We examined 191 individuals: 163 adults and 28 juveniles. Morphological analysis was based on 140 adult individuals (129 from Papuk, 11 from Ilok) and 34 juveniles (21 caught in the wild and 13 hatched in captivity). Our results showed that although there is no clear sexual dimorphism, adult animals exhibit slight differences between sexes. In 34.1 % of the adult individuals in Papuk and in 35 % of juveniles, a tail has been regenerated, while in Ilok in 27.3 % of the adults. In 2010-2012 nine gravid females collected from Papuk Mountain deposited a total of 25 eggs in the lab.
    [Show full text]
  • Die Ablepharus Kitaibelii - Gruppe in Süd-Anatolien Und Benachbarten Gebieten (Squamata: Sauria: Scinidae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 1997 Band/Volume: 10_1_2 Autor(en)/Author(s): Schmidtler Josef Friedrich Artikel/Article: Die Ablepharus kitaibelii - Gruppe in Süd-Anatolien und benachbarten Gebieten (Squamata: Sauria: Scinidae). 35-63 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 10 (1/2): 35 - 63 Wien, 30. Juli 1997 Die Ablepharus kitaibelii - Gruppe in Süd-Anatolien und benachbarten Gebieten (Squamata: Sauna: Scincidae) The Ablepharus kitaibelii - group in southern Anatolia and adjacent territories (Squamata: Sauria: Scincidae) JOSEF F. SCHMIDTLER ABSTRACT Near East snake-eyed skinks in the distribution area of Ablepharus (k.) kitaibelii BroRON & BORY, 1833 turned out to be a group of four species ("Ablepharus kitaibelii - group"): (1) A. kitaibelii s. Str., here restricted to the Balkan Peninsula, Western and Central Anatolia; (2) the closely related^, chernovi DAREVSKY, 1953, representing a polytypic species: A. ch. chernovi (from Armenia in the East along the eastern Taurus and northern Syria to the northeastern margins of the Bolkar mountains / Nigte), A. ch. eiselti n.ssp. (Cilician plains around Adana and submontane parts of the Antitaurus), A. ch. ressli n. ssp. (southern slopes of the Bolkar mountains N Mersin), A. ch. isauriensis n.ssp. (central South Anatolia and adjacent parts of Central Anatolia); (3) A. kitaibelii budaki GôÇMEN, KUMLUTAS& TOSUNOOLU, 1996, described from Cyprus, representing a polytypic species: A. b. budaki (Cyprus and Levantine region from the Antitaurus in the North to northern Lebanon in the south) and A. b. anatolicus n. ssp.
    [Show full text]
  • Journal of Science Evaluation of the Reptilian Fauna in Amasya Province, Turkey with New Locality Records
    Research Article GU J Sci 31(4): 1007-1020 (2018) Gazi University Journal of Science http://dergipark.gov.tr/gujs Evaluation of The Reptilian Fauna in Amasya Province, Turkey with New Locality Records Mehmet Kursat SAHIN1,2, *, Murat AFSAR3 1Hacettepe University, Faculty of Science, Biology Department, 06800, Ankara, Turkey 2Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Biology Departmet, Karaman, Turkey 3Manisa Celal Bayar University, Faculty of Science and Letters, Biology Department, Manisa, Turkey Article Info Abstract The present study investigated the reptilian fauna in Amasya Province, Turkey. Reptile species Received: 14/01/2018 were identified from collections made during field studies or recorded in literature, with some Accepted: 18/06/2018 new locality records obtained. Field studies were undertaken over two consecutive years (2016 and 2017). Two lacertid species, one skink species, two colubrid species and one viper species were officially recorded for the first time or their information was updated. In addition to Keywords species locality records, chorotypical and habitat selection were also assessed and the Viper International Union for Conservation of Nature Red List of Threatened Species criteria Reptilia included. Data on the distribution and locality information for each taxon is also provided. Our Fauna findings demonstrate that Amasya might be an ecotone zone between the Mediterranean, Chorotype Caucasian, and European ecosystems. Although there are some concerns for the sustainable Eunis dynamics of reptilian fauna, relatively rich and different European nature information system habitat types provide basic survival conditions for reptilian fauna in the province. 1. INTRODUCTION Turkey is the only country that almost entirely includes three of the world’s 34 biodiversity hotspots: the Caucasus, Irano-Anatolian, and Mediterranean [1].
    [Show full text]