The Mystery of the Heavenly Bursts

Total Page:16

File Type:pdf, Size:1020Kb

The Mystery of the Heavenly Bursts 62 KNOWLEDGE FROM KNOWLEDGE Signs in in the recent heavens: years, depths space of been have detected fast radio bursts coming from the by telescopesby like the the at one Arecibo Observatory. IMAGE: JasoN HEssELS-ASTRON / DANIELLE FUTSELaaR-ARTsoURCE.NL / B.P. IRWIN / D. VAN DE WaTER / SHUTTERSTOCK Max Planck Research · 1 | 2020 PHYSICS & ASTRONOMY THE MYSTERY of THE HEAVENLY BURSTS TEXT: HELMUT HORNUNG A cosmic lightning storm is playing out all around us. At any given moment, somewhere in the sky, a burst of radiation flashes and then fades away. Only observable with radio telescopes, these bursts last one-thousandth of a second and are one of astro- physics’ greatest mysteries. Scientists 63 rather doubt this is evidence of warlike aliens fighting “star wars” in the “We now know of more than a hundred,” radio flash and the derived frequency vastness of space. Experts have named says Laura Spitler. Since March 2019, of such events closely matched the them “fast radio bursts” – but where Spitler has headed a Lise Meitner data obtained by astronomers for all Research Group on fast radio bursts previously recorded bursts. do they come from? (FRBs) at the Max Planck Institute for Radio Astronomy. Spitler has The findings did indeed confirm sta- dedicated herself to these transient tistical estimates that about 10,000 flickers in space for many years. In of these unusual cosmic phenome- 2014, an international team under her na flare up somewhere in the sky leadership discovered the first FRB every single day. This astonishingly in the Northern Hemisphere in the large figure was reached by calcula- The Parkes Observatory in Australia is a constellation of Auriga. At the time, ting how much of the sky would have gigantic dish of metal mesh gazing at the astronomers were making obser- to be observed and for how long, in the sky. With a diameter of 64 meters, vations in Puerto Rico using the dish an attempt to explain the compara- this radio telescope was once the of the Arecibo Observatory. This tively few observations made to largest fully mobile radio telescope in dish, with a diameter of 305 meters, date. the Southern Hemisphere. It regis- is constructed and supported in a tered a very mysterious radio burst in natural depression and can only fo- The Arecibo observation also removed 2001, and nobody noticed it! It wasn’t cus on a relatively small section of the last doubts about whether the until five years later that astrophysi- the sky. radio bursts really come from the cist Duncan Lorimer and his student depths of the universe. After the dis- David Narkevic stumbled upon the “Statistically, only seven eruptions covery of the first bursts, scientists signature of the signal in the tele- should occur per minute, dispersed had suggested that they were being scope data virtually by chance. Even over the entire sky. So it takes a lot generated way beyond the Milky then, the specialists couldn’t make of luck to align your telescope to the Way. This was deduced utilizing an sense of the phenomenon. But this right position at the right time,” said effect known as “plasma dispersion.” was not the only “Lorimer burst” to Spitler after announcing her disco- Radio signals that travel a long dis- be discovered. very. The properties of the observed tance through the universe collide Max Planck Research · 1 | 2020 KNOWLEDGE FROM SUMMARY Fast radio bursts last only a thousandth of a second and were discovered by chance almost 15 years ago. They originate from galaxies Ross at great distances and appear NG NG I to be produced in different environments. : HENN O T Astronomers now know ho P that more or less regularly repeating radio bursts,known as “repeaters”, also exist. The source of the radio bursts is still unknown. Pursuing the mystery: Laura Spitler researches fast radio bursts (FRBs) at the Max Planck Institute for Radio Astronomy. 64 with a large number of free elec- Matter is so densely packed in a neu- called FRB 121102, was reported on- trons in interstellar space. Plasma tron star that on Earth’s surface, one line in 2014. “This disproved all of dispersion decreases the velocity of teaspoonful of it would weigh about the models explaining FRBs as the lower-frequency radio waves pro- as much as Germany’s Zugspitze result of a catastrophic event,” says ducing a characteristic spread in the massif mountain. Neutron stars ro- Spitler. frequencies of the signal. The dis- tate rapidly around their axis, and persion of the radiation burst dis- some of them have exceptionally FRB 121102 (which was also discovered covered at the Arecibo Observatory strong magnetic fields. Explanations at the Arecibo Observatory) was was three times larger than would be for FRBs have varied. They may be subsequently monitored by the re- expected from a source within the generated during supernovae them- searchers using the Very Large Ar- Milky Way. selves, or perhaps during the fusion ray in New Mexico. After 80 hours of two neutron stars in a compact of observation time, they registered But where do the radio bursts come double system as the magnetic fields nine bursts and determined the from? Are they really from aliens us- of both stars collapse simultaneously. source’s position to within one sec- ing huge light sails to propel space Or perhaps a neutron star collapses ond of arc. At this position in the probes? This idea was originally put still further to create a black hole and sky, there is a permanently radiating forward by Abraham Loeb – a re- this generates a burst. radio source; optical images show a searcher at the renowned institution faint galaxy about three billion light- of Harvard University no less – and Such scientific scenarios initially sound years away. With a diameter of only was recently seized on by the me- plausible. However, they have one 13,000 light-years, this galaxy is a dia. But most astrophysicists believe flaw: they predict the occurrence of dwarf; the Milky Way is about ten the bursts have a natural source and only one radio burst in each event. times larger. “However, many new have come up with diverse explana- “If the radio burst is generated stars, and perhaps even particularly tions – all of them relatively bizarre. during a cataclysmic event that de- large ones, are being born in the gal- Many of these potential scenarios stroys the source, then we would ex- axy, and this might be a clue as to involve neutron stars. Neutron stars, pect to see only one burst per source,” the source of the radio bursts,” says only 20 kilometers in diameter, are says Laura Spitler. Indeed, only sin- Spitler. the remnants of the massive explo- gle bursts were observed in the years sions, known as supernovae, of high- right after their discovery – until She is referring to the possibility that mass stars. news of the first “repeater” burst, FRBs may be pulsars – cosmic light- Max Planck Research · 1 | 2020 PHYSICS & ASTRONOMY houses that regularly emit radio ra- rarer. Or perhaps they are younger tronomical,” this object is the closest diation. This brings neutron stars and more energetic than the Crab source ever observed. The findings back into play, because pulsars are Pulsar,” says Spitler. “FRB 121102’s also revealed that stars are evidently rapidly rotating neutron stars that home galaxy fits this model, as it born at a high frequency in the vicin- have strong magnetic fields. If the has the potential to produce just the ity of the burst. rotational and the magnetic axes right type of stars that become neu- of such an object are misaligned, a tron stars at the end of their lives.” Its position in the galaxy differs from light-house like, bundled radio beam But whether this model is correct is that of all the other bursts investi- can be produced. Each time this ce- still literally “written in the stars.” gated so far. FRBs, in conclusion, lestial spotlight sweeps across the Insight into their cause is not get- can apparently flare up in all kinds Earth, astronomers measure a short ting any easier, but observations are of cosmic regions and diverse envi- pulse. ongoing. ronments. “This is just one of the reasons why we still do not know The bursts from most radio pulsars In the summer of 2019, for instance, whether all bursts have the same are too weak to be detected from a the European VLBI Network of ra- type of source or are generated by great distance. However, short and dio telescopes examined another re- the same physical processes,” says extremely strong “giant pulses” are peater. During the five-hour obser- Spitler. “Their origin remains a another matter. Born in a supernova vation period, FRB 180916.J0158+65 mystery.” explosion observed in 1054 AD, the emitted no fewer than four radia- Crab Pulsar is a textbook example of tion bursts, each lasting less than this type of astronomical object. Its two milliseconds. Recently, the re- giant pulses would be visible even searchers also identified a roughly from neighboring galaxies. 16-day rhythm: for four days at a time, the source emits one or two “One promising model suggests that bursts every hour then goes silent FRBs are similar in nature to the for twelve days. The source of this Crab Pulsar, but they originate from radio burst is in a spiral galaxy about extragalactic neutron stars that emit 500 million light-years away. Even much larger pulses and are much though such a distance is truly “as- GLOSSARY 65 EUROPEAN VLBI NETWORK A network of radio telescopes located primarily in Europe and Asia.
Recommended publications
  • Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-08-20 Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds Richard Allen Black Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Electrical and Computer Engineering Commons BYU ScholarsArchive Citation Black, Richard Allen, "Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds" (2014). Theses and Dissertations. 4233. https://scholarsarchive.byu.edu/etd/4233 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds Richard Black A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Brian D. Jeffs, Chair Karl F. Warnick Neal K. Bangerter Department of Electrical and Computer Engineering Brigham Young University August 2014 Copyright c 2014 Richard Black All Rights Reserved ABSTRACT Digital Back End Development and Interference Mitigation Methods for Radio Telescopes with Phased-Array Feeds Richard Black Department of Electrical and Computer Engineering, BYU Master of Science The Brigham Young University (BYU) Radio Astronomy group, in collaboration with Cornell University, the University of Massachusetts, and the National Radio Astron- omy Observatory (NRAO), have in recent years developed and deployed PAF systems that demonstrated the advantages of PAFs for astronomy.
    [Show full text]
  • Gnc 2021 Abstract Book
    GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering
    [Show full text]
  • Chapter 3: Familiarizing Yourself with the Night Sky
    Chapter 3: Familiarizing Yourself With the Night Sky Introduction People of ancient cultures viewed the sky as the inaccessible home of the gods. They observed the daily motion of the stars, and grouped them into patterns and images. They assigned stories to the stars, relating to themselves and their gods. They believed that human events and cycles were part of larger cosmic events and cycles. The night sky was part of the cycle. The steady progression of star patterns across the sky was related to the ebb and flow of the seasons, the cyclical migration of herds and hibernation of bears, the correct times to plant or harvest crops. Everywhere on Earth people watched and recorded this orderly and majestic celestial procession with writings and paintings, rock art, and rock and stone monuments or alignments. When the Great Pyramid in Egypt was constructed around 2650 BC, two shafts were built into it at an angle, running from the outside into the interior of the pyramid. The shafts coincide with the North-South passage of two stars important to the Egyptians: Thuban, the star closest to the North Pole at that time, and one of the stars of Orion’s belt. Orion was The Ishango Bone, thought to be a 20,000 year old associated with Osiris, one of the Egyptian gods of the lunar calendar underworld. The Bighorn Medicine Wheel in Wyoming, built by Plains Indians, consists of rocks in the shape of a large circle, with lines radiating from a central hub like the spokes of a bicycle wheel.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • ATNF News Issue No
    Galaxy Pair NGC 1512 / NGC 1510 ATNF News Issue No. 67, October 2009 ISSN 1323-6326 Questacon "astronaut" street performer and visitors at the Parkes Open Days 2009. Credit: Shaun Amy, CSIRO. Cover page image Cover Figure: Multi-wavelength color-composite image of the galaxy pair NGC 1512/1510 obtained using the Digitised Sky Survey R-band image (red), the Australia Telescope Compact Array HI distribution (green) and the Galaxy Evolution Explorer NUV -band image (blue). The Spitzer 24µm image was overlaid just in the center of the two galaxies. We note that in the outer disk the UV emission traces the regions of highest HI column density. See article (page 28) for more information. 2 ATNF News, Issue 67, October 2009 Contents From the Director ...................................................................................................................................................................................................4 CSIRO Medal Winners .........................................................................................................................................................................................5 CSIRO Astronomy and Space Science Unit Formed ........................................................................................................................6 ATNF Distinguished Visitors Program ........................................................................................................................................................6 ATNF Graduate Student Program ................................................................................................................................................................7
    [Show full text]
  • CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
    CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University
    [Show full text]
  • Advanced Virgo: Status of the Detector, Latest Results and Future Prospects
    universe Review Advanced Virgo: Status of the Detector, Latest Results and Future Prospects Diego Bersanetti 1,* , Barbara Patricelli 2,3 , Ornella Juliana Piccinni 4 , Francesco Piergiovanni 5,6 , Francesco Salemi 7,8 and Valeria Sequino 9,10 1 INFN, Sezione di Genova, I-16146 Genova, Italy 2 European Gravitational Observatory (EGO), Cascina, I-56021 Pisa, Italy; [email protected] 3 INFN, Sezione di Pisa, I-56127 Pisa, Italy 4 INFN, Sezione di Roma, I-00185 Roma, Italy; [email protected] 5 Dipartimento di Scienze Pure e Applicate, Università di Urbino, I-61029 Urbino, Italy; [email protected] 6 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Italy 7 Dipartimento di Fisica, Università di Trento, Povo, I-38123 Trento, Italy; [email protected] 8 INFN, TIFPA, Povo, I-38123 Trento, Italy 9 Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy; [email protected] 10 INFN, Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy * Correspondence: [email protected] Abstract: The Virgo detector, based at the EGO (European Gravitational Observatory) and located in Cascina (Pisa), played a significant role in the development of the gravitational-wave astronomy. From its first scientific run in 2007, the Virgo detector has constantly been upgraded over the years; since 2017, with the Advanced Virgo project, the detector reached a high sensitivity that allowed the detection of several classes of sources and to investigate new physics. This work reports the Citation: Bersanetti, D.; Patricelli, B.; main hardware upgrades of the detector and the main astrophysical results from the latest five years; Piccinni, O.J.; Piergiovanni, F.; future prospects for the Virgo detector are also presented.
    [Show full text]
  • A Bibliometric Perspective Survey of Astronomical Object Tracking System
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Philosophy and Practice (e-journal) Libraries at University of Nebraska-Lincoln 2-15-2021 A Bibliometric Perspective Survey of Astronomical Object Tracking System Mariyam Ashai Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune, India, [email protected] Rhea Gautam Mukherjee Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune, India, [email protected] Sanjana Mundharikar Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune, India, [email protected] Vinayak Dev Kuanr Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune, India, [email protected] Shivali Amit Wagle Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), Pune, India, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/libphilprac Part of the Library and Information Science Commons, and the Other Aerospace Engineering Commons Ashai, Mariyam; Mukherjee, Rhea Gautam; Mundharikar, Sanjana; Kuanr, Vinayak Dev; Wagle, Shivali Amit; and R, Harikrishnan, "A Bibliometric Perspective Survey of Astronomical Object Tracking System" (2021). Library Philosophy and Practice (e-journal). 5151. https://digitalcommons.unl.edu/libphilprac/5151 Authors Mariyam Ashai, Rhea Gautam Mukherjee, Sanjana Mundharikar,
    [Show full text]
  • Fast Radio Bursts: from a Handful to Hundreds with Chime/Frb
    FAST RADIO BURSTS: FROM A HANDFUL TO HUNDREDS WITH CHIME/FRB KIYOSHI MASUI, ALEX JOSEPHY, AND MOHIT BHARDWAJ FOR THE CHIME/FRB COLLABORATION AAS PRESS BRIEFING JUNE 9, 2021 Correspondance to: [email protected] (857) 207-6121 FAST RADIO BURSTS Bright, brief (millisecond) flashes of radio light coming from other galaxies Likely neutron star/magnetar origin but otherwise poorly understood, limited by small numbers Distortion of signals (dispersion) carries record of structure travelled through CHIME/FRB COLLABORATION ARTWORK: ESA CANADIAN HYDROGEN INTENSITY MAPPING EXPERIMENT FAST RADIO BURST INSTRUMENT (CHIME/FRB) CHIME/FRB COLLABORATION chime-experiment.ca CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2018 CHIME/FRB COLLABORATION CHIME/FRB CATALOG MAP OF EVERY KNOWN FRB UP TO JULY 2019 CHIME/FRB COLLABORATION CATALOG CONTENTS 535 FRBs observed between July 2018 and July 2019 Includes 61 bursts from 18 repeating sources Properties of each burst: time, sky location, brightness, duration, dispersion, etc. See CHIME/FRB Collaboration 2021 CHIME/FRB COLLABORATION A NEW PHASE OF FRB SCIENCE First large sample of FRBs Enables precision studies of the FRB Population Opportunity to study large- scale structure of the Universe CHIME/FRB COLLABORATION POPULATION MODELLING Simulating fake bursts allows us to understand our observational biases Measure brightness distribution and rate: ~800 bright FRBs per day CHIME/FRB COLLABORATION SKY DISTRIBUTION Must consider sensitivity, telescope response, and galactic foreground. After correcting for these effects, we find strong evidence for uniform distribution. See: Josephy et al. 2021 CHIME/FRB COLLABORATION LARGE SCALE STRUCTURE Find FRBs to be correlated with galaxies, for a wide redshift range Ushering in new era of FRB cosmology See: Rafiei-Ravandi et al.
    [Show full text]
  • Benjamin J. Owen - Curriculum Vitae
    BENJAMIN J. OWEN - CURRICULUM VITAE Contact information Mail: Texas Tech University Department of Physics & Astronomy Lubbock, TX 79409-1051, USA E-mail: [email protected] Phone: +1-806-834-0231 Fax: +1-806-742-1182 Education 1998 Ph.D. in Physics, California Institute of Technology Thesis title: Gravitational waves from compact objects Thesis advisor: Kip S. Thorne 1993 B.S. in Physics, magna cum laude, Sonoma State University (California) Minors: Astronomy, German Research advisors: Lynn R. Cominsky, Gordon G. Spear Academic positions Primary: 2015{ Professor of Physics & Astronomy Texas Tech University 2013{2015 Professor of Physics The Pennsylvania State University 2008{2013 Associate Professor of Physics The Pennsylvania State University 2002{2008 Assistant Professor of Physics The Pennsylvania State University 2000{2002 Research Associate University of Wisconsin-Milwaukee 1998{2000 Research Scholar Max Planck Institute for Gravitational Physics (Golm) Secondary: 2015{2018 Adjunct Professor The Pennsylvania State University 2012 (2 months) Visiting Scientist Max Planck Institute for Gravitational Physics (Hanover) 2010 (6 months) Visiting Associate LIGO Laboratory, California Institute of Technology 2009 (6 months) Visiting Scientist Max Planck Institute for Gravitational Physics (Hanover) Honors and awards 2017 Princess of Asturias Award for Technical and Scientific Research (with the LIGO Scientific Collaboration) 2017 Albert Einstein Medal (with the LIGO Scientific Collaboration) 2017 Bruno Rossi Prize for High Energy Astrophysics (with the LIGO Scientific Collaboration) 2017 Royal Astronomical Society Group Achievement Award (with the LIGO Scientific Collab- oration) 2016 Gruber Cosmology Prize (with the LIGO Scientific Collaboration) 2016 Special Breakthrough Prize in Fundamental Physics (with the LIGO Scientific Collabora- tion) 2013 Fellow of the American Physical Society 1998 Milton and Francis Clauser Prize for Ph.D.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Program Plan
    PROGRAM PLAN 1999 NATIONAL RADIO ASTRONOMY OBSERVATORY Cover: A "movie" of the radio emission from the exploding star Supernova 1993J in the galaxy M81. This time-sequence of images was made at a wavelength of 3.6 cm (8.3 Ghz) with a global array of telescopes that included the VLBA and the VIA. The resolution, or clarity of image detail, is 4000 AU (about 20 light-days), hundreds of times finer than can be achieved by optical telescopes on such a distant object. Observers: M. Rupen, N. Bartel, M. Bietenholz, T. Beasley. NATIONAL RADIO ASTRONOMY OBSERVATORY CALENDAR YEAR 1999 PROGRAM PLAN RSI rrao NOVEMBER 1,1998 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated by Associated Universities, Inc. TABLE OF CONTENTS I. INTRODUCTION 1 II. 1999 SCIENTIFIC PROGRAM 2 1. The Very Large Array . 2 .2. The Very Long Baseline Array 8 3. The 12 Meter Telescope 11 4. The 140 Foot Telescope 13 HI. USER FAdLITIES 15 1. The Very Large Array 15 2. The Very Long Baseline Array 18 3. The 12 Meter Telescope 21 4. The 140 Foot Telescope 26 IV. TECHNOLOGY DEVELOPMENT 29 1. Electronics Development Equipment 29 2. Computing 34 V. GREEN BANK TELESCOPE 42 VI. MAJOR INITIATIVES 51 1. The Millimeter Array 51 2. VLA Upgrade 57 3. AIPS++Project 65 VII. NON-NSF RESEARCH 67 1. United States Naval Observatory 67 2. Green Bank Interferometer 67 3. NASA - Green Bank Orbiting VLBI Earth Station 67 VIII. EDUCATION PROGRAM 68 IX. 1999 PRELIMINARY FINANCIAL PLAN 75 APPENDIX A - NRAO SCIENTIFIC STAFF ACTIVITIES 78 1.
    [Show full text]