Paraoxonase (PON1): from Toxicology to Cardiovascular Medicine Lucio G

Total Page:16

File Type:pdf, Size:1020Kb

Paraoxonase (PON1): from Toxicology to Cardiovascular Medicine Lucio G costa 28-09-2005 14:09 Pagina 50 ACTA BIOMED 2005; Suppl 2; 50-57 © Mattioli 1885 C ONFERENCE R EPORT Paraoxonase (PON1): from toxicology to cardiovascular medicine Lucio G. Costa1,2, Toby B. Cole2, 3, Clement E. Furlong3 1Dept of Human Anatomy, Pharmacology and Forensic Science, University of Parma Medical School, Parma, Italy; 2Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; 3Depts. of Medicine (Div. Med.Genetics) and Genome Sciences, University of Washington, Seattle, WA, USA Abstract. Paraoxonase (PON1) is a liver and plasma enzyme most studied because of its ability to hydrolyze the active metabolites of several organophosphorus insecticides. The discovery that PON1 can also metabo- lize oxidized phospholipids has spurred research on its possible role in coronary heart disease and atheroscle- rosis. Additionally, its potential roles in metabolizing pharmaceutical drugs and microbial quorum sensing fac- tors are also being explored. PON1 displays several polymorphisms that influence both its level of expression and its catalytic activity, thus determining the rates at which a given individual will detoxify a specific insecti- cide, metabolize harmful oxidized lipids, and activate or inactivate specific drugs and quorum sensing factors. Key words: Paraoxonase (PON1) polymorphisms, organophosphates, PON1 status, coronary artery disease, drug metabolism, quorum sensing factors Introduction PON1 and its human polymorphisms Paraoxonase (PON1) received its name from PON1 is a member of a family of proteins that paraoxon, the active metabolite of the organophospho- also includes PON2 and PON3, the genes of which rus (OP) insecticide parathion, which is its first and are clustered in tandem on the long arm of human one of its most studied substrates. As PON1 hy- chromosome 7 (q21.22). PON1 is synthesized pri- drolyzes the active metabolites of several other OPs marily in the liver and a portion is secreted into the (e.g. chlorpyrifos oxon, diazoxon), as well as nerve plasma, where it is associated with high density agents such as soman, sarin or VX, it has been studied lipoprotein (HDL) particles (1-3). mostly by toxicologists, interested in its role in modu- Earlier studies had indicated that the plasma lating OP toxicity. Yet the discovery that PON1 can paraoxonase activity in human populations exhibited a metabolize oxidized lipids (LDL and HDL) has polymorphic distribution, and individuals with low, spurred an extensive series of investigations on the po- intermediate or high paraoxonase activity could be tential role of PON1 in cardiovascular disease, partic- identified (4, 5). Studies in the early 1990s led to the ularly in atherosclerosis. Furthermore, the finding that purification, cloning and sequencing of human PON1 PON1 and the related proteins PON2 and PON3 dis- (6, 7), and to the molecular characterization of its play lactonase activity, has provided evidence that they polymorphisms (8, 9). More recently, the molecular may be involved in drug metabolism and inactivation structure of an engineered recombinant PON1 pro- of quorum sensing factors as well. As a result, research tein has also been elucidated (10). Two polymor- in these fields has blended, with the goal of further elu- phisms are present in the PON1 coding sequence: a cidating the role of this polymorphic enzyme in disease Gln(Q)/Arg(R) substitution at position 192, and a and in an individual’s response to exogenous agents. Leu(L)/Met(M) substitution at position 55 (8, 9). costa 28-09-2005 14:09 Pagina 51 Paraoxonase in toxicology and medicine 51 The Q/R polymorphism at position 192 significantly zyme levels or catalytic efficiencies, has suggested that affects the catalytic efficiency of PON1. Initial studies certain individuals may be more susceptible to the tox- demonstrated that the PON1R192 allozyme hydrolyzes ic effects of OP exposure. Over the past 15 years, a se- paraoxon more readily than PON1Q192 (8, 9). Further ries of studies in rodents has provided important evi- studies showed that this polymorphism was substrate- dence to ascertain the role of PON1 in modulating dependent, as the PON1 Q192 alloform was found to OP toxicity. In earlier studies, PON1 purified from hydrolyze diazoxon, sarin and soman more rapidly rabbit serum was injected into rats or mice to increase than PON1 R192 in vitro (11). More recent studies, plasma hydrolytic activity toward OP substrates. however, have shown that under physiological condi- When challenged with an OP (chlorpyrifos oxon was tions, both PON1 alloforms hydrolyze diazoxon with used in most instances), animals which had received nearly equivalent catalytic efficiencies (12). Gene fre- exogenous PON1 were significantly more resistant quencies of PON1 Q192 range from 0.75 for Caucasians than controls to the acute cholinergic toxicity (19-21). of Northern European origin, to 0.31 for some Asian Of interest is that PON1 provided some protection populations (13). against chlorpyrifos, the parent compound that is used The L/M polymorphism at position 55 does not as insecticide, when given before or even after this OP affect catalytic activity, but has been associated with (21). plasma PON1 protein levels, with PON1M55 being as- More recently, transgenic and knockout mice sociated with low plasma PON1 (14, 15). However, have provided important new tools to investigate the this appears to result primarily from linkage disequi- role of PON1 in modulating OP toxicity. PON1 librium with the low efficiency –108T allele of the T- knockout mice, which have no detectable plasma or 108C promoter region polymorphism (13). Four addi- liver hydrolytic activity toward paraoxon and diazoxon tional polymorphisms have been found in the 5’-reg- and very limited chlorpyrifos-oxonase activity, have ulatory region of PON1 (16), but they have a lesser ef- dramatically increased sensitivity to the toxicity of fect on PON1 protein level (17). Recent complete re- chlorpyrifos oxon and diazoxon, and a small increase sequencing of PON1 from several individuals has led in sensitivity to their respective parent compounds to the identification of nearly 200 new single nu- (12, 22). Surprisingly, they did not show an increased cleotide polymorphisms, some in the coding regions sensitivity to paraoxon (12). and others in introns and regulatory regions of the Administration of pure human PON1Q192 or gene (18; http://pga.gs.washington.edu). Though PON1R192 to PON1 knockout mice to restore plasma most of the new polymorphisms have not yet been PON1 provided additional important information. characterized, a few have already explained discrepan- PON1R192 provided better protection than PON1 Q192 cies found when comparing PON1 status and PCR toward chlorpyrifos oxon, while both alloforms were analysis of codon 192 [see below; (18)]. equally effective in protecting against the toxicity of diazoxon (12). However, neither PONR192 nor PON1Q192 afforded protection against paraoxon toxic- PON1 and its role in organophosphate toxicity ity (12). A kinetic analysis of substrate hydrolysis by purified human alloforms carried out under physio- PON1 hydrolyzes the oxygen analogs of several logical conditions (low NaCl concentration) provided OPs; however, it does not hydrolyze directly the par- an explanation for the in vivo findings. In the case of ent compound of such insecticides (i.e. parathion, chlorpyrifos oxon, the PON1R192 alloform had signifi- chlorpyrifos, diazinon), nor several other OPs (e.g. cantly higher catalytic efficiency (250 vs. 150) than malaxon, guthion, dichlorvos) (3). Nevertheless, the the PON1Q192 alloform and provided better protection ability of PON1 to hydrolyze several OPs in vitro has against CPO exposure. In the case of diazoxon, both long been taken as an indication that it may modulate PON1Q192R alloforms had equivalent catalytic efficien- OP toxicity in vivo. Furthermore, the presence of cies (~76) and provided equivalent protection. With polymorphisms in PON1, which confer different en- paraoxon, the PON1R192 alloform was much more effi- costa 28-09-2005 14:09 Pagina 52 52 L.G. Costa, T.B. Cole, C.E. Furlong cient than the PON1Q192 alloform (6 vs. 0.7) with in the plasma level of PON1 for each individual, thus vitro assays, but its overall catalytic efficiency was very encompassing the two factors that affect PON1 levels low and unable to confer protection in vivo (12). This or activity. For example, sensitivity to diazoxon expo- confirmed the hypothesis that PON1 is not efficient sure (12) or risk of carotid artery disease (27) is influ- at hydrolyzing paraoxon at low concentrations (23), enced primarily by PON1 levels, which are not as- indicating that human and mouse PON1s do not de- sessed by PCR-based assays. The catalytic efficiency grade paraoxon efficiently in vivo. Additional experi- with which PON1 degrades toxic OPs determines the ments carried out in PON1 transgenic mice (mice ex- degree of protection provided by PON1; in addition, pressing either human PON1Q192 or PON1R192 on a higher concentrations of PON1 provide better pro- knockout background) provided further evidence for tection. Thus, it is important to know PON1 levels the conclusions made from experiments administrat- and activity. This approach has been referred to as the ing PON1 to PON1 knockout mice. For example, determination of PON1 “status” for an individual hPON1R192-TG mice were significantly less sensitive (25). In a given population, plasma PON1 activity can to the toxicity of chlorpyrifos
Recommended publications
  • Screening and Functional Pathway Analysis of Pulmonary Genes
    Hindawi Stem Cells International Volume 2020, Article ID 5684250, 11 pages https://doi.org/10.1155/2020/5684250 Research Article Screening and Functional Pathway Analysis of Pulmonary Genes Associated with Suppression of Allergic Airway Inflammation by Adipose Stem Cell-Derived Extracellular Vesicles Sung-Dong Kim,1 Shin Ae Kang,2 Yong-Wan Kim,3 Hak Sun Yu,2 Kyu-Sup Cho ,1 and Hwan-Jung Roh 4 1Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea 2Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea 3Department of Otorhinolaryngology, Inje University Haeundae Paik Hospital, Republic of Korea 4Department of Otorhinolaryngology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea Correspondence should be addressed to Hwan-Jung Roh; [email protected] Received 5 February 2020; Revised 19 May 2020; Accepted 2 June 2020; Published 27 June 2020 Academic Editor: Kar Wey Yong Copyright © 2020 Sung-Dong Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Although mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) are as effective as MSCs in the suppression of allergic airway inflammation, few studies have explored the molecular mechanisms of MSC-derived EVs in allergic airway diseases. The objective of this study was to evaluate differentially expressed genes (DEGs) in the lung associated with the suppression of allergic airway inflammation using adipose stem cell- (ASC-) derived EVs.
    [Show full text]
  • Association of Paraoxonase-2 Genetic Variation with Serum
    ASSOCIATION OF PARAOXONASE-2 GENETIC VARIATION WITH SERUM PARAOXONASE ACTIVITY AND SYSTEMIC LUPUS ERYTHEMATOSUS by Sudeshna Dasgupta B.S., University of Calcutta, India, 2001 M.S., University of Calcutta, India, 2003 Submitted to the Graduate Faculty of Graduate School of Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH Graduate School of Public Health This dissertation was presented by Sudeshna Dasgupta It was defended on November 3rd, 2008 and approved by F. Yesim Demirci M.D., Research Assistant Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh Susan M. Manzi, MD, MPH, Associate Professor, Department of Medicine, School of Medicine and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh Candace M. Kammerer, Ph.D. Associate Professor, Department of Human Genetics Graduate School of Public Health, University of Pittsburgh Committee Chair Person Robert E. Ferrell, Ph.D. Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh Dissertation Advisor, M. Ilyas Kamboh, Ph.D. Professor and Chair, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh ii Dedicated to my mother Mrs. Susmita Dasgupta and my father Dr. Gautam Dasgupta iii Copyright © by Sudeshna Dasgupta 2008 iv M. Ilyas Kamboh PhD ASSOCIATION OF PARAOXONASE-2 GENETIC VARIATION WITH SERUM PARAOXONASE ACTIVITY AND SYSTEMIC LUPUS ERYTHEMATOSUS Sudeshna Dasgupta, PhD University of Pittsburgh, 2008 SLE, a severe autoimmune disease is of major public health relevance since it predominantly affects women at child bearing age and even though immunosuppressives have increased the life span of SLE patients, lack of absolute cure is still troubling.
    [Show full text]
  • PON1) Polymorphisms with Osteoporotic Fracture Risk in Postmenopausal Korean Women
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 2, 71-81, February 2011 Association of Paraoxonase 1 (PON1) polymorphisms with osteoporotic fracture risk in postmenopausal Korean women Beom-Jun Kim1,2*, Shin-Yoon Kim2,6*, PON1 to ascertain its contribution to osteoporotic frac- Yoon Shin Cho3, Bon-Jo Kim3, Bok-Ghee Han3, tures (OFs) and bone mineral density (BMD). We di- Eui Kyun Park2,4, Seung Hun Lee1,2, Ha Young Kim5, rectly sequenced the PON1 gene in 24 Korean in- Ghi Su Kim1,2, Jong-Young Lee3,7 dividuals and identified 26 sequence variants. A large population of Korean postmenopausal women (n = and Jung-Min Koh1,2,7 1,329) was then genotyped for eight selected PON1 polymorphisms. BMD at the lumbar spine and femoral 1Division of Endocrinology and Metabolism neck was measured using dual-energy X-ray ab- Asan Medical Center, University of Ulsan College of Medicine sorptiometry. Lateral thoracolumbar (T4-L4) radio- Seoul 138-736, Korea 2 graphs were obtained for vertebral fracture assess- Skeletal Diseases Genome Research Center Kyungpook National University Hospital ment, and the occurrence of non-vertebral fractures Daegu 700-412, Korea (i.e., wrist, hip, forearm, humerus, rib, and pelvis) was 3The Center for Genome Science examined using self-reported data. Multivariate analy- National Institute of Health ses showed that none of the polymorphisms was asso- Seoul 122-701, Korea ciated with BMD at either site. However, +5989A>G 4Department of Pathology and Regenerative Medicine and +26080T>C polymorphisms were significantly School of Dentistry, Kyungpook National University associated with non-vertebral and vertebral fractures, Daegu 700-412, Korea respectively, after adjustment for covariates.
    [Show full text]
  • Ameliorating Oxidative Stress and Inflammation by Hesperidin And
    Turk J Biochem 2019; 44(2): 207–217 Research Article Thoria Donia*, Samar Eldaly and Ehab M.M. Ali Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy Doxorubicin ile İndüklenmiş Kardiyomiyopatide Hesperidin ve E Vitamini ile Oksidatif Stres ve İnflamasyonun İyileştirilmesi https://doi.org/10.1515/tjb-2018-0156 Conclusion: HSP and VIT.E possess a protective effect Received May 7, 2018; accepted July 3, 2018; previously published against DOX-induced cardiomyopathy via inhibiting oxi- online September 5, 2018 dative stress, inflammation, and apoptosis. Abstract Keywords: Cardiomyopathy; Doxorubicin; Hesperidin; Vitamin E; Oxidative stress. Background: Doxorubicin (DOX) is a common chemother- apeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy. Öz Objective: The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E Giriş: Doksorubisin (DOX) yaygın bir kemoterapötik ilaçtır. (VIT.E) against DOX-induced cardiomyopathy. Bununla birlikte, kardiyomiyopatiye neden olduğu için bu Material and methods: Seventy rats were allocated into durum ilaçın insan kanser tedavisinde klinik kullanımını seven groups: control, HSP (50 mg/kg, orally), VIT.E azaltır. (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], Amaç: Çalışmamızın amacı, DOX ile indüklenen kardiyo- DOX + HSP, DOX + VIT.E and DOX + HSP + VIT.E. miyopatiye karşı hesperidin (HSP) ve vitamin E’nin (VIT.E) Results: Our findings showed that serum lactate dehy- kardiyoprotektif etkisini değerlendirmektir. drogenase (LDH), creatine kinase (CK), myeloperoxidase Gereç ve Yöntemler: Yetmiş sıçan yedi gruba ayrıldı: (MPO), cardiac catalase and caspase activities as well kontrol, HSP (50 mg/kg, oral), VIT.E (100 mg/kg oral), DOX as cardiac malondialdehyde (MDA) and serum nitric [4 mg/kg, intraperitoneal (ip)], DOX + HSP, DOX + VIT.E ve oxide (NO) concentrations were reduced DOX + HSP or DOX + HSP + VIT.E.
    [Show full text]
  • Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
    Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs).
    [Show full text]
  • Serendipitous Discovery and X-Ray Structure of a Human Phosphate Binding Apolipoprotein
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure 14, 601–609, March 2006 ª2006 Elsevier Ltd All rights reserved DOI 10.1016/j.str.2005.12.012 Serendipitous Discovery and X-Ray Structure of a Human Phosphate Binding Apolipoprotein Renaud Morales,1 Anne Berna,2 Philippe Carpentier,1 is the only known transporter capable of binding phos- Carlos Contreras-Martel,1 Fre´de´rique Renault,3 phate ions in human plasma and may become a new Murielle Nicodeme,4 Marie-Laure Chesne-Seck,6 predictor of or a potential therapeutic agent for phos- Franc¸ois Bernier,2 Je´roˆ me Dupuy,1 phate-related diseases such as atherosclerosis. Christine Schaeffer,7 He´le`ne Diemer,7 Alain Van-Dorsselaer,7 Juan C. Fontecilla-Camps,1 Introduction Patrick Masson,3 Daniel Rochu,3 and Eric Chabriere3,5,* Both cholesterol and HDL (high-density lipoprotein) 1 Laboratoire de Cristallogene` se et Cristallographie levels are commonly used as risk predictors of cardio- des Prote´ ines vascular disease (Gordon and Rifkind, 1989; Amann Institut de Biologie Structurale JP EBEL et al., 2003). HDL protects against atherosclerosis 38027 Grenoble mainly through the reverse cholesterol transport pro- France cess in which excess cholesterol is transferred from 2 Institut de Biologie Mole´ culaire des Plantes du CNRS peripheral tissues to the liver by the ATP binding cas- Universite´ Louis Pasteur sette ABCA1 transporter, which is defective in Tangier 67083 Strasbourg Cedex disease (Brooks-Wilson et al., 1999). Although HDLs France have been extensively studied, their metabolic role 3 Unite´ d’Enzymologie has not been completely elucidated yet.
    [Show full text]
  • Paraoxonase 2 Is Critical for Non-Small Cell Lung Carcinoma Proliferation
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2019 Paraoxonase 2 is critical for non-small cell lung carcinoma proliferation. Aaron Whitt University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Cancer Biology Commons, Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Whitt, Aaron, "Paraoxonase 2 is critical for non-small cell lung carcinoma proliferation." (2019). Electronic Theses and Dissertations. Paper 3236. https://doi.org/10.18297/etd/3236 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. PARAOXONASE 2 IS CRITICAL FOR NON-SMALL CELL LUNG CARCINOMA PROLIFERATION By Aaron Whitt B.S., Morehead State University, 2010 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacology and Toxicology Department of Pharmacology and Toxicology University of Louisville Louisville, Kentucky May, 2019 PARAOXONASE 2 IS CRITICAL FOR NON-SMALL CELL LUNG CARCINOMA PROLIFERATION By Aaron Gregory Whitt B.S., Morehead State University, 2010 A Thesis Approved on December 13, 2018 By the following Thesis Committee _______________________________ Chi Li, Ph. D.
    [Show full text]
  • Methodological Aspects and Relevance of the Study of Vegetable Oil, Fat and Lipoprotein Oxidation Using Pancreatic Lipase and Arylesterase
    M. NUS et al.: Study of Fat with Pancreatic Lipase and Arylesterase, Food Technol. Biotechnol. 44 (1) 1–15 (2006) 1 ISSN 1330-9862 review (FTB-1467) Methodological Aspects and Relevance of the Study of Vegetable Oil, Fat and Lipoprotein Oxidation Using Pancreatic Lipase and Arylesterase Meritxell Nus2, Francisco J. Sánchez-Muniz2 and José M. Sánchez-Montero1* 1Biotransformations Group, Organic and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Complutense University, E-28040 Madrid, Spain 2Nutrition and Bromatology I (Nutrition) Department, Faculty of Pharmacy, Complutense University, E-28040 Madrid, Spain Received: July 4, 2005 Revised version: November 23, 2005 Accepted: November 29, 2005 Summary Fats and oils as major dietary components are involved in the development of chronic diseases. In this paper the physiological relevance and some methodological aspects re- lated to the determination of two enzymes enrolled in metabolism of fat – pancreatic li- pase and arylesterase – are discussed. Pancreatic lipase has been extensively used to study the triacylglycerol fatty acid composition and the in vitro digestion of oils and fats. The ac- tion of this enzyme may be coupled to analytical methods as GC, HPLC, HPSEC, TLC- -FID, etc. as a useful tool for understanding the composition and digestion of thermal oxi- dized oils. Pancreatic lipase hydrolysis occurs in the water/oil interface, and it presents a behaviour that seems to be Michaelian, in which the apparent Km and the apparent Vmax of the enzymatic process depend more on the type of oil tested than on the degree of alter- ation. The kinetic behaviour of pancreatic lipase towards thermally oxidized oils also de- pends on the presence of natural tensioactive compounds present in the oil and surfac- tants formed during the frying.
    [Show full text]
  • Paraoxonase Role in Human Neurodegenerative Diseases
    antioxidants Review Paraoxonase Role in Human Neurodegenerative Diseases Cadiele Oliana Reichert 1, Debora Levy 1 and Sergio P. Bydlowski 1,2,* 1 Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; [email protected] (C.O.R.); [email protected] (D.L.) 2 Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil * Correspondence: [email protected] Abstract: The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD). Keywords: paraoxonases; oxidative stress; multiple sclerosis; amyotrophic lateral sclerosis; Alzhei- mer’s disease; Parkinson’s disease 1. Introduction Over the years, biotechnological changes and advances have guaranteed the popula- tion a significant increase in life expectancy that does not necessarily involve an increase in quality of life and/or having a healthy old age.
    [Show full text]
  • Functional Analyses of Human Serum Paraoxonase1 (Hupon1) Mutants Using
    Functional Analyses of Human Serum Paraoxonase1 (HuPON1) Mutants Using Drop Coating Deposition Raman Difference Spectroscopy THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Hua Ying Graduate Program in Chemistry The Ohio State University 2010 Master's Examination Committee: Professor Terry L. Gustafson, Advisor Professor Thomas J. Magliery Copyright by Hua Ying 2010 Abstract We present work on the structural implications of specific mutants of Paraoxonase1 (PON1) G2E6, and the turnover rate upon bonding of the enzymes with paraoxon when compared to the wild-type enzyme by using vibrational spectroscopy. A new Raman spectroscopy called Drop Coating Deposition Raman (DCDR) is utilized in our work. The Raman band changes in the paraoxon/H115W system are in good agreement with computational calculations and are strong evidence of the formation of the paraoxon hydrolysis product, p-nitrophenol in the reaction system. The corresponsive turnover rates of G2E6 wild-type and its two mutants, H115W and H115T, are also observed in DCDR spectra. ii Dedication This document is dedicated to my friends and family. iii Acknowledgments I would like to thank my advisor, Prof. Terry Gustafson for his encouragement, support, guidance, and motivation. I also wish to thank our collaborators Prof. Thomas Magliery, Prof. Christopher Hadad and the members of their groups for assistance on the U54 project. I would like to thank Rachel Baldauff for going through all the U54 program meetings with me. I also want to thank Lynetta Mier for helping me with editing my thesis in every detail.
    [Show full text]
  • Mclean, Chelsea.Pdf
    COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes.
    [Show full text]
  • Polymorphism of Paraoxonase-2 Gene Is Associated With
    Molecular Psychiatry (2002) 7, 110–112 2002 Nature Publishing Group All rights reserved 1359-4184/02 $15.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE Codon 311 (Cys → Ser) polymorphism of paraoxonase-2 gene is associated with apolipoprotein E4 allele in both Alzheimer’s and vascular dementias Z Janka1, A Juha´sz1,A´ Rimano´czy1, K Boda2,JMa´rki-Zay3 and J Ka´lma´n1 1Department of Psychiatry; 2Medical Informatics, Albert Szent-Gyo¨rgyi Center for Medical and Pharmaceutical Sciences, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; 3Central Laboratory, Be´ke´s County Hospital, PO Box 46, H-5701, Gyula, Hungary Keywords: paraoxonase; apolipoprotein E; genetic mark- Table 1 Frequency distribution of PON2 and apoE geno- ers; Alzheimer’s disease; vascular dementia; DNA polymor- types and alleles in the control, Alzheimer’s and vascular phism dementia populations The gene of an esterase enzyme, called paraoxonase (PON, EC.3.1.8.1.) is a member of a multigene family that Control Alzheimer’s Vascular comprises three related genes PON1, PON2, and PON3 dementia dementia with structural homology clustering on the chromosome 7.1,2 The PON1 activity and the polymorphism of the PON2 genotype PON1 and PON2 genes have been found to be associa- CC 4 (8%) 2 (4%) 3 (6%) ted with risk of cardiovascular diseases such as hyper- CS 20 (39%) 23 (43%) 19 (34%) cholesterolaemia, non-insulin-dependent diabetes, coron- SS 27 (53%) 28 (53%) 33 (60%) ary heart disease (CHD) and myocardial infaction.3–8 The PON2 allele importance of cardiovascular risk factors in the patho- C (cys) 28 (27%) 27 (25%) 25 (23%) mechanism of Alzheimer’s disease (AD) and vascular S (ser) 74 (73%) 79 (75%) 85 (77%) dementia (VD)9–13 prompted us to examine the genetic ApoE genotype effect of PON2 gene codon 311 (Cys→Ser; PON2*S) 22 – – – polymorphism and the relationship between the PON2*S 2 3 6 (12%) 3 (6%) 6 (11%) allele and the other dementia risk factor, the apoE poly- 2 4 – – 1 (2%) morphism in these dementias.
    [Show full text]