Mechanisms of Caspase-3 Regulation in the Execution of Cell Death

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Caspase-3 Regulation in the Execution of Cell Death Mechanisms of Caspase-3 Regulation in the Execution of Cell Death DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yadira Malavez Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Andrea I. Doseff, Adviser Dissertation Committee: Dr. Clay B. Marsh Dr. Harold A. Fisk Dr. Tsonwin Hai Copyright by Yadira Malavez 2012 Abstract Apoptosis is an evolutionarily conserved mechanism necessary for the homeostasis in multicellular organisms. The cysteine protease caspase-3 has a key role in apoptosis for its central role in the execution of the apoptotic cascade. The molecular mechanisms that regulate caspase-3 activation are not completely understood. Previously, our laboratory demonstrated that caspase-3 is phosphorylated by PKCδ in human monocytes. However, the role of caspase-3 phosphorylation during apoptosis has not been elucidated. In this investigation, it was observed that PKCδ is necessary for caspase-3 phosphorylation. An interaction motif in caspase-3 was identified to be necessary for PKCδ interaction. Five PKCδ phosphorylated sites in caspase-3 were mapped utilizing mass spectroscopy. Phosphorylation of specific sites promoted caspase- 3 autocatalytic cleavage and apoptosis, in vitro and in vivo. Caspase-3 phosphorylation acts in a positive feedback mechanism to amplify the apoptotic cascade. These results suggest a novel regulatory mechanism to control caspase-3 apoptotic activity and execution of cell death. Furthermore, the apoptotic and immunological heterogeneity in CD14+CD16+ and CD14+CD16- monocytes was analyzed. It was observed that CD14+CD16+ cells were more susceptible to undergo spontaneous apoptosis, in part due to upregulation of the activity of the caspases. CD14+CD16+ monocytes release more TNF-α compared to the ii CD14+CD16- counterparts. Furthermore, the expression of the members of the PKC family was characterized in monocyte subsets. These results suggested that elevated expression of PKCε may play a role in the pro-inflammatory role of CD14+CD16+ monocytes. The current investigation highlights the importance of caspase-3 and the members of the PKC family as important regulators of cell death and survival pathways. iii Dedication This document is dedicated to my mother, Mayra Acevedo Ponce, for her love and support. iv Acknowledgements I would like to thank Dr. Andrea I. Doseff for giving me the opportunity to be part of her laboratory and for her guidance and advice throughout these years. I would like to express my sincere appreciation to Drs. Clay B. Marsh, Harold A. Fisk and Tsonwin Hai, for accepting being in my committee and for their guidance. Next, I would like to thank the members of the Doseff laboratory, especially Drs. Oliver Voss, Martha E. Gonzalez- Mejia, Arti Singh, and Mr. Daniel Arango. It was a pleasure to work with each of them and I am grateful for all the memories that I will take with me throughout my life. Special thanks to Hassan Kamran and Justin Tossey, for their great help in the cloning of the phospho-mutants, and Maria Belen Federico for her help with the development of the cell free system protocol. I am deeply grateful with Dr. Wei Huang and Dr. Prabakaran Nagarajan for their incredible help providing the PKCβ-/- and guidance for the isolation of mouse embryonic fibroblast. I also would like to thank Dr. Nancy Lill and Nurettin Sever for allowing me to utilize their equipment necessary for the transfection of monocytes. Thanks to Lizanel Feliciano, Fabiola Jara, Greetchen Diaz, and Dr. Rebecca Tirado-Corbala, for your friendship and support all these years. Thanks to my family for always believing in me and giving me their love and support. Special thanks to my husband, Esbal Jimenez, for his support and faith in me. Lastly, thanks God for giving me strength to achieve this goal. v Vita November, 6th 1979…………………………………San Juan, PR. 1997 – 2002………………………………………... B.S., Microbiology. University of Puerto Rico, Humacao, PR. 2002 – 2005………………………………………... M.S., Food Microbiology. University of Puerto Rico, Mayaguez, PR. 2006 – Present……………………………………… Graduate Research Associate Working towards Ph.D., Molecular Cellular and Developmental Biology. The Ohio State University, Columbus, OH. Publications Malavez Y., Voss O.H., Gonzalez-Mejia M.E. and Doseff A.I. PKCδ phosphorylation of caspase-3 regulates cell death and survival through a complex regulatory network (In preparation, 2011). Malavez Y., Voss O.H., Gonzalez-Mejia M.E. and Doseff A.I. Characterization of cell fate and immune response of CD14+CD16- and CD14+CD16+ monocytes (In preparation, 2011). Malavez Y., Gonzalez-Mejia M.E. and Doseff A.I. 2008. Protein Kinase C Delta (PRKCD). PKC. Atlas of Genetics and Cytogenetics in Oncology and Haematology. URL: http://AtlasGeneticsOncology.org/Genes/ Fields of Study Major Field: Molecular, Cellular and Developmental Biology vi Table of Contents Abstract……………………………………………………….………………….... ii Dedication…………………………………………………………….……………. iv Acknowledgments……………………………………………….…………………. v Vita……………………………………………………………………..…………... vi List of Figures………………………………………………………………………. xii List of Tables…………………………………………………..…….……………... xiv Abbreviations………………………….………………………….………………… xv Chapter 1…………………………………..……………………….………..…….. 1 1.1 Introduction………….………………………………………………….….…… 1 1.2 Apoptosis…………………………………………..………….………….…...... 2 1.3 Caspase family…………………………………………..…….………………... 4 1.4 Apoptotic pathways ….………………………………………….….………….. 8 1.4.1 Caspase substrates ………………………………..……….……...………. 11 1.5 Regulation of caspase activity….……………..…………...……..……….……. 13 1.5.1 Inhibitors of apoptosis (IAP)……………………………………...………. 14 1.5.2 Regulation of caspase activity by phosphorylation....………………..…… 15 1.6 Caspase-3…………………………………………………..…………..……….. 17 vii 1.6.1 Caspase-3 structure and activation……………………………………….. 19 1.6.2 Caspase-3 functions……………..……………………..…………..…….. 22 1.6.3 Potential role of caspase-3 in human diseases…………...……………….. 23 1.6.4 Regulation of caspase-3 activity……………………….…………..…….. 25 1.6.4.1 Ubiquitination……………………………………………..……… 26 1.6.4.2 Nitrosylation……………………..………………………....…….. 27 1.6.4.3 Heat shock proteins …………………..………….…….…….…... 27 1.7 Protein kinase C delta (PKCδ) .…………….…..…………....…….…….….…. 29 1.7.1 The protein kinase C (PKC) family……………………….……..…..…… 29 1.7.2 PKCδ structure…..…………………………..……………..….…..……… 30 1.7.3 Role of PKCδ in apoptosis ..……….……………………..…..………..… 30 1.7.4 Substrates of PKCδ during apoptosis....…………………..….……..…… 32 1.8. Regulation of cell death in the immune response……….…………....………... 34 1.8.1 Innate and adaptive immune response.……………………………….….. 34 1.8.2 Monocytes and Macrophages ………………………..……..…….……... 35 1.8.3 The role of monocytes in the immune response........................................ 37 1.8.3.1 Toll-like receptors…………………………..……..……..…...….. 37 1.8.4 Monocyte subsets……….………………………………..….…………... 40 1.9 Summary………………………………………………………..……..………... 42 Chapter 2 Materials and methods………………………………….……….…… 58 2.1 Reagents and chemicals…………………………………………….…………... 58 2.2 Cloning and mutagenesis………………………………………….……………. 60 viii 2.3 Tissue culture …………………………………………..…………….….……... 66 2.4 Isolation of mouse embryonic fibroblasts (MEF)………………….……….…... 68 2.5 Extract preparation and immunoblotting……………………………..……….... 69 2.6 Protein quantitation and Western blot analysis………………………….…….... 69 2.7 Immunoprecipitation and in vitro kinase assays………………….……............ 71 2.8 Protein expression and purification………………………….……….……….... 72 2.9 Activation of caspase-3 by recombinant caspase-9…………….……….…….... 74 2.10 Activation of caspase-3 by MCF-7 cell extracts …………………..…………. 74 2.11 Caspase-3 activity assays ……………………………………………….…….. 75 2.12 In vitro kinase assays with recombinant caspase-3 ……………….…….…….. 76 2.13 Monocyte subset isolation ……………………….………………..…….…….. 78 2.14 Inhibition of caspase activity …………………………………….………..….. 79 2.15 Electroporation of monocyte subsets…………………………………….……. 80 2.16 IgG clustering ……………………………………………………….………... 80 2.17 Detection of TNF-α by ELISA …………………………………...………….. 81 2.18 Detection of PKC isoforms in monocyte subsets ………………….……….... 82 2.19 Flow cytometry ……..…………………………………………………..…..... 82 2.22 Statistical analysis……………………………………………………….….…. 83 Chapter 3 PKCδ phosphorylation of caspase-3 regulates the execution of 84 apoptosis……………………………………………………………………………. 3.1 Abstract……………………………………………………………………...….. 84 3.2 Introduction………………………………………………………………..…..... 85 3.3 Results…………………………………………………………………..……..... 87 ix 3.3.1 PKCδ is necessary for caspase-3 phosphorylation during cell death..… 87 3.3.2 Identification of caspase-3 domains phosphorylated and involved in 88 the interaction with PKCδ…………….………………..……….…………… 3.3.3 Identification of PKCδ interaction motif in caspase-3……………….... 89 3.3.4 Identification of PKCδ phosphorylation sites in caspase-3……..…...... 91 3.3.5 Ser12 is important for caspase-3 phosphorylation..………….……….... 94 3.3.6 The phosphorylation of Ser36 is necessary for the PKCδ dependent 95 phosphorylation of caspase-3………………………………….…………….. 3.3.7 Caspase-3 phosphorylation modulates its protease activity…….…....... 96 3.3.8 Role of Ser12 and Ser36 Phosphorylation of in the autocatalytic 97 cleavage of caspase-3….…………………………………....……………….. 3.3.9 Role of caspase-3-Ser36 phosphorylation in apoptosis…..…….……… 100 3.3.10 Phosphorylation of Ser36 is important for caspase-3 cleavage during 102 apoptosis……………………….…………………………………………….. 3.4
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Viewed Previously [4]
    Barlow et al. BMC Biology (2018) 16:27 https://doi.org/10.1186/s12915-018-0492-9 RESEARCHARTICLE Open Access A sophisticated, differentiated Golgi in the ancestor of eukaryotes Lael D. Barlow1, Eva Nývltová2,3, Maria Aguilar1, Jan Tachezy2 and Joel B. Dacks1,4* Abstract Background: The Golgi apparatus is a central meeting point for the endocytic and exocytic systems in eukaryotic cells, and the organelle’s dysfunction results in human disease. Its characteristic morphology of multiple differentiated compartments organized into stacked flattened cisternae is one of the most recognizable features of modern eukaryotic cells, and yet how this is maintained is not well understood. The Golgi is also an ancient aspect of eukaryotes, but the extent and nature of its complexity in the ancestor of eukaryotes is unclear. Various proteins have roles in organizing the Golgi, chief among them being the golgins. Results: We address Golgi evolution by analyzing genome sequences from organisms which have lost stacked cisternae as a feature of their Golgi and those that have not. Using genomics and immunomicroscopy, we first identify Golgi in the anaerobic amoeba Mastigamoeba balamuthi. We then searched 87 genomes spanning eukaryotic diversity for presence of the most prominent proteins implicated in Golgi structure, focusing on golgins. We show some candidates as animal specific and others as ancestral to eukaryotes. Conclusions: None of the proteins examined show a phyletic distribution that correlates with the morphology of stacked cisternae, suggesting the possibility of stacking as an emergent property. Strikingly, however, the combination of golgins conserved among diverse eukaryotes allows for the most detailed reconstruction of the organelle to date, showing a sophisticated Golgi with differentiated compartments and trafficking pathways in the common eukaryotic ancestor.
    [Show full text]
  • Conformational Disruption of Pi3kδ Regulation by Immunodeficiency Mutations in PIK3CD and PIK3R1
    Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1 Gillian L. Dornana, Braden D. Siempelkampa, Meredith L. Jenkinsa, Oscar Vadasb, Carrie L. Lucasc, and John E. Burkea,1 aDepartment of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2; bDepartment of Pharmaceutical Chemistry, University of Geneva, CH-1211 Geneva 4, Switzerland; and cDepartment of Immunobiology, Yale University, New Haven, CT 06511 Edited by Lewis C. Cantley, Weill Cornell Medical College, New York, NY, and approved January 12, 2017 (received for review November 2, 2016) Activated PI3K Delta Syndrome (APDS) is a primary immunodefi- domain, and a bilobal kinase domain. All p85 regulatory subunits ciency disease caused by activating mutations in either the contain two SH2 domains (nSH2 and cSH2) linked by a coiled-coil leukocyte-restricted p110δ catalytic (PIK3CD) subunit or the ubiq- region referred to as the inter-SH2 domain (iSH2). The class IA uitously expressed p85α regulatory (PIK3R1) subunit of class IA p110 catalytic subunits are differentially inhibited by p85, with phosphoinositide 3-kinases (PI3Ks). There are two classes of APDS: p110α containing inhibitory contacts between the nSH2 domain of α APDS1 that arises from p110δ mutations that are analogous to p85 and the C2, helical, and kinase domains of p110 , as well as α oncogenic mutations found in the broadly expressed p110α sub- between the iSH2 domain of p85 and the C2 domain of p110 (10). Both p110β and p110δ contain an additional regulatory unit and APDS2 that occurs from a splice mutation resulting in – p85α with a central deletion (Δ434–475).
    [Show full text]
  • Discovering Novel Hearing Loss Genes: Roles for Esrp1 and Gas2 in Inner Ear Development and Auditory Function
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function Alex Martin Rohacek University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, Developmental Biology Commons, and the Molecular Biology Commons Recommended Citation Rohacek, Alex Martin, "Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function" (2018). Publicly Accessible Penn Dissertations. 2843. https://repository.upenn.edu/edissertations/2843 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2843 For more information, please contact [email protected]. Discovering Novel Hearing Loss Genes: Roles For Esrp1 And Gas2 In Inner Ear Development And Auditory Function Abstract Hearing loss is the most common form of congenital birth defect, affecting an estimated 35 million children worldwide. To date, nearly 100 genes have been identified which contribute to a deafness phenotype in humans, however, many cases remain in which a causative mutation has yet to be found. In addition, the exact mechanism by which hearing loss occurs in the presence of many of these mutations is still not understood. This is due, in part, to the complex nature of the development and function of the cochlear duct, the organ of hearing. The cochlea undergoes an intricate morphogenetic development and requires the proper specification and maintenance of dozens of different cell types in order to function correctly. In the mature duct, an interplay between mechanotransducing sensory hair cells, supporting pillar and Dieters' cells, and generation of electrochemical potential by the stria vascularis are necessary to respond to sound stimuli.
    [Show full text]
  • Caspases and Mitochondria in C-Myc-Induced Apoptosis: Identi®Cation of ATM As a New Target of Caspases
    Oncogene (2000) 19, 2354 ± 2362 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Caspases and mitochondria in c-Myc-induced apoptosis: identi®cation of ATM as a new target of caspases Anneli Hotti1,2, Kristiina JaÈ rvinen1,2, Pirjo Siivola1 and Erkki HoÈ lttaÈ *,1 1Haartman Institute, Department of Pathology, University of Helsinki, P.O. Box 21 (Haartmaninkatu 3), FIN- 00014, Finland The mechanism(s) of c-Myc transcription factor-induced transcription of the target genes (Galaktionov et al., apoptosis is still obscure. The activation of c-Myc has 1996; Packham and Cleveland, 1994; Shim et al., 1997). been found to lead into the processing/activation of On the other hand, c-Myc has been reported to induce caspases (caspase-3), but the signi®cance of this for the apoptosis without transcriptional activation (Evan et al., cell demise is debatable. Here we report that several 1992; Xiao et al., 1998). Also, it is not clear whether the targets of caspases (PKCd, MDM2, PARP, replication tumour suppressor p53, a transcriptional target for c- factor C, 70 kDa U1snRNP, fodrin and lamins) are Myc, is needed for apoptosis induced by c-Myc (Lotem cleaved during c-Myc-induced apoptosis in Rat-1 and Sachs, 1995; Shim et al., 1998; Wagner et al., 1994; MycERTM cells, indicating an important role for caspases Zindy et al., 1998; reviewed in Prendergast, 1999; in the apoptotic process. We further found that the ATM Thompson, 1998). Recently, c-Myc-induced apoptosis (ataxia telangiectasia mutated) ± protein is a novel key has been shown either indirectly (Kagaya et al., 1997; substrate of caspases.
    [Show full text]
  • Gas2 Is a Multifunctional Gene Involved in the Regulation of Apoptosis and Chondrogenesis in the Developing Mouse Limb
    Developmental Biology 207, 14–25 (1999) Article ID dbio.1998.9086, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector gas2 Is a Multifunctional Gene Involved in the Regulation of Apoptosis and Chondrogenesis in the Developing Mouse Limb K. K. H. Lee,*,1,2 M. K. Tang,* D. T. W. Yew,* P. H. Chow,* S. P. Yee,† C. Schneider,‡,§ and C. Brancolini‡,§,1 *Department of Anatomy, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China; †Cancer Research Laboratories, London Regional Cancer Centre, 790 Commissioners Road East, London, Ontario, Canada; ‡Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie Area, Science Park Padriciano 99, Trieste, Italy; and §Dipartimento Scienze e Tecnologie Biomediche Facolta’ di Medicina, University of Udine, p. Kolbe 4, Udine, Italy The growth-arrest-specific 2 (gas2) gene was initially identified on account of its high level of expression in murine fibroblasts under growth arrest conditions, followed by downregulation upon reentry into the cell cycle (Schneider et al., Cell 54, 787–793, 1988). In this study, the expression patterns of the gas2 gene and the Gas2 peptide were established in the developing limbs of 11.5- to 14.5-day mouse embryos. It was found that gas2 was expressed in the interdigital tissues, the chondrogenic regions, and the myogenic regions. Low-density limb culture and Brdu incorporation assays revealed that gas2 might play an important role in regulating chondrocyte proliferation and differentiation. Moreover, it might play a similar role during limb myogenesis.
    [Show full text]
  • Supplementary Table S2
    1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA.
    [Show full text]
  • The PX Domain Protein Interaction Network in Yeast
    The PX domain protein interaction network in yeast Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Dipl. Biol. Carolina S. Müller aus Buenos Aires Dekan: Prof. Dr. Manfred Kappes Referent: Dr. Nils Johnsson Korreferent: HD. Dr. Adam Bertl Tag der mündlichen Prüfung: 17.02.2005 I dedicate this work to my Parents and Alex TABLE OF CONTENTS Table of contents Introduction 1 Yeast as a model organism in proteome analysis 1 Protein-protein interactions 2 Protein Domains in Yeast 3 Classification of protein interaction domains 3 Phosphoinositides 5 Function 5 Structure 5 Biochemistry 6 Localization 7 Lipid Binding Domains 8 The PX domain 10 Function of PX domain containing proteins 10 PX domain structure and PI binding affinities 10 Yeast PX domain containing proteins 13 PX domain and protein-protein interactions 13 Lipid binding domains and protein-protein interactions 14 The PX-only proteins Grd19p and Ypt35p and their phenotypes 15 Aim of my PhD work 16 Project outline 16 Searching for interacting partners 16 Confirmation of obtained interactions via a 16 second independent method Mapping the interacting region 16 The Two-Hybrid System 17 Definition 17 Basic Principle of the classical Yeast-Two Hybrid System 17 Peptide Synthesis 18 SPOT synthesis technique 18 Analysis of protein- peptide contact sites based on SPOT synthesis 19 TABLE OF CONTENTS Experimental procedures 21 Yeast two-hybrid assay
    [Show full text]
  • Golgi Matrix Proteins Interact with P24 Cargo Receptors and Aid Their Efficient Retention in the Golgi Apparatus
    Published December 10, 2001 JCBReport Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus Francis A. Barr, Christian Preisinger, Robert Kopajtich, and Roman Körner Department of Cell Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany he Golgi apparatus is a highly complex organelle in vivo. GRASPs interact directly with the cytoplasmic comprised of a stack of cisternal membranes on the domains of specific p24 cargo receptors depending on T secretory pathway from the ER to the cell surface. their oligomeric state, and mutation of the GRASP binding This structure is maintained by an exoskeleton or Golgi site in the cytoplasmic tail of one of these, p24a, results in it matrix constructed from a family of coiled-coil proteins, being transported to the cell surface. These results suggest the golgins, and other peripheral membrane components that one function of the Golgi matrix is to aid efficient such as GRASP55 and GRASP65. Here we find that TMP21, retention or sequestration of p24 cargo receptors and other Downloaded from p24a, and gp25L, members of the p24 cargo receptor family, membrane proteins in the Golgi apparatus. are present in complexes with GRASP55 and GRASP65 Introduction on April 13, 2017 The Golgi apparatus is an organelle on the secretory pathway required to target it to the Golgi (Barr et al., 1998). GM130 required for the processing of complex sugar structures on in turn is a receptor for p115, required for tethering vesicles many proteins and lipids, and for the sorting of these proteins to their target membrane (Barroso et al., 1995; Nakamura et and lipids to their correct subcellular destinations (Farquhar al., 1997).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • ANALYSIS Doi:10.1038/Nature14663
    ANALYSIS doi:10.1038/nature14663 Universal allosteric mechanism for Ga activation by GPCRs Tilman Flock1, Charles N. J. Ravarani1*, Dawei Sun2,3*, A. J. Venkatakrishnan1{, Melis Kayikci1, Christopher G. Tate1, Dmitry B. Veprintsev2,3 & M. Madan Babu1 G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. proteins bind guanine nucleotides and act as molecular switches almost 30 A˚ away from the GDP binding region5 and allosterically trig- in a number of signalling pathways by interconverting between ger GDP release to activate them. 1,2 G a GDP-bound inactive and a GTP-bound active state . They The high-resolution structure of the Gas-bound b2-adrenergic recep- 3 5 consist of two major classes: monomeric small G proteins and hetero- tor (b2AR) provided crucial insights into the receptor–G protein inter- trimeric G proteins4. While small G proteins and the a-subunit (Ga)of face and conformational changes in Ga upon receptor binding6,7. Recent 6 8 heterotrimeric G proteins both contain a GTPase domain (G-domain), studies described dynamic regions in Gas and Gai , the importance of ˚ Ga contains an additional helical domain (H-domain) and also forms a displacement of helix 5 (H5) of Gas and Gat by up to 6 A into the complex with the Gb and Gc subunits.
    [Show full text]
  • Protein Kinase C Mechanisms That Contribute to Cardiac Remodelling
    Clinical Science (2016) 130, 1499–1510 doi: 10.1042/CS20160036 Protein kinase C mechanisms that contribute to cardiac remodelling Alexandra C. Newton*, Corina E. Antal*† and Susan F. Steinberg‡ *Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, U.S.A. †Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, U.S.A. ‡Department of Pharmacology, Columbia University, New York, NY 10032, U.S.A. Abstract Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure. Key words: myocardial remodelling, post translational modification, protein kinase C. INTRODUCTION the mechanisms that regulate various PKC isoenzymes and then discusses current concepts regarding the role of PKC enzymes in Protein kinase C (PKC) isoenzymes transduce the myriad of the pathogenesis and treatment of heart disease.
    [Show full text]