Cyproterone Acetate Or Spironolactone in Lowering Testosterone Concentrations for Transgender Individuals Receiving Oestradiol Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Cyproterone Acetate Or Spironolactone in Lowering Testosterone Concentrations for Transgender Individuals Receiving Oestradiol Therapy ID: 19-0272 8 7 L Angus et al. Anti-androgens in 8:7 935–940 transfeminine individuals RESEARCH Cyproterone acetate or spironolactone in lowering testosterone concentrations for transgender individuals receiving oestradiol therapy Lachlan Angus1, Shalem Leemaqz2, Olivia Ooi1, Pauline Cundill3, Nicholas Silberstein3, Peter Locke3, Jeffrey D Zajac1 and Ada S Cheung1 1Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia 2Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 3Equinox Gender Diverse Clinic, Thorne Harbour Health, Fitzroy, Victoria, Australia Correspondence should be addressed to A S Cheung: [email protected] Abstract Background: Oestradiol with or without an anti-androgen (cyproterone acetate or Key Words spironolactone) is commonly prescribed in transfeminine individuals who have not had f transgender persons orchidectomy; however, there is no evidence to guide optimal treatment choice. f transsexualism Objective: We aimed to compare add-on cyproterone acetate versus spironolactone in f gender identity lowering endogenous testosterone concentrations in transfeminine individuals. f gender dysphoria Design: Retrospective cross-sectional study. f androgens Methods: We analysed 114 transfeminine individuals who had been on oestradiol therapy for >6 months in two gender clinics in Melbourne, Australia. Total testosterone concentrations were compared between three groups; oestradiol alone (n = 21), oestradiol plus cyproterone acetate (n = 21) and oestradiol plus spironolactone (n = 38). Secondary outcomes included serum oestradiol concentration, oestradiol valerate dose, blood pressure, serum potassium, urea and creatinine. Results: Median age was 27.0 years (22.5–45.1) and median duration of hormone therapy was 1.5 years (0.9–2.6), which was not different between groups. On univariate analysis, the cyproterone group had significantly lower total testosterone concentrations (0.8 nmol/L (0.6–1.20)) compared with the spironolactone group (2.0 nmol/L (0.9–9.4), P = 0.037) and oestradiol alone group (10.5 nmol/L (4.9–17.2), P < 0.001), which remained significant P( = 0.005) after adjustments for oestradiol concentration, dose and age. Serum urea was higher in the spironolactone group compared with the cyproterone group. No differences were observed in total daily oestradiol dose, blood pressure, serum oestradiol, potassium or creatinine. Conclusions: The cyproterone group achieved serum total testosterone concentrations in the female reference range. As spironolactone may cause feminisation without inhibition of steroidogenesis, it is unclear which anti-androgen is more effective at feminisation. Endocrine Connections Further prospective studies are required. (2019) 8, 935–940 https://ec.bioscientifica.com © 2019 The authors This work is licensed under a Creative Commons https://doi.org/10.1530/EC-19-0272 Published by Bioscientifica Ltd Attribution-NonCommercial-NoDerivatives 4.0 International License. -19-0272 PB–6 L Angus et al. Anti-androgens in 8:7 936 transfeminine individuals Introduction electrolyte imbalance and hypotension, which impact upon treatment choice. Rapid rises in demand for transgender health services In this retrospective audit of individuals on established have been observed worldwide (1, 2). Birth-assigned feminising hormone therapy, we aimed to compare the males who wish to transition to female (hereafter termed serum total testosterone concentrations of individuals on transfeminine individuals) are typically treated with established treatment with oestradiol alone, oestradiol oestradiol as feminising gender-affirming hormone with additional cyproterone acetate and oestradiol with therapy (3). Goals of therapy are generally to increase additional spironolactone. We hypothesised that in serum oestradiol concentrations and lower serum total transfeminine individuals on oestradiol therapy, a greater testosterone concentrations to achieve sex steroid proportion of individuals receiving additional cyproterone concentrations in the female reference range. Over acetate would have total testosterone concentrations 3–24 months, this leads to feminine physical characteristics <2 nmol/L (the female reference range in our laboratory) including softening of skin, a decrease in facial and body compared to those receiving additional spironolactone or hair growth, changes in body fat and muscle distribution, oestradiol alone. as well as breast development (4). Oestradiol improves psychological functioning in transfeminine individuals (5); however, oestradiol alone is usually insufficient to Methods lower serum total testosterone concentrations from a male to a female reference range. Oestradiol suppresses A retrospective audit of de-identified electronic medical gonadotropin-releasing hormone (GnRH) via negative records was performed of new consultations for gender feedback, in turn partially lowering testosterone. However, dysphoria across two gender clinics in Melbourne, as the majority of individuals (82% in our clinics (1)) do Australia: (a) Equinox Gender Diverse Clinic, an adult not undergo genital reassignment surgery to remove the primary care general practice clinic with a focus on testes, which are responsible for >95% of testosterone transgender health and (b) an adult endocrine specialist production, most individuals will require treatment with clinic. New consecutive consultations between 1 January an additional anti-androgen drug. Anti-androgens such 2011 and 31 December 2016 were analysed. As the as cyproterone acetate or spironolactone are commonly primary care clinic commenced on 22 February 2016, added to oestradiol, lowering or blocking the effects of data were analysed for the first 12 months of operation testosterone to aid development of feminising physical until 22 February 2017. The study was approved by characteristics. the Austin Health Human Research Ethics Committee In transfeminine individuals wishing to inhibit (LNR/17/Austin/102) and the nature of the study did not androgenic physical characteristics, choice of anti- necessitate informed consent. androgen agent is a common clinical scenario faced by Clinical characteristics of the audit have been patients and treating clinicians alike. Whilst both anti- previously published (1). This cross-sectional analysis androgen agents, cyproterone acetate and spironolactone, included transfeminine individuals newly presenting have been shown to lower serum testosterone to the clinics who had been on established feminising concentrations if added to oestradiol treatment, there hormone therapy with oestradiol for at least 6 months is little evidence to guide the superiority of one anti- and had fasting serum sex steroid results available androgen over another (6). Both cyproterone acetate and within 1 month of their initial consultation. We spironolactone have peripheral anti-androgen effects, excluded individuals who were expected to have castrate but cyproterone acetate additionally has progestogenic testosterone concentrations (previous orchidectomy or actions which may be more effective in suppressing GnRH concurrent GnRH agonist therapy) and individuals on and in turn, testosterone concentrations. ethinyl oestradiol treatment as this was not measurable As there are no data to support one drug over the on oestradiol immunoassay. other, prescription of anti-androgens is often a random The primary outcome of interest was serum fasting choice with over 90% of experienced prescribers of gender- total testosterone concentration by treatment group: (a) affirming hormone therapy using both agents with no oestradiol alone, (b) oestradiol plus additional cyproterone rationale for one or the other (7). Yet, cyproterone may acetate and (c) oestradiol plus additional spironolactone. be associated with adverse effects such as depression, and Other parameters of interest included serum oestradiol spironolactone may be associated with excess diuresis, concentration, potassium, urea and creatinine, https://ec.bioscientifica.com © 2019 The authors This work is licensed under a Creative Commons https://doi.org/10.1530/EC-19-0272 Published by Bioscientifica Ltd Attribution-NonCommercial-NoDerivatives 4.0 International License. L Angus et al. Anti-androgens in 8:7 937 transfeminine individuals haemoglobin, liver function (alanine transaminase (ALT)), Pharmaceutical Benefits Scheme. The median doses used oestradiol valerate dose and blood pressure. were oestradiol valerate 6 mg (4, 6), cyproterone acetate As data were obtained retrospectively, sex steroid 50 mg (25, 50) and spironolactone 100 mg (87.5–200). concentrations, biochemistry and haemoglobin were The serum total testosterone concentrations for the performed using immunoassay available as standard three groups are shown in Fig. 1. The median serum care for clinical decision-making. Multiple National total testosterone concentrations were 10.5 nmol/L Association of Testing Authorities (NATA, the national (4.9–17.2) in the oestradiol alone group, 0.8 nmol/L accreditation body for Australia) accredited laboratories (0.6–1.2) in the cyproterone group and 2.0 nmol/L available locally were used. (0.9–9.4) in the spironolactone group. On univariate Statistical analyses were performed using R (v3.5.1; analysis, the cyproterone group had significantly R foundation for statistical computing). Median (IQR) lower serum total testosterone concentrations than the are reported and differences between were tested
Recommended publications
  • Compositions Comprising Drospirenone Molecularly
    (19) & (11) EP 1 748 756 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/00 (2006.01) A61K 9/107 (2006.01) 29.04.2009 Bulletin 2009/18 A61K 9/48 (2006.01) A61K 9/16 (2006.01) A61K 9/20 (2006.01) A61K 9/14 (2006.01) (2006.01) (2006.01) (21) Application number: 05708751.2 A61K 9/70 A61K 31/565 (22) Date of filing: 10.03.2005 (86) International application number: PCT/IB2005/000665 (87) International publication number: WO 2005/087194 (22.09.2005 Gazette 2005/38) (54) COMPOSITIONS COMPRISING DROSPIRENONE MOLECULARLY DISPERSED ZUSAMMENSETZUNGEN AUS DROSPIRENON IN MOLEKULARER DISPERSION DES COMPOSITIONS CONTENANT DROSPIRENONE A DISPERSION MOLECULAIRE (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • FUNKE, Adrian HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR D-14055 Berlin (DE) Designated Extension States: • WAGNER, Torsten AL BA HR MK YU 13127 Berlin (DE) (30) Priority: 10.03.2004 EP 04075713 (74) Representative: Wagner, Kim 10.03.2004 US 551355 P Plougmann & Vingtoft a/s Sundkrogsgade 9 (43) Date of publication of application: P.O. Box 831 07.02.2007 Bulletin 2007/06 2100 Copenhagen Ø (DK) (60) Divisional application: (56) References cited: 08011577.7 / 1 980 242 EP-A- 1 260 225 EP-A- 1 380 301 WO-A-01/52857 WO-A-20/04022065 (73) Proprietor: Bayer Schering Pharma WO-A-20/04041289 US-A- 5 569 652 Aktiengesellschaft US-A- 5 656 622 US-A- 5 789 442 13353 Berlin (DE) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Download PDF File
    Ginekologia Polska 2019, vol. 90, no. 9, 520–526 Copyright © 2019 Via Medica ORIGINAL PAPER / GYNECologY ISSN 0017–0011 DOI: 10.5603/GP.2019.0091 Anti-androgenic therapy in young patients and its impact on intensity of hirsutism, acne, menstrual pain intensity and sexuality — a preliminary study Anna Fuchs, Aleksandra Matonog, Paulina Sieradzka, Joanna Pilarska, Aleksandra Hauzer, Iwona Czech, Agnieszka Drosdzol-Cop Department of Pregnancy Pathology, Department of Woman’s Health, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland ABSTRACT Objectives: Using anti-androgenic contraception is one of the methods of birth control. It also has a significant, non-con- traceptive impact on women’s body. These drugs can be used in various endocrinological disorders, because of their ability to reduce the level of male hormones. The aim of our study is to establish a correlation between taking different types of anti-androgenic drugs and intensity of hirsutism, acne, menstrual pain intensity and sexuality . Material and methods: 570 women in childbearing age that had been using oral contraception for at least three months took part in our research. We examined women and asked them about quality of life, health, direct causes and effects of that treatment, intensity of acne and menstrual pain before and after. Our research group has been divided according to the type of gestagen contained in the contraceptive pill: dienogest, cyproterone, chlormadynone and drospirenone. Ad- ditionally, the control group consisted of women taking oral contraceptives without antiandrogenic component. Results: The mean age of the studied group was 23 years ± 3.23. 225 of 570 women complained of hirsutism.
    [Show full text]
  • Comparing the Effects of Combined Oral Contraceptives Containing Progestins with Low Androgenic and Antiandrogenic Activities on the Hypothalamic-Pituitary-Gonadal Axis In
    JMIR RESEARCH PROTOCOLS Amiri et al Review Comparing the Effects of Combined Oral Contraceptives Containing Progestins With Low Androgenic and Antiandrogenic Activities on the Hypothalamic-Pituitary-Gonadal Axis in Patients With Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis Mina Amiri1,2, PhD, Postdoc; Fahimeh Ramezani Tehrani2, MD; Fatemeh Nahidi3, PhD; Ali Kabir4, MD, MPH, PhD; Fereidoun Azizi5, MD 1Students Research Committee, School of Nursing and Midwifery, Department of Midwifery and Reproductive Health, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 2Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 3School of Nursing and Midwifery, Department of Midwifery and Reproductive Health, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran 4Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic Of Iran 5Endocrine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic Of Iran Corresponding Author: Fahimeh Ramezani Tehrani, MD Reproductive Endocrinology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences 24 Parvaneh Yaman Street, Velenjak, PO Box 19395-4763 Tehran, 1985717413 Islamic Republic Of Iran Phone: 98 21 22432500 Email: [email protected] Abstract Background: Different products of combined oral contraceptives (COCs) can improve clinical and biochemical findings in patients with polycystic ovary syndrome (PCOS) through suppression of the hypothalamic-pituitary-gonadal (HPG) axis. Objective: This systematic review and meta-analysis aimed to compare the effects of COCs containing progestins with low androgenic and antiandrogenic activities on the HPG axis in patients with PCOS.
    [Show full text]
  • How to Select Pharmacologic Treatments to Manage Recidivism Risk in Sex Off Enders
    How to select pharmacologic treatments to manage recidivism risk in sex off enders Consider patient factors when choosing off -label hormonal and nonhormonal agents ® Dowden Healthex offenders Media traditionally are managed by the criminal justice system, but psychiatrists are fre- Squently called on to assess and treat these indi- CopyrightFor personalviduals. use Part only of the reason is the overlap of paraphilias (disorders of sexual preference) and sexual offending. Many sexual offenders do not meet DSM criteria for paraphilias,1 however, and individuals with paraphil- ias do not necessarily commit offenses or come into contact with the legal system. As clinicians, we may need to assess and treat a wide range of sexual issues, from persons with paraphilias who are self-referred and have no legal involvement, to recurrent sexual offenders who are at a high risk of repeat offending. Successfully managing sex offenders includes psychological and pharmacologic interven- 2009 © CORBIS / TIM PANNELL 2009 © CORBIS / tions and possibly incarceration and post-incarceration Bradley D. Booth, MD surveillance. This article focuses on pharmacologic in- Assistant professor terventions for male sexual offenders. Department of psychiatry Director of education Integrated Forensics Program University of Ottawa Reducing sexual drive Ottawa, ON, Canada Sex offending likely is the result of a complex inter- play of environment and psychological and biologic factors. The biology of sexual function provides nu- merous targets for pharmacologic intervention, in- cluding:2 • endocrine factors, such as testosterone • neurotransmitters, such as serotonin. The use of pharmacologic treatments for sex of- fenders is off-label, and evidence is limited. In general, Current Psychiatry 60 October 2009 pharmacologic treatments are geared toward reducing For mass reproduction, content licensing and permissions contact Dowden Health Media.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • Downloaded 9/24/2021 7:05:26 PM
    Environmental Science Processes & Impacts PAPER View Article Online View Journal | View Issue Solid-phase extraction as sample preparation of water samples for cell-based and other in vitro Cite this: Environ. Sci.: Processes Impacts,2018,20,493 bioassays† a bc d b Peta A. Neale, Werner Brack, Selim A¨ıt-A¨ıssa, Wibke Busch, ef b d Juliane Hollender, Martin Krauss, Emmanuelle Maillot-Marechal,´ Nicole A. Munz,ef Rita Schlichting,b Tobias Schulze, b Bernadette Voglere and Beate I. Escher *abg In vitro bioassays are increasingly used for water quality monitoring. Surface water samples often need to be enriched to observe an effect and solid-phase extraction (SPE) is commonly applied for this purpose. The applied methods are typically optimised for the recovery of target chemicals and not for effect recovery for bioassays. A review of the few studies that have evaluated SPE recovery for bioassays showed a lack of experimentally determined recoveries. Therefore, we systematically measured effect recovery of a mixture of 579 organic chemicals covering a wide range of physicochemical properties that were spiked into a pristine water sample and extracted using large volume solid-phase extraction (LVSPE). Assays indicative of activation of xenobiotic metabolism, hormone receptor-mediated effects and adaptive stress responses were applied, with non-specificeffects determined through cytotoxicity measurements. Overall, effect recovery was found to be similar to chemical recovery for the majority of bioassays and LVSPE blanks had no effect. Multi-layer SPE exhibited greater recovery of spiked chemicals compared to LVSPE, but the blanks triggered cytotoxicity at high enrichment. Chemical recovery data together with single chemical effect data were used to retrospectively estimate with reverse recovery modelling that there was typically Received 19th November 2017 less than 30% effect loss expected due to reduced SPE recovery in published surface water monitoring Accepted 15th February 2018 studies.
    [Show full text]
  • Long-Term Menopausal Treatment Using an Ultra-High Dosage of Tibolone in an Elderly Chinese Patient – Case Report
    Long-term menopausal treatment using an ultra-high dosage of tibolone in an elderly Chinese patient – Case report Lingyan Zhang 1, Xiangyan Ruan 1,2*, Muqing Gu 1, Alfred O. Mueck 1,2 1 Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China; 2 Department of Women’s Health, University Women’s Hospital and Research Centre for Women’s Health, University of Tuebingen, Tuebingen D-72076, Germany) ABSTRACT This report describes the special case of a Chinese woman with severe vasomotor symptoms (VSMs), depressed mood, low energy and genitourinary syndrome of menopause, including problems of sexual dysfunction, who was treated with tibolone. The aim of the report is to highlight the value of individualizing menopausal hormone therapy (MHT) type and dosage. Since 16 years of previous treatment with various other forms of MHT had not provided satisfactory efficacy in this patient, at the age of 71 years she was prescribed tibolone, starting at the usual lowest dosage of 1.25 mg/day. We gradually had to increase the dosage of tibolone up to 7.5 mg/day, which is three-fold the recommended maximum dosage. We added three-monthly sequential dydrogesterone to reduce the risk of breakthrough bleeding and the risk of endometrial cancer. To date, we have observed no side effects and no remarkable abnormal laboratory assessments, with the exception of increased thyroid-stimulating hormone, which we monitor six-monthly. Even though the patient has been informed about potential risks, such as increased risks of stroke, breast cancer and endometrial cancer, as described in the discussion, she has now been willing to accept this ultra-high dosage for seven years, and wishes to continue with this treatment.
    [Show full text]
  • Role of Androgens, Progestins and Tibolone in the Treatment of Menopausal Symptoms: a Review of the Clinical Evidence
    REVIEW Role of androgens, progestins and tibolone in the treatment of menopausal symptoms: a review of the clinical evidence Maria Garefalakis Abstract: Estrogen-containing hormone therapy (HT) is the most widely prescribed and well- Martha Hickey established treatment for menopausal symptoms. High quality evidence confi rms that estrogen effectively treats hot fl ushes, night sweats and vaginal dryness. Progestins are combined with School of Women’s and Infants’ Health The University of Western Australia, estrogen to prevent endometrial hyperplasia and are sometimes used alone for hot fl ushes, King Edward Memorial Hospital, but are less effective than estrogen for this purpose. Data are confl icting regarding the role of Subiaco, Western Australia, Australia androgens for improving libido and well-being. The synthetic steroid tibolone is widely used in Europe and Australasia and effectively treats hot fl ushes and vaginal dryness. Tibolone may improve libido more effectively than estrogen containing HT in some women. We summarize the data from studies addressing the effi cacy, benefi ts, and risks of androgens, progestins and tibolone in the treatment of menopausal symptoms. Keywords: androgens, testosterone, progestins, tibolone, menopause, therapeutic Introduction Therapeutic estrogens include conjugated equine estrogens, synthetically derived piperazine estrone sulphate, estriol, dienoestrol, micronized estradiol and estradiol valerate. Estradiol may also be given transdermally as a patch or gel, as a slow release percutaneous implant, and more recently as an intranasal spray. Intravaginal estrogens include topical estradiol in the form of a ring or pessary, estriol in pessary or cream form, dienoestrol and conjugated estrogens in the form of creams. In some countries there is increasing prescribing of a combination of estradiol, estrone, and estriol as buccal lozenges or ‘troches’, which are formulated by private compounding pharmacists.
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • Cyproterone Acetate Or Spironolactone in Lowering Testosterone Concentrations for Transgender Individuals Receiving Oestradiol Therapy
    ID: 19-0272 8 7 L Angus et al. Anti-androgens in 8:7 935–940 transfeminine individuals RESEARCH Cyproterone acetate or spironolactone in lowering testosterone concentrations for transgender individuals receiving oestradiol therapy Lachlan Angus1, Shalem Leemaqz2, Olivia Ooi1, Pauline Cundill3, Nicholas Silberstein3, Peter Locke3, Jeffrey D Zajac1 and Ada S Cheung1 1Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia 2Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 3Equinox Gender Diverse Clinic, Thorne Harbour Health, Fitzroy, Victoria, Australia Correspondence should be addressed to A S Cheung: [email protected] Abstract Background: Oestradiol with or without an anti-androgen (cyproterone acetate or Key Words spironolactone) is commonly prescribed in transfeminine individuals who have not had f transgender persons orchidectomy; however, there is no evidence to guide optimal treatment choice. f transsexualism Objective: We aimed to compare add-on cyproterone acetate versus spironolactone in f gender identity lowering endogenous testosterone concentrations in transfeminine individuals. f gender dysphoria Design: Retrospective cross-sectional study. f androgens Methods: We analysed 114 transfeminine individuals who had been on oestradiol therapy for >6 months in two gender clinics in Melbourne, Australia. Total testosterone concentrations were compared between three groups; oestradiol alone (n = 21), oestradiol plus cyproterone acetate (n = 21) and oestradiol plus spironolactone (n = 38). Secondary outcomes included serum oestradiol concentration, oestradiol valerate dose, blood pressure, serum potassium, urea and creatinine. Results: Median age was 27.0 years (22.5–45.1) and median duration of hormone therapy was 1.5 years (0.9–2.6), which was not different between groups.
    [Show full text]
  • Determination of Spironolactone and Canrenone in Human Plasma by High-Performance Liquid Chromatography with Mass Spectrometry Detection†
    CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 84 (3) (2011) 361–366. CCA-3483 Original Scientific Article Determination of Spironolactone and Canrenone in Human Plasma by High-performance Liquid Chromatography with † Mass Spectrometry Detection Laurian Vlase,a Silvia Imre,b,* Dana Muntean,a Marcela Achim,a and Daniela-Lucia Munteanb aDepartment of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, Victor Babeş street 8, RO-400012, Cluj-Napoca, Romania bDepartment of Drug Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy, Gheorghe Marinescu street 38, RO-540139, Târgu-Mureş, Romania RECEIVED SEPTEMBER 30, 2010; REVISED DECEMBER 21, 2010; ACCEPTED JANUARY 17, 2011 Abstract. A new simple, sensitive and LC-MS/MS method for quantification of spironolactone and its me- tabolite, canrenone, in human plasma is proposed. The analytes were analysed on a C18 column at 48 ºC, by using a mobile phase of 58 % methanol, 42 % 10 mmol dm−3 ammonim acetate in water and a flow rate of 1 mL/min. The detection of both analytes in plasma was performed as follows: ESI+, EIC (m/z 169;187;283;305) from m/z 341, after protein precipitation with methanol. Calibration curves were gener- ated over the ranges 2.77–184.50 ng/mL for spironolactone and 2.69–179.20 ng/mL for canrenone by us- ing a weighted (1/y) linear regression. The absolute values of within- and between-run precision and accu- racy for both analytes ranged between 3.1 and 13.9 %, and the mean recovery was 99.7 %.
    [Show full text]