Xanthohumol and Related Prenylflavonoids from Hops and Beer

Total Page:16

File Type:pdf, Size:1020Kb

Xanthohumol and Related Prenylflavonoids from Hops and Beer PHYTOCHEMISTRY Phytochemistry 65 (2004) 1317–1330 www.elsevier.com/locate/phytochem Molecules of Interest Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Jan F. Stevens a,*, Jonathan E. Page b,* a Department of Chemistry and the Linus Pauling Institute, Oregon State University, 117 Weniger Hall, Corvallis, OR 97331, USA b Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Sask., Canada S7N 0W9 Received 23 April 2004; accepted 26 April 2004 Available online 28 May 2004 Abstract Xanthohumol (30-[3,3-dimethyl allyl]-20,40,4-trihydroxy-60-methoxychalcone) is the principal prenylated flavonoid of the female inflorescences of the hop plant (‘hops’), an ingredient of beer. Human exposure to xanthohumol and related prenylflavonoids, such as 8-prenylnaringenin and isoxanthohumol, is primarily through beer consumption. Xanthohumol has been characterized a ‘broad- spectrum’ cancer chemopreventive agent in in vitro studies, while 8-prenylnaringenin enjoys fame as the most potent phytoestrogen known to date. These biological activities suggest that prenylflavonoids from hops have potential for application in cancer pre- vention programs and in prevention or treatment of (post-)menopausal ‘hot flashes’ and osteoporosis. Xanthohumol and 8-pren- ylnaringenin are metabolized into many flavonoid derivatives with modified 3,3-dimethyl allyl (prenyl) moieties. Xanthohumol is formed in lupulin glands by a specialized branch of flavonoid biosynthesis that involves prenylation and O-methylation of the polyketide intermediate chalconaringenin. Although a lupulin gland-specific chalcone synthase is known, the aromatic prenyl- transferase and O-methyltransferase participating in xanthohumol have not been identified. The prenylflavonoid pathway is a possible target for breeding or biotechnological modification of hops with the aim of increasing xanthohumol levels for beer brewing and 8-prenylnaringenin levels for pharmaceutical production. Ó 2004 Elsevier Ltd. All rights reserved. Keywords: Xanthohumol; 8-Prenylnaringenin; Prenylflavonoids; Flavonoids; Hops; Humulus lupulus; Beer; Antioxidant; Cancer chemoprevention; Phytoestrogen; Breast enhancement 1. Introduction recent years as cancer chemopreventive agents, while 8-prenylnaringenin, an isomerization product of des- Xanthohumol is a structurally simple prenylated methylxanthohumol also present in beer, enjoys fame chalcone that occurs only in the hop plant, Humulus as the most potent phytoestrogen isolated to date. lupulus L. (Cannabaceae), where it is the principal These exciting biological activities may lead to prenylflavonoid of the female inflorescences (usually biomedical application of xanthohumol and 8-pren- referred to as ‘hops’ or ‘hop cones’). Hops are used to ylnaringenin in the future. Furthermore, hop pren- add bitterness and flavor to beer, and therefore the ylflavonoids are currently tested in many academic main dietary source of xanthohumol and related and industrial laboratories for other biological activi- prenylflavonoids is beer. Xanthohumol and other ties. At the same time, hop-containing herbal prepa- prenylated chalcones have received much attention in rations are being marketed for breast enlargement in women, without proper testing of efficacy and toxicity. The use of hops in herbal preparations represents a * Corresponding authors. Tel.: +1-541-737-9534; fax: +1-541-737- small market and does not seem to be promoted by 2062 (J.F. Stevens); tel.: +1-306-975-4187; fax: +1-306-975-4839 (J.E. Page). the hop growing industry. However, hop growers are E-mail addresses: [email protected] (J.F. Stevens), very interested in alternative applications for hops and [email protected] (J.E. Page). its constituents in view of the continuing trend of 0031-9422/$ - see front matter Ó 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2004.04.025 1318 J.F. Stevens, J.E. Page / Phytochemistry 65 (2004) 1317–1330 decreasing market prices of hops and improving ag- is the result of eastward migration to Japan and ricultural production methods. America and westward to Europe from the center of The purpose of this review is to provide an overview the species’ origin in China during the mid to late of the chemistry, biological activities, and biotechno- Tertiary (Small, 1980; Neve, 1991). logical aspects of xanthohumol and other prenylated flavonoids from hops. Biosynthetically related to the prenylated flavonoids are the prenylated acylphlorog- lucinols, i.e., humulones (a-acids) and lupulones (b- 3. Isolation and chemical synthesis acids), which represent the commercial value of hops as bittering substances for the beer industry but potential Xanthohumol was first isolated, partially character- biomedical applications have not yet been identified for ized and named by Power et al. (1913). They also ob- this group of terpenophenolics. Hops are also rich tained a related substance which they called humulol, sources of flavonol glycosides and condensed tannins: which was later identified as the flavanone, iso- these groups of flavonoids will not be treated either as xanthohumol, by Verzele et al. (1957). In the years fol- they are widely distributed in the plant kingdom. lowing 1957, there remained some doubt as to the position of the prenyl substituent relative to the meth- oxy group in xanthohumol. Two independent groups 2. Distribution and chemotaxonomic significance of xan- were finally able to confirm Verzele’s original structure thohumol and related flavonoids as the correct structure of xanthohumol by partial syn- thesis and chemical degradation studies (Vandewalle, The distribution of xanthohumol is limited to and 1961; Orth and Riedl, 1963). At the time of preparation ubiquitous within H. lupulus. Xanthohumol is secreted of this review, no formal synthesis of xanthohumol as part of the hop resin (‘lupulin’) by glandular tri- could be retrieved from the SciFinder database. The lack chomes found on the adaxial surfaces of cone bracts. It of interest in the synthesis of this compound is probably is also found in the trichomes on the underside of young related to the availability of xanthohumol from sources leaves. Xanthohumol is the main prenylflavonoid of such as CO2-extracted hops, a waste product of the hop- hops (0.1–1% on dry weight); in the resin, xanthohumol processing industry. It is expected that new synthetic is accompanied by at least 13 related chalcones (Table methods will appear in the literature when labeled 1), all of which occur at 10–100-fold lower concentra- xanthohumol is needed for in vivo studies. The recent tions relative to xanthohumol. Most of the chalcones interest in 8-prenylnaringenin as a novel phytoestrogen contain a free 20-hydroxy group and can therefore has spurred the development of a synthesis for 8-pren- isomerize to their corresponding flavanones. The struc- ylnaringenin from naringenin and prenyl alcohol tures of the most abundant prenylated hop flavanones, (Gester et al., 2001). i.e., isoxanthohumol, 6-prenylnaringenin, and 8-pren- The external accumulation of xanthohumol and re- ylnaringenin, are also listed in Table 1. lated prenylflavonoids in lupulin glands significantly In a study to determine whether prenylflavonoid facilitates the extraction of these lipophilic compounds variation had diagnostic value in distinguishing be- (Stevens et al., 1997). Whole hop cones can be rinsed tween hop cultivars, we found that the presence of briefly with chloroform or acetone to dissolve the resin xanthogalenol (Table 1), named after its source constituents. The extract thus obtained contains the H. lupulus cv. ‘Galena’, was strictly limited to a few bulk of the bitter acids and the prenylflavonoids but is varieties that were all derived from H. lupulus cv. largely free of cone tissue constituents. Crude xan- ‘Brewer’s Gold’. The latter variety is the result of an thohumol can be isolated from the resin extract by open-pollination event between a wild female plant column chromatography on Sephadex LH-20 using from Manitoba and an unknown European male at methanol as the eluent. The crude product can be pu- Wye College, England, in 1918 (Neve, 1991). This in- rified by semi-preparative HPLC on a reversed-phase teresting piece of information led us to include many C18-column. This method has been improved in recent wild North American hop plants and one sample of years by extracting hops with acetone after pre-extrac- Humulus cordifolius (originally from Japan) in our tion of hops using supercritical CO2 to remove the bulk survey of 22 flavonoids. Multivariate analysis of the of the bitter acids (supercritical CO2-extraction is an flavonoid profiles obtained from 120 cone and leaf industrial process for the production of bitter acids; the samples yielded two well-resolved groups of hops: (1) wasted hop materials were made available to us). Ad- European hops and (2) Central US and Japanese wild dition of a 5% solution of sodium carbonate in water to hops (Stevens et al., 2000). This dichotomy with regard the concentrated acetone extract usually results in pre- to the presence of xanthogalenol and other 40-O- cipitation of chlorophyll and other fatty materials. The methylated chalcones clearly supports the hypothesis aqueous layer, containing the prenylflavonoids in their that the present-day disjunct distribution of H. lupulus phenolate form, is acidified and extracted with ethyl J.F. Stevens, J.E. Page / Phytochemistry 65 (2004) 1317–1330 1319 Table 1 Prenylated chalcones and flavanones from hops Structure Trivial name Reference Chalcones Power et al. (1913) HO OCH OH Xanthohumol 4' 6' 3 4 Verzele et al. (1957) α Huebner and Riedl (1960) 2' β 1 Haensel and Schulz (1988) OH O R3 R2O OR1 OH R4 OH O R1,R2,R3 ¼ H, R4 ¼ Prenyl Desmethylxanthohumol Haensel and Schulz (1988) R1,R3 ¼ H; R2 ¼ Me, R4 ¼ Prenyl Xanthogalenol Stevens et al. (2000) 0 R1,R2 ¼ Me; R3 ¼ H, R4 ¼ Prenyl 4 -O-Methylxanthohumol Sun et al. (1989) 0 R1,R2,R3 ¼ H, R4 ¼ Geranyl 3 -Geranylchalconaringenin Stevens et al. (1997) 0 0 R1,R2 ¼ H; R3,R4 ¼ Prenyl 3 ,5 -Diprenylchalconaringenin Stevens et al. (2000) 0 R1 ¼ Me, R2 ¼ H; R3,R4 ¼ Prenyl 5 -Prenylxanthohumol Stevens et al.
Recommended publications
  • Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: a Review
    molecules Review Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review Hanghang Lou 1,†, Lifei Hu 2,†, Hongyun Lu 1, Tianyu Wei 1 and Qihe Chen 1,* 1 Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; [email protected] (H.L.); [email protected] (H.L.); [email protected] (T.W.) 2 Hubei Key Lab of Quality and Safety of Traditional Chinese Medicine & Health Food, Huangshi 435100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0571-8698-4316 † These authors are equally to this manuscript. Abstract: Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, phar- maceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review. Citation: Lou, H.; Hu, L.; Lu, H.; Wei, Keywords: flavonoids; metabolic engineering; co-culture system; biosynthesis; microbial cell factories T.; Chen, Q.
    [Show full text]
  • Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
    International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C.
    [Show full text]
  • Beer As a Source of Hop Prenylated Flavonoids, Compounds with Antioxidant, Chemoprotective and Phytoestrogen Activity
    BEER AS A SOURCE OF HOP PRENYLATED FLAVONOIDS, COMPOUNDS WITH ANTIOXIDANT, CHEMOPROTECTIVE AND PHYTOESTROGEN ACTIVITY Dana Urminská*1 and Nora Jedináková2 Address(es): Doc. RNDr. Dana Urminská, CSc., 1Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Trieda Andreja Hlinku 2, 949 76 Nitra-Chrenová, Slovakia, phone number: +421 37 641 4696. *Corresponding author: [email protected] https://doi.org/10.15414/jmbfs.4426 ARTICLE INFO ABSTRACT Received 4. 3. 2021 Beer is an alcoholic beverage consumed worldwide, which is given its typical taste by the presence of hops. Hops contain an array Revised 1. 6. 2021 technologically important substances, which are primarily represented by hop resins (humulones, lupulones, humulinones, hulupones, Accepted 1. 6. 2021 etc.), essential oils (humulene, myrcene, etc.) and tannins (phenolic compounds quercetin, catechin, etc.). In addition to their sensory Published 1. 8. 2021 properties, these molecules contribute to the biological and colloidal stability of beer with their antiseptic and antioxidant properties. Recently, an increased attention has been given to prenylated hop flavonoids, particularly xanthohumol, isoxanthohumol and 8- prenylnaringenin. Xanthohumol is a prenylated chalcone that exhibit antioxidant, anticancer and chemoprotective effects. Its only source Regular article in human nutrition is beer, nevertheless a large part of xanthohumol from hops is isomerized by heat to isoxanthohumol and desmethylxanthohumol, from which a racemic mixture of 6- and 8-prenylnaringenins is formed during the beer production. Xanthohumol is also converted to isoxanthohumol by digestion, leading to the formation of 8-prenylnaringenin that is being catalyzed by the enzymes of the intestinal microorganisms as well as liver enzymes.
    [Show full text]
  • L.) Leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1*
    www.nature.com/scientificreports OPEN Integrated transcriptomic and metabolomic data reveal the favonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1* Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains favonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 diferentially expressed genes and 223 favonoid metabolites were identifed in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total favonoid contents. A total of 77 unigenes encoding 15 enzymes were identifed as candidate genes involved in favonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of favonoids in the leaves of Perilla frutescens. Our results provide valuable information on the favonoid metabolites and candidate genes involved in the favonoid biosynthesis pathways in the leaves of Perilla frutescens. Perilla frutescens (L.), which is a self-compatible annual herb, belongs to the family Lamiaceae. Tis species has been widely cultivated in China, Japan, and Korea for centuries. Perilla frutescens is an important medicinal and edible plant in China with medical and nutritional uses 1. Its leaves can be utilized as a transitional medicinal herb, as a vegetable, and as a spice, and its seeds can be processed into foods and nutritional edible oils 2.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0121040 A1 Forster Et Al
    US 20040121040A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0121040 A1 Forster et al. (43) Pub. Date: Jun. 24, 2004 (54) METHOD OF PRODUCING A (21) Appl. No.: 10/724,237 XANTHOHUMOL-CONCENTRATED HOP EXTRACTED AND USE THEREOF (22) Filed: Dec. 1, 2003 (75) Inventors: Adrian Forster, Wolnzach (DE); Josef (30) Foreign Application Priority Data Schulmeyr, Wolnzach (DE); Roland Schmidt, Wolnzach (DE); Karin Nov. 30, 2002 (DE)..................................... 102 56 O31.5 Simon, Pfaffenhofen (DE); Martin O O Ketterer, Wolnzach (DE); Birgit Publication Classification Forchhammer, Neustadt (DE); Stefan 7 Geyer, Wolnzach (DE); Manfred s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - close Gehrig, Woln Zach (DE) ( ) O O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - f Correspondence Address: (57) ABSTRACT BROWDY AND NEIMARK, P.L.L.C. 624 NINTH STREET, NW SUTE 300 In a method of producing a Xanthohumol-concentrated hop WASHINGTON, DC 20001-5303 (US) extract, the Xanthohumol-containing hop extract is extracted from a Xanthohumol-containing hop raw material by highly (73) Assignee: NATECO2 GMBH & CO. KG, Woln compressed CO as a solvent at pressures above 500 bar and Zach (DE) temperatures above 60° C. US 2004/O121040 A1 Jun. 24, 2004 METHOD OF PRODUCING A the finished beer or other kinds of food or used by itself as XANTHOHUMOL-CONCENTRATED HOP a chemo-preventive preparation. EXTRACTED AND USE THEREOF 0010 Presently, there are two prior art solutions. DE 199 39350 A1 describes a method of producing a xanthohumol BACKGROUND OF THE INVENTION enriched hop extract, with combinations of water and etha nol being used preferably in two steps of extraction. 5 to 15 0001) 1. Field of the Invention percent by weight of Xanthohumol are specified as being 0002 The invention relates to a method of producing a typical.
    [Show full text]
  • Synthesis of Unnatural Alkaloid Scaffolds by Exploiting Plant Polyketide Synthase
    Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase Hiroyuki Moritaa,b, Makoto Yamashitaa, She-Po Shia,1, Toshiyuki Wakimotoa,b, Shin Kondoc, Ryohei Katoc, Shigetoshi Sugioc,2, Toshiyuki Kohnod,2, and Ikuro Abea,b,2 aGraduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; bJapan Science and Technology Agency, Core Research of Evolutional Science and Technology, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan; cBiotechnology Laboratory, Mitsubishi Chemical Group Science and Technology Research Center Inc., 1000 Kamoshida, Aoba, Yokohama, Kanagawa 227-8502, Japan; and dMitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 12, 2011 (received for review May 15, 2011) HsPKS1 from Huperzia serrata is a type III polyketide synthase (PKS) club moss Huperzia serrata (HsPKS1) (19) (Fig. S1), using precur- with remarkable substrate tolerance and catalytic potential. Here sor-directed and structure-based approaches. As previously re- we present the synthesis of unnatural unique polyketide–alkaloid ported, HsPKS1 is a unique type III PKS that exhibits unusually hybrid molecules by exploiting the enzyme reaction using precur- broad substrate specificity to produce various aromatic polyke- sor-directed and structure-based approaches. HsPKS1 produced tides. For example, HsPKS1, which normally catalyzes the sequen- novel pyridoisoindole (or benzopyridoisoindole) with the 6.5.6- tial condensations of 4-coumaroyl-CoA (1) with three molecules fused (or 6.6.5.6-fused) ring system by the condensation of 2-carba- of malonyl-CoA (2) to produce naringenin chalcone (3)(Fig.1A), moylbenzoyl-CoA (or 3-carbamoyl-2-naphthoyl-CoA), a synthetic also accepts bulky N-methylanthraniloyl-CoA (4)asastarterto nitrogen-containing nonphysiological starter substrate, with two produce 1,3-dihydroxy-N-methylacridone (5), after three conden- molecules of malonyl-CoA.
    [Show full text]
  • Xanthohumol, a Prenylated Chalcone Derived from Hops, Inhibits Growth and Metastasis of Melanoma Cells
    cancers Article Xanthohumol, a Prenylated Chalcone Derived from Hops, Inhibits Growth and Metastasis of Melanoma Cells Tatjana Seitz 1,2, Christina Hackl 3, Kim Freese 1, Peter Dietrich 1,4 , Abdo Mahli 1 , Reinhard Manfred Thasler 5, Wolfgang Erwin Thasler 6, Sven Arke Lang 7, Anja Katrin Bosserhoff 1,8 and Claus Hellerbrand 1,2,8,* 1 Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; [email protected] (T.S.); [email protected] (K.F.); [email protected] (P.D.); [email protected] (A.M.); [email protected] (A.K.B.) 2 Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany 3 Department of Surgery, University Hospital Regensburg, D-93053 Regensburg, Germany; [email protected] 4 Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, D-91054 Erlangen, Germany 5 Stiftung HTCR, BioPark III, Am BioPark 13, D-93053 Regensburg, Germany; [email protected] 6 Hepacult GmbH, D-82152 Martinsried, Germany; [email protected] 7 Department of Surgery and Transplantation, University Hospital RWTH Aachen, D-52074 Aachen, Germany; [email protected] 8 Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany * Correspondence: [email protected] Simple Summary: Melanoma is an aggressively growing form of skin cancer. It has a high metastatic Citation: Seitz, T.; Hackl, C.; potential, and the liver is one of the most common sites for visceral metastasis. Patients with Freese, K.; Dietrich, P.; Mahli, A.; hepatic metastases have a very poor prognosis, and effective forms of treatment are urgently needed.
    [Show full text]
  • 10/12/2019 Herbal Preparations with Phytoestrogens- Overview of The
    Herbal preparations with phytoestrogens- overview of the adverse drug reactions Introduction For women suffering from menopausal symptoms, treatment is available if the symptoms are particularly troublesome. The main treatment for menopausal symptoms is hormone replacement therapy (HRT), although other treatments are also available for some of the symptoms (1). In recent years, the percentage of women taking hormone replacement therapy has dropped (2, 3). Many women with menopausal symptoms choose to use dietary supplements on a plant-based basis, probably because they consider these preparations to be "safe" (4). In addition to product for relief of menopausal symptoms, there are also preparations on the market that claim to firm and grow the breasts by stimulating the glandular tissue in the breasts (5). All these products contain substances with an estrogenic activity, also called phytoestrogens. These substances are found in a variety of plants (4). In addition, also various multivitamin preparations are on the market that, beside the vitamins and minerals, also contain isoflavonoids. Because those are mostly not specified and present in small quantities and no estrogenic effect is to be expected, they are not included in this overview. In 2015 and 2017 the Netherlands Pharmacovigilance Centre Lareb informed the Netherlands Food and Consumer Product Safety Authority (NVWA) about the received reports of Post-Menopausal Vaginal Hemorrhage Related to the Use of a Hop-Containing Phytotherapeutic Products MenoCool® and Menohop® (6, 7). Reports From September 1999 until November 2019 the Netherlands Pharmacovigilance Centre Lareb received 51 reports of the use of phytoestrogen containing preparations (see Appendix 1). The reports concern products with various herbs to which an estrogenic effect is attributed.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]
  • Noncatalytic Chalcone Isomerase-Fold Proteins in Humulus Lupulus Are Auxiliary Components in Prenylated Flavonoid Biosynthesis
    Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis Zhaonan Bana,b, Hao Qina, Andrew J. Mitchellc, Baoxiu Liua, Fengxia Zhanga, Jing-Ke Wengc,d, Richard A. Dixone,f,1, and Guodong Wanga,1 aState Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cWhitehead Institute for Biomedical Research, Cambridge, MA 02142; dDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; eBioDiscovery Institute, University of North Texas, Denton, TX 76203; and fDepartment of Biological Sciences, University of North Texas, Denton, TX 76203 Contributed by Richard A. Dixon, April 25, 2018 (sent for review February 6, 2018; reviewed by Joerg Bohlmann and Mattheos A. G. Koffas) Xanthohumol (XN) and demethylxanthohumol (DMX) are special- braries have been deposited in the TrichOME database [www. ized prenylated chalconoids with multiple pharmaceutical appli- planttrichome.org (18)], and numerous large RNAseq datasets from cations that accumulate to high levels in the glandular trichomes different hop tissues or cultivars have also been made publically of hops (Humulus lupulus L.). Although all structural enzymes in available. By mining the hops transcriptome data, we and others have the XN pathway have been functionally identified, biochemical functionally identified several key terpenophenolic biosynthetic en- mechanisms underlying highly efficient production of XN have zymes from hop glandular trichomes (1, 18–23); these include car- not been fully resolved. In this study, we characterized two non- boxyl CoA ligase (CCL) genes and two aromatic prenyltransferase catalytic chalcone isomerase (CHI)-like proteins (designated as (PT) genes (HlPT1L and HlPT2) (22, 23).
    [Show full text]
  • Comprehensive Metabolic and Transcriptomic Profiling of Various
    www.nature.com/scientificreports OPEN Comprehensive metabolic and transcriptomic profling of various tissues provide insights for saponin Received: 17 October 2017 Accepted: 4 June 2018 biosynthesis in the medicinally Published: xx xx xxxx important Asparagus racemosus Prabhakar Lal Srivastava1, Anurag Shukla2 & Raviraj M. Kalunke2 Asparagus racemosus (Shatavari), belongs to the family Asparagaceae and is known as a “curer of hundred diseases” since ancient time. This plant has been exploited as a food supplement to enhance immune system and regarded as a highly valued medicinal plant in Ayurvedic medicine system for the treatment of various ailments such as gastric ulcers, dyspepsia, cardiovascular diseases, neurodegenerative diseases, cancer, as a galactogogue and against several other diseases. In depth metabolic fngerprinting of various parts of the plant led to the identifcation of 13 monoterpenoids exclusively present in roots. LC-MS profling led to the identifcation of a signifcant number of steroidal saponins (33). However, we have also identifed 16 triterpene saponins for the frst time in A. racemosus. In order to understand the molecular basis of biosynthesis of major components, transcriptome sequencing from three diferent tissues (root, leaf and fruit) was carried out. Functional annotation of A. racemosus transcriptome resulted in the identifcation of 153 transcripts involved in steroidal saponin biosynthesis, 45 transcripts in triterpene saponin biosynthesis, 44 transcripts in monoterpenoid biosynthesis and 79 transcripts in favonoid biosynthesis. These fndings will pave the way for better understanding of the molecular basis of steroidal saponin, triterpene saponin, monoterpenoids and favonoid biosynthesis in A. racemosus. Asparagus racemosus is one of the most valuable medicinal plants, regarded as a “Queen of herbs” in Ayurvedic health system and has been used worldwide to cure various diseases1.
    [Show full text]
  • Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects
    nutrients Review Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects Maša Knez Hrnˇciˇc 1,†, Eva Španinger 2,†, Iztok Jože Košir 3, Željko Knez 1 and Urban Bren 2,* 1 Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] (M.K.H.); [email protected] (Ž.K.) 2 Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] 3 Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-2-2294-421 † These authors contributed equally to this work. Received: 7 December 2018; Accepted: 18 January 2019; Published: 24 January 2019 Abstract: Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity.
    [Show full text]