Generalizations of Diagonal Dominance in Matrix Theory
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
On Multigrid Methods for Solving Electromagnetic Scattering Problems
On Multigrid Methods for Solving Electromagnetic Scattering Problems Dissertation zur Erlangung des akademischen Grades eines Doktor der Ingenieurwissenschaften (Dr.-Ing.) der Technischen Fakultat¨ der Christian-Albrechts-Universitat¨ zu Kiel vorgelegt von Simona Gheorghe 2005 1. Gutachter: Prof. Dr.-Ing. L. Klinkenbusch 2. Gutachter: Prof. Dr. U. van Rienen Datum der mundliche¨ Prufung:¨ 20. Jan. 2006 Contents 1 Introductory remarks 3 1.1 General introduction . 3 1.2 Maxwell’s equations . 6 1.3 Boundary conditions . 7 1.3.1 Sommerfeld’s radiation condition . 9 1.4 Scattering problem (Model Problem I) . 10 1.5 Discontinuity in a parallel-plate waveguide (Model Problem II) . 11 1.6 Absorbing-boundary conditions . 12 1.6.1 Global radiation conditions . 13 1.6.2 Local radiation conditions . 18 1.7 Summary . 19 2 Coupling of FEM-BEM 21 2.1 Introduction . 21 2.2 Finite element formulation . 21 2.2.1 Discretization . 26 2.3 Boundary-element formulation . 28 3 4 CONTENTS 2.4 Coupling . 32 3 Iterative solvers for sparse matrices 35 3.1 Introduction . 35 3.2 Classical iterative methods . 36 3.3 Krylov subspace methods . 37 3.3.1 General projection methods . 37 3.3.2 Krylov subspace methods . 39 3.4 Preconditioning . 40 3.4.1 Matrix-based preconditioners . 41 3.4.2 Operator-based preconditioners . 42 3.5 Multigrid . 43 3.5.1 Full Multigrid . 47 4 Numerical results 49 4.1 Coupling between FEM and local/global boundary conditions . 49 4.1.1 Model problem I . 50 4.1.2 Model problem II . 63 4.2 Multigrid . 64 4.2.1 Theoretical considerations regarding the classical multi- grid behavior in the case of an indefinite problem . -
On Multivariate Interpolation
On Multivariate Interpolation Peter J. Olver† School of Mathematics University of Minnesota Minneapolis, MN 55455 U.S.A. [email protected] http://www.math.umn.edu/∼olver Abstract. A new approach to interpolation theory for functions of several variables is proposed. We develop a multivariate divided difference calculus based on the theory of non-commutative quasi-determinants. In addition, intriguing explicit formulae that connect the classical finite difference interpolation coefficients for univariate curves with multivariate interpolation coefficients for higher dimensional submanifolds are established. † Supported in part by NSF Grant DMS 11–08894. April 6, 2016 1 1. Introduction. Interpolation theory for functions of a single variable has a long and distinguished his- tory, dating back to Newton’s fundamental interpolation formula and the classical calculus of finite differences, [7, 47, 58, 64]. Standard numerical approximations to derivatives and many numerical integration methods for differential equations are based on the finite dif- ference calculus. However, historically, no comparable calculus was developed for functions of more than one variable. If one looks up multivariate interpolation in the classical books, one is essentially restricted to rectangular, or, slightly more generally, separable grids, over which the formulae are a simple adaptation of the univariate divided difference calculus. See [19] for historical details. Starting with G. Birkhoff, [2] (who was, coincidentally, my thesis advisor), recent years have seen a renewed level of interest in multivariate interpolation among both pure and applied researchers; see [18] for a fairly recent survey containing an extensive bibli- ography. De Boor and Ron, [8, 12, 13], and Sauer and Xu, [61, 10, 65], have systemati- cally studied the polynomial case. -
Sparse Matrices and Iterative Methods
Iterative Methods Sparsity Sparse Matrices and Iterative Methods K. Cooper1 1Department of Mathematics Washington State University 2018 Cooper Washington State University Introduction Iterative Methods Sparsity Iterative Methods Consider the problem of solving Ax = b, where A is n × n. Why would we use an iterative method? I Avoid direct decomposition (LU, QR, Cholesky) I Replace with iterated matrix multiplication 3 I LU is O(n ) flops. 2 I . matrix-vector multiplication is O(n )... I so if we can get convergence in e.g. log(n), iteration might be faster. Cooper Washington State University Introduction Iterative Methods Sparsity Jacobi, GS, SOR Some old methods: I Jacobi is easily parallelized. I . but converges extremely slowly. I Gauss-Seidel/SOR converge faster. I . but cannot be effectively parallelized. I Only Jacobi really takes advantage of sparsity. Cooper Washington State University Introduction Iterative Methods Sparsity Sparsity When a matrix is sparse (many more zero entries than nonzero), then typically the number of nonzero entries is O(n), so matrix-vector multiplication becomes an O(n) operation. This makes iterative methods very attractive. It does not help direct solves as much because of the problem of fill-in, but we note that there are specialized solvers to minimize fill-in. Cooper Washington State University Introduction Iterative Methods Sparsity Krylov Subspace Methods A class of methods that converge in n iterations (in exact arithmetic). We hope that they arrive at a solution that is “close enough” in fewer iterations. Often these work much better than the classic methods. They are more readily parallelized, and take full advantage of sparsity. -
Determinants of Commuting-Block Matrices by Istvan Kovacs, Daniel S
Determinants of Commuting-Block Matrices by Istvan Kovacs, Daniel S. Silver*, and Susan G. Williams* Let R beacommutative ring, and Matn(R) the ring of n × n matrices over R.We (i,j) can regard a k × k matrix M =(A ) over Matn(R)asablock matrix,amatrix that has been partitioned into k2 submatrices (blocks)overR, each of size n × n. When M is regarded in this way, we denote its determinant by |M|.Wewill use the symbol D(M) for the determinant of M viewed as a k × k matrix over Matn(R). It is important to realize that D(M)isann × n matrix. Theorem 1. Let R be acommutative ring. Assume that M is a k × k block matrix of (i,j) blocks A ∈ Matn(R) that commute pairwise. Then | | | | (1,π(1)) (2,π(2)) ··· (k,π(k)) (1) M = D(M) = (sgn π)A A A . π∈Sk Here Sk is the symmetric group on k symbols; the summation is the usual one that appears in the definition of determinant. Theorem 1 is well known in the case k =2;the proof is often left as an exercise in linear algebra texts (see [4, page 164], for example). The general result is implicit in [3], but it is not widely known. We present a short, elementary proof using mathematical induction on k.Wesketch a second proof when the ring R has no zero divisors, a proof that is based on [3] and avoids induction by using the fact that commuting matrices over an algebraically closed field can be simultaneously triangularized. -
Scalable Stochastic Kriging with Markovian Covariances
Scalable Stochastic Kriging with Markovian Covariances Liang Ding and Xiaowei Zhang∗ Department of Industrial Engineering and Decision Analytics The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Abstract Stochastic kriging is a popular technique for simulation metamodeling due to its flexibility and analytical tractability. Its computational bottleneck is the inversion of a covariance matrix, which takes O(n3) time in general and becomes prohibitive for large n, where n is the number of design points. Moreover, the covariance matrix is often ill-conditioned for large n, and thus the inversion is prone to numerical instability, resulting in erroneous parameter estimation and prediction. These two numerical issues preclude the use of stochastic kriging at a large scale. This paper presents a novel approach to address them. We construct a class of covariance functions, called Markovian covariance functions (MCFs), which have two properties: (i) the associated covariance matrices can be inverted analytically, and (ii) the inverse matrices are sparse. With the use of MCFs, the inversion-related computational time is reduced to O(n2) in general, and can be further reduced by orders of magnitude with additional assumptions on the simulation errors and design points. The analytical invertibility also enhance the numerical stability dramatically. The key in our approach is that we identify a general functional form of covariance functions that can induce sparsity in the corresponding inverse matrices. We also establish a connection between MCFs and linear ordinary differential equations. Such a connection provides a flexible, principled approach to constructing a wide class of MCFs. Extensive numerical experiments demonstrate that stochastic kriging with MCFs can handle large-scale problems in an both computationally efficient and numerically stable manner. -
Chapter 7 Iterative Methods for Large Sparse Linear Systems
Chapter 7 Iterative methods for large sparse linear systems In this chapter we revisit the problem of solving linear systems of equations, but now in the context of large sparse systems. The price to pay for the direct methods based on matrix factorization is that the factors of a sparse matrix may not be sparse, so that for large sparse systems the memory cost make direct methods too expensive, in memory and in execution time. Instead we introduce iterative methods, for which matrix sparsity is exploited to develop fast algorithms with a low memory footprint. 7.1 Sparse matrix algebra Large sparse matrices We say that the matrix A Rn is large if n is large, and that A is sparse if most of the elements are2 zero. If a matrix is not sparse, we say that the matrix is dense. Whereas for a dense matrix the number of nonzero elements is (n2), for a sparse matrix it is only (n), which has obvious implicationsO for the memory footprint and efficiencyO for algorithms that exploit the sparsity of a matrix. AdiagonalmatrixisasparsematrixA =(aij), for which aij =0for all i = j,andadiagonalmatrixcanbegeneralizedtoabanded matrix, 6 for which there exists a number p,thebandwidth,suchthataij =0forall i<j p or i>j+ p.Forexample,atridiagonal matrix A is a banded − 59 CHAPTER 7. ITERATIVE METHODS FOR LARGE SPARSE 60 LINEAR SYSTEMS matrix with p =1, xx0000 xxx000 20 xxx003 A = , (7.1) 600xxx07 6 7 6000xxx7 6 7 60000xx7 6 7 where x represents a nonzero4 element. 5 Compressed row storage The compressed row storage (CRS) format is a data structure for efficient represention of a sparse matrix by three arrays, containing the nonzero values, the respective column indices, and the extents of the rows. -
Irreducibility in Algebraic Groups and Regular Unipotent Elements
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 1, January 2013, Pages 13–28 S 0002-9939(2012)11898-2 Article electronically published on August 16, 2012 IRREDUCIBILITY IN ALGEBRAIC GROUPS AND REGULAR UNIPOTENT ELEMENTS DONNA TESTERMAN AND ALEXANDRE ZALESSKI (Communicated by Pham Huu Tiep) Abstract. We study (connected) reductive subgroups G of a reductive alge- braic group H,whereG contains a regular unipotent element of H.Themain result states that G cannot lie in a proper parabolic subgroup of H. This result is new even in the classical case H =SL(n, F ), the special linear group over an algebraically closed field, where a regular unipotent element is one whose Jor- dan normal form consists of a single block. In previous work, Saxl and Seitz (1997) determined the maximal closed positive-dimensional (not necessarily connected) subgroups of simple algebraic groups containing regular unipotent elements. Combining their work with our main result, we classify all reductive subgroups of a simple algebraic group H which contain a regular unipotent element. 1. Introduction Let H be a reductive linear algebraic group defined over an algebraically closed field F . Throughout this text ‘reductive’ will mean ‘connected reductive’. A unipo- tent element u ∈ H is said to be regular if the dimension of its centralizer CH (u) coincides with the rank of H (or, equivalently, u is contained in a unique Borel subgroup of H). Regular unipotent elements of a reductive algebraic group exist in all characteristics (see [22]) and form a single conjugacy class. These play an important role in the general theory of algebraic groups. -
A Parallel Solver for Graph Laplacians
A Parallel Solver for Graph Laplacians Tristan Konolige Jed Brown University of Colorado Boulder University of Colorado Boulder [email protected] ABSTRACT low energy components while maintaining coarse grid sparsity. We Problems from graph drawing, spectral clustering, network ow also develop a parallel algorithm for nding and eliminating low and graph partitioning can all be expressed in terms of graph Lapla- degree vertices, a technique introduced for a sequential multigrid cian matrices. ere are a variety of practical approaches to solving algorithm by Livne and Brandt [22], that is important for irregular these problems in serial. However, as problem sizes increase and graphs. single core speeds stagnate, parallelism is essential to solve such While matrices can be distributed using a vertex partition (a problems quickly. We present an unsmoothed aggregation multi- 1D/row distribution) for PDE problems, this leads to unacceptable grid method for solving graph Laplacians in a distributed memory load imbalance for irregular graphs. We represent matrices using a seing. We introduce new parallel aggregation and low degree elim- 2D distribution (a partition of the edges) that maintains load balance ination algorithms targeted specically at irregular degree graphs. for parallel scaling [11]. Many algorithms that are practical for 1D ese algorithms are expressed in terms of sparse matrix-vector distributions are not feasible for more general distributions. Our products using generalized sum and product operations. is for- new parallel algorithms are distribution agnostic. mulation is amenable to linear algebra using arbitrary distributions and allows us to operate on a 2D sparse matrix distribution, which 2 BACKGROUND is necessary for parallel scalability. -
Solving Linear Systems: Iterative Methods and Sparse Systems
Solving Linear Systems: Iterative Methods and Sparse Systems COS 323 Last time • Linear system: Ax = b • Singular and ill-conditioned systems • Gaussian Elimination: A general purpose method – Naïve Gauss (no pivoting) – Gauss with partial and full pivoting – Asymptotic analysis: O(n3) • Triangular systems and LU decomposition • Special matrices and algorithms: – Symmetric positive definite: Cholesky decomposition – Tridiagonal matrices • Singularity detection and condition numbers Today: Methods for large and sparse systems • Rank-one updating with Sherman-Morrison • Iterative refinement • Fixed-point and stationary methods – Introduction – Iterative refinement as a stationary method – Gauss-Seidel and Jacobi methods – Successive over-relaxation (SOR) • Solving a system as an optimization problem • Representing sparse systems Problems with large systems • Gaussian elimination, LU decomposition (factoring step) take O(n3) • Expensive for big systems! • Can get by more easily with special matrices – Cholesky decomposition: for symmetric positive definite A; still O(n3) but halves storage and operations – Band-diagonal: O(n) storage and operations • What if A is big? (And not diagonal?) Special Example: Cyclic Tridiagonal • Interesting extension: cyclic tridiagonal • Could derive yet another special case algorithm, but there’s a better way Updating Inverse • Suppose we have some fast way of finding A-1 for some matrix A • Now A changes in a special way: A* = A + uvT for some n×1 vectors u and v • Goal: find a fast way of computing (A*)-1 -
High Performance Selected Inversion Methods for Sparse Matrices
High performance selected inversion methods for sparse matrices Direct and stochastic approaches to selected inversion Doctoral Dissertation submitted to the Faculty of Informatics of the Università della Svizzera italiana in partial fulfillment of the requirements for the degree of Doctor of Philosophy presented by Fabio Verbosio under the supervision of Olaf Schenk February 2019 Dissertation Committee Illia Horenko Università della Svizzera italiana, Switzerland Igor Pivkin Università della Svizzera italiana, Switzerland Matthias Bollhöfer Technische Universität Braunschweig, Germany Laura Grigori INRIA Paris, France Dissertation accepted on 25 February 2019 Research Advisor PhD Program Director Olaf Schenk Walter Binder i I certify that except where due acknowledgement has been given, the work presented in this thesis is that of the author alone; the work has not been sub- mitted previously, in whole or in part, to qualify for any other academic award; and the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program. Fabio Verbosio Lugano, 25 February 2019 ii To my whole family. In its broadest sense. iii iv Le conoscenze matematiche sono proposizioni costruite dal nostro intelletto in modo da funzionare sempre come vere, o perché sono innate o perché la matematica è stata inventata prima delle altre scienze. E la biblioteca è stata costruita da una mente umana che pensa in modo matematico, perché senza matematica non fai labirinti. Umberto Eco, “Il nome della rosa” v vi Abstract The explicit evaluation of selected entries of the inverse of a given sparse ma- trix is an important process in various application fields and is gaining visibility in recent years. -
9. Properties of Matrices Block Matrices
9. Properties of Matrices Block Matrices It is often convenient to partition a matrix M into smaller matrices called blocks, like so: 01 2 3 11 ! B C B4 5 6 0C A B M = B C = @7 8 9 1A C D 0 1 2 0 01 2 31 011 B C B C Here A = @4 5 6A, B = @0A, C = 0 1 2 , D = (0). 7 8 9 1 • The blocks of a block matrix must fit together to form a rectangle. So ! ! B A C B makes sense, but does not. D C D A • There are many ways to cut up an n × n matrix into blocks. Often context or the entries of the matrix will suggest a useful way to divide the matrix into blocks. For example, if there are large blocks of zeros in a matrix, or blocks that look like an identity matrix, it can be useful to partition the matrix accordingly. • Matrix operations on block matrices can be carried out by treating the blocks as matrix entries. In the example above, ! ! A B A B M 2 = C D C D ! A2 + BC AB + BD = CA + DC CB + D2 1 Computing the individual blocks, we get: 0 30 37 44 1 2 B C A + BC = @ 66 81 96 A 102 127 152 0 4 1 B C AB + BD = @10A 16 0181 B C CA + DC = @21A 24 CB + D2 = (2) Assembling these pieces into a block matrix gives: 0 30 37 44 4 1 B C B 66 81 96 10C B C @102 127 152 16A 4 10 16 2 This is exactly M 2. -
A Parallel Gauss-Seidel Algorithm for Sparse Power Systems Matrices
AParallel Gauss-Seidel Algorithm for Sparse Power Systems Matrices D. P. Ko ester, S. Ranka, and G. C. Fox Scho ol of Computer and Information Science and The Northeast Parallel Architectures Center (NPAC) Syracuse University Syracuse, NY 13244-4100 [email protected], [email protected], [email protected] A ComdensedVersion of this Paper was presentedatSuperComputing `94 NPACTechnical Rep ort | SCCS 630 4 April 1994 Abstract We describ e the implementation and p erformance of an ecient parallel Gauss-Seidel algorithm that has b een develop ed for irregular, sparse matrices from electrical p ower systems applications. Although, Gauss-Seidel algorithms are inherently sequential, by p erforming sp ecialized orderings on sparse matrices, it is p ossible to eliminate much of the data dep endencies caused by precedence in the calculations. A two-part matrix ordering technique has b een develop ed | rst to partition the matrix into blo ck-diagonal-b ordered form using diakoptic techniques and then to multi-color the data in the last diagonal blo ck using graph coloring techniques. The ordered matrices often have extensive parallelism, while maintaining the strict precedence relationships in the Gauss-Seidel algorithm. We present timing results for a parallel Gauss-Seidel solver implemented on the Thinking Machines CM-5 distributed memory multi-pro cessor. The algorithm presented here requires active message remote pro cedure calls in order to minimize communications overhead and obtain go o d relative sp eedup. The paradigm used with active messages greatly simpli ed the implementationof this sparse matrix algorithm. 1 Intro duction Wehavedevelop ed an ecient parallel Gauss-Seidel algorithm for irregular, sparse matrices from electrical p ower systems applications.