Numerical Results of the Global Polytropic Model for the Orbits of 15 Planetary Systems

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Results of the Global Polytropic Model for the Orbits of 15 Planetary Systems 12th Hel.A.S Conference Thessaloniki, 28 June - 2 July, 2015 CONTRIBUTED POSTER Numerical results of the Global Polytropic Model for the orbits of 15 planetary systems V.S. Geroyannis 1, F.N. Valvi 2, and T.G. Dallas 3 1Department of Physics, University of Patras 2Department of Mathematics, University of Patras 3Department of History, Archaeology and Social Anthropology, University of Thessaly Abstract: In the framework of the Global Polytropic Model, we assume hydrostatic equilibrium for a planetary system, and solve the resulting Lane-Emden differential equation in the complex plane. We thus obtain poly- tropic spherical shells defined by successive roots of the Lane-Emden function θ. These shells provide hosting orbits for the planets of the systems under consideration. In the present poster, we present the results within this framework, for 15 stars hosting planetary systems: 55 Cnc, µ Ara, υ And, HD 40307, HD 10180, Kepler-11, Kepler-20, Kepler-26, Kepler-32, Kepler-33, Kepler-62, Kepler-90, Kepler-102, Kepler-186, Kepler-275. b c d e υ And F n = 2:949 dif ≈ 4:5% b c d e f g h Kepler-90 F n = 2:819 dif ≈ 2:0% b c d e f Kepler-33 G n = 2:592 dif ≈ 6:2% c d b e µ Ara G n = 2:554 dif ≈ 1:3% b c i d e j f g h HD 10180 G n = 3:060 dif ≈ 11:9% b c d e f g Kepler-11 G n = 2:779 dif ≈ 8:7% be c f d Kepler-20 G n = 2:779 dif ≈ 4:0% e b c f d 55 Cnc K n = 3:125 dif ≈ 8:0% b c d e f g HD 40307 K n = 2:531 dif ≈ 6:3% b c d e f Kepler-62 K n = 2:773 dif ≈ 4:1% d b c e Kepler-26 K n = 2:531 dif ≈ 4:6% f e b c d Kepler-32 M n = 2:608 dif ≈ 9:1% b c d e g f Kepler-186 M n = 2:530 dif ≈ 6:9% b c d Kepler-275 ? n = 2:837 dif ≈ 3:5% b c d e f Kepler-102 ? n = 2:605 dif ≈ 4:6% 10−2 10−1 100 101 Semi-major axis (AU) 1 GEROYANNIS, VALVI AND DALLAS: Numerical results of GPM for 15 planetary systems • Bars represent the radii of the host stars. At the end of the bar we display the spectral type of the star; the calculated polytropic index n; the average error for the orbit radii dif computed by the Global Polytropic Model. • Black diamonds represent the semi-major of the planets. • Gray error bars represent the respective measurement errors. • Gray dotted lines represent the maximum values for periastron and aphiastron, as calculated from the measured eccentricity. • Gray diamonds represent additional planets, not yet verified. • Gray vertical lines represent the limits of the corresponding polytropic cell. • Black squares represent the computed semi-major axis of the planets. • Gray squares represent the computed semi-major axis of the unverified planets. It also marks an alternative computed semi-major axis for Kepler-32 b, supposing that there is a third undiscovered planet in that polytropic cell. References [1] Geroyannis, V.S. (1988): A Complex-Plane Strategy for computing rotating polytropic models efficiency and accuracy of the complex first-order perturbation theory. The Astrophysical Journal, 327, 273-283. DOI: 10.1086/166188 [2] Geroyannis, V.S., Valvi, F.N. (2012): A Runge-Kutta-Fehlberg code for the complex plane: Comparing with similar codes by applying to polytropic models. International Journal of Modern Physics C, 23, 5-20. DOI: 10.1142/S0129183112500386 [3] Geroyannis, V.S. (1993): A global polytropic model for the solar system: Planetary distances and masses resulting from the complex Lane-Emden differential equation. Earth Moon Planets, 61, 131-139. DOI: 10.1007/BF00572408 [4] Geroyannis, V.S., Valvi, F.N. (1993): The inverse planetary problem: A numerical treatment. Earth Moon Planets, 63, 15-21. DOI: 10.1007/BF00572135 [5] Geroyannis, V.S., Valvi, F.N. (1994): Application of a global polytropic model to the Jupiters system of satellites: A numerical treatment. Earth Moon Planets, 64, 217-225. DOI: 10.1007/BF00572149 [6] Geroyannis, V.S., Dallas, T.G. (1994): Comments on a global polytropic model for the solar and Jovian systems. Earth Moon Planets, 65, 15-19. DOI: 10.1007/BF00572196 [7] Geroyannis V.S., Valvi F.N, Dallas T.G. (2014): Gravitationally quantized orbits in the Solar system: Com- putations based on the Global Polytropic Model. International Journal of Astronomy and Astrophysics, 4, 464-473. DOI: 10.4236/ijaa.2014.43042 [8] Geroyannis V.S. (2014): Gravitational quantization of satellite orbits in the giant planets. arXiv: 1410.5844 [astro-ph.EP] [9] Geroyannis V.S. (2014): Gravitational quantization of exoplanet orbits in 55 Cnc, υ And, Kepler-11, Kepler- 20, and Kepler-90. arXiv: 1411.5390 [astro-ph.EP] [10] Geroyannis V.S. (2015): Gravitational quantization of exoplanet orbits in HD 40307, µ Ara, Kepler-26, Kepler-62, and Kepler-275: Comparing predicted orbits. arXiv: 1501.04189 [astro-ph.EP] [11] Geroyannis V.S. (2015): Gravitational quantization of exoplanet orbits in HD 10180, Kepler-32, Kepler-33, Kepler-102, and Kepler-186. arXiv: 1506.06344 [astro-ph.EP] 12th Hel.A.S Conference 2.
Recommended publications
  • Sunqm-1S2: Comparing to Other Star-Planet Systems, Our Solar System Has a Nearly Perfect {N,N} QM Structure 1
    Yi Cao, SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n} QM structure 1 SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n//6} QM structure Yi Cao Ph.D. of biophysics, a citizen scientist of QM. E-mail: [email protected] © All rights reserved The major part of this work started from 2016. Abstract The Solar QM {N,n//6} structure has been successful not only for modeling the Solar system from Sun core to Oort cloud, but also in matching the size of white dwarf, neutron star and even black hole. In this paper, I have used this model to further scan down (and up) in our world. It is interesting to find that on the small end, the r(s) of hydrogen atom, proton and quark match {-12,1}, {-15,1} and {-17,1} respectively. On the large end, our Milky way galaxy, the Virgo super cluster have their r(s) match {8,1}, and {10,1} respectively. In a second estimation, some elementary particles like electron, up quark, down quark, … may have their {N,n} QM structures match {-17,1}, {-17,2}, {-17,3} … respectively. In a third estimation, the r(s) of super-massive black hole of Andromeda galaxy and Milky way galaxy match {2,1} and {1,1} respectively. However, so far the Solar QM {N,n} structure has not been re-produced in other exoplanetary systems (like TRAPPIST-1, HD 10180, Kepler-90, Kelper-11, 55-Cacri).
    [Show full text]
  • A Super-Earth Transiting a Naked-Eye Star
    A Super-Earth Transiting a Naked-Eye Star The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Winn, Joshua N. et al. “A SUPER-EARTH TRANSITING A NAKED-EYE STAR.” The Astrophysical Journal 737.1 (2011): L18. As Published http://dx.doi.org/10.1088/2041-8205/737/1/l18 Publisher IOP Publishing Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/71127 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ ACCEPTED VERSION,JULY 6, 2011 Preprint typeset using LATEX style emulateapj v. 11/10/09 A SUPER-EARTH TRANSITING A NAKED-EYE STAR⋆ JOSHUA N. WINN1, JAYMIE M. MATTHEWS2,REBEKAH I. DAWSON3 ,DANIEL FABRYCKY4,5 , MATTHEW J. HOLMAN3, THOMAS KALLINGER2,6,RAINER KUSCHNIG6,DIMITAR SASSELOV3,DIANA DRAGOMIR5,DAVID B. GUENTHER7, ANTHONY F. J. MOFFAT8 , JASON F. ROWE9 ,SLAVEK RUCINSKI10,WERNER W. WEISS6 ApJ Letters, in press ABSTRACT We have detected transits of the innermost planet “e” orbiting55Cnc(V =6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the +0.051 crossing of a Sun-like star by a hot super-Earth. Assuming the star’s mass and radius to be 0.963−0.029 M⊙ and 0.943 ± 0.010 R⊙, the planet’s mass, radius, and mean density are 8.63 ± 0.35 M⊕,2.00 ± 0.14 R⊕, and +1.5 −3 5.9−1.1 g cm .
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • The Spitzer Search for the Transits of HARPS Low-Mass Planets II
    A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits.
    [Show full text]
  • Exploring the Realm of Scaled Solar System Analogues with HARPS?,?? D
    A&A 615, A175 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832711 & c ESO 2018 Astrophysics Exploring the realm of scaled solar system analogues with HARPS?;?? D. Barbato1,2, A. Sozzetti2, S. Desidera3, M. Damasso2, A. S. Bonomo2, P. Giacobbe2, L. S. Colombo4, C. Lazzoni4,3 , R. Claudi3, R. Gratton3, G. LoCurto5, F. Marzari4, and C. Mordasini6 1 Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, 10125, Torino, Italy e-mail: [email protected] 2 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025, Pino Torinese, Italy 3 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy 4 Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Vicolo dell’Osservatorio 3, 35122, Padova, Italy 5 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 6 Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland Received 8 February 2018 / Accepted 21 April 2018 ABSTRACT Context. The assessment of the frequency of planetary systems reproducing the solar system’s architecture is still an open problem in exoplanetary science. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planets. Aims. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fp of scaled solar system analogues – in other words, systems featuring lower-mass inner planets in the presence of long-period giant planets.
    [Show full text]
  • The HARPS Search for Earth-Like Planets in the Habitable Zone I
    A&A 534, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201117055 & c ESO 2011 Astrophysics The HARPS search for Earth-like planets in the habitable zone I. Very low-mass planets around HD 20794, HD 85512, and HD 192310, F. Pepe1,C.Lovis1, D. Ségransan1,W.Benz2, F. Bouchy3,4, X. Dumusque1, M. Mayor1,D.Queloz1, N. C. Santos5,6,andS.Udry1 1 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, 04870 St. Michel l’Observatoire, France 5 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal Received 8 April 2011 / Accepted 15 August 2011 ABSTRACT Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • AMD-Stability and the Classification of Planetary Systems
    A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability.
    [Show full text]
  • The Exoplanet Eccentricity Distribution from Kepler Planet Candidates
    Mon. Not. R. Astron. Soc. 425, 757–762 (2012) doi:10.1111/j.1365-2966.2012.21627.x The exoplanet eccentricity distribution from Kepler planet candidates Stephen R. Kane, David R. Ciardi, Dawn M. Gelino and Kaspar von Braun NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA Accepted 2012 June 28. Received 2012 June 28; in original form 2012 May 29 ABSTRACT The eccentricity distribution of exoplanets is known from radial velocity surveys to be divergent from circular orbits beyond 0.1 au. This is particularly the case for large planets where the radial velocity technique is most sensitive. The eccentricity of planetary orbits can have a large effect on the transit probability and subsequently the planet yield of transit surveys. The Kepler mission is the first transit survey that probes deep enough into period space to allow this effect to be seen via the variation in transit durations. We use the Kepler planet candidates to show that the eccentricity distribution is consistent with that found from radial velocity surveys to a high degree of confidence. We further show that the mean eccentricity of the Kepler candidates decreases with decreasing planet size indicating that smaller planets are preferentially found in low-eccentricity orbits. Key words: techniques: photometric – techniques: radial velocities – planetary systems. distribution has been suggested by Ford, Quinn & Veras (2008) 1 INTRODUCTION and Zakamska, Pan & Ford (2011) and carried out by Moorhead Planets discovered using the radial velocity (RV) method have dom- et al. (2011), but initial planet candidate releases by the Kepler inated the total exoplanet count until recently, when the transit project do not provide enough period sensitivity (Borucki et al.
    [Show full text]
  • Predicting Total Angular Momentum in TRAPPIST-1 and Many Other Multi-Planetary Systems Using Quantum Celestial Mechanics
    Issue 3 (July) PROGRESS IN PHYSICS Volume 14 (2018) Predicting Total Angular Momentum in TRAPPIST-1 and Many Other Multi-Planetary Systems Using Quantum Celestial Mechanics Franklin Potter 8642 Marvale Drive, Huntington Beach, CA 92646, USA E-mail: [email protected] TRAPPIST-1 harbors at least 7 Earth-mass planets orbiting a 0.089 solar mass dwarf M-star. Numerous other multi-planetary systems have been detected and all obey a quantization of angular momentum per unit mass constraint predicted by quantum ce- lestial mechanics (QCM) as derived from the general theory of relativity (GTR). The universality of this constraint dictates that the TRAPPIST-1 system should obey also. I analyze this recently discovered system with its many mean motion resonances (MMRs) to determine its compliance and make some comparisons to the Solar System and 11 other multi-planetary systems. 1 Introduction In the past 25 years, more than 3500 exoplanets have been de- tected, many in multi-planetary systems with 4 or more plan- ets [1]. Extreme examples include HD 10180 with 9 plan- ets and TRAPPIST-1 with 7 planets. In each of the discov- ered systems the understanding of their formation and stabil- ity over tens of millions or even billions of years using New- tonian dynamics remains an interesting challenge. A prediction of whether additional planets exist beyond those already detected is not an expected outcome of the dy- namical studies. However, a different approach [2] called quantum celestial mechanics (QCM) offers the potential abil- Fig. 1: Solar System fit to QCM total angular momentum constraint.
    [Show full text]
  • TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
    APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass.
    [Show full text]
  • The Hd 40307 Planetary System: Super-Earths Or Mini-Neptunes?
    The Astrophysical Journal, 695:1006–1011, 2009 April 20 doi:10.1088/0004-637X/695/2/1006 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE HD 40307 PLANETARY SYSTEM: SUPER-EARTHS OR MINI-NEPTUNES? Rory Barnes1, Brian Jackson1, Sean N. Raymond2,4, Andrew A. West3, and Richard Greenberg1 1 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA 2 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA 3 Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411, USA Received 2008 July 9; accepted 2009 January 15; published 2009 April 6 ABSTRACT Three planets with minimum masses less than 10 M⊕ orbit the star HD 40307, suggesting these planets may be rocky. However, with only radial velocity data, it is impossible to determine if these planets are rocky or gaseous. Here we exploit various dynamical features of the system in order to assess the physical properties of the planets. Observations allow for circular orbits, but a numerical integration shows that the eccentricities must be at least 10−4. Also, planets b and c are so close to the star that tidal effects are significant. If planet b has tidal parameters similar to the terrestrial planets in the solar system and a remnant eccentricity larger than 10−3, then, going back in time, the system would have been unstable within the lifetime of the star (which we estimate to be 6.1 ± 1.6 Gyr). Moreover, if the eccentricities are that large and the inner planet is rocky, then its tidal heating may be an order of magnitude greater than extremely volcanic Io, on a per unit surface area basis.
    [Show full text]