Txfs: Leveraging File-System Crash Consistency to Provide Transactions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Operating System Transactions
Operating System Transactions Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel Department of Computer Sciences, The University of Texas at Austin {porterde,osh,rossbach,abenn1,witchel}@cs.utexas.edu ABSTRACT Programming; D.4.7 [Operating Systems]: Organization Applications must be able to synchronize accesses to oper- and Design ating system resources in order to ensure correctness in the face of concurrency and system failures. System transac- General Terms tions allow the programmer to specify updates to heteroge- Design, Performance, Security neous system resources with the OS guaranteeing atomicity, consistency, isolation, and durability (ACID). System trans- Keywords actions efficiently and cleanly solve persistent concurrency Transactions, Operating Systems, TxOS, Race Conditions, problems that are difficult to address with other techniques. Transactional Memory For example, system transactions eliminate security vulner- abilities in the file system that are caused by time-of-check- 1. INTRODUCTION to-time-of-use (TOCTTOU) race conditions. System trans- actions enable an unsuccessful software installation to roll Applications often need to group accesses to operating system resources (such as files and signals) into logical units, back without disturbing concurrent, independent updates to the file system. just as multithreaded applications must group accesses to This paper describes TxOS, a variant of Linux 2.6.22 that shared data structures into critical regions. For example, implements system transactions. TxOS uses new implemen- local user and group accounts on Linux and similar oper- tation techniques to provide fast, serializable transactions ating systems are stored across three files that need to be /etc/passwd /etc/shadow with strong isolation and fairness between system transac- mutually consistent: , , and /etc/group. -
Operating System Transactions
Operating System Transactions Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander Benn, and Emmett Witchel Department of Computer Sciences, The University of Texas at Austin {porterde,osh,rossbach,abenn1,witchel}@cs.utexas.edu ABSTRACT 1. INTRODUCTION Applications must be able to synchronize accesses to operating sys- Applications often need to group accesses to operating system tem resources in order to ensure correctness in the face of concur- resources (such as files and signals) into logical units, just as mul- rency and system failures. System transactions allow the program- tithreaded applications must group accesses to shared data struc- mer to specify updates to heterogeneous system resources with the tures into critical regions. For example, local user and group ac- OS guaranteeing atomicity, consistency, isolation, and durability counts on Linux and similar operating systems are stored across (ACID). System transactions efficiently and cleanly solve persis- three files that need to be mutually consistent: /etc/passwd, tent concurrency problems that are difficult to address with other /etc/shadow, and /etc/group. techniques. For example, system transactions eliminate security Applications currently struggle to make consistent updates to vulnerabilities in the file system that are caused by time-of-check- system resources. In current operating systems, individual system to-time-of-use (TOCTTOU) race conditions. System transactions calls are generally atomic and isolated from the rest of the system, enable an unsuccessful software installation to roll back without but it is difficult, if not impossible, to condense complex opera- disturbing concurrent, independent updates to the file system. tions into a single system call. -
Advfs Command Line and Application Programming Interface
AdvFS Command Line and Application Programming Interface External Reference Specification Version 1.13 JA CASL Not Inspected/Date Inspected Building ZK3 110 Spit Brook Road Nashua, NH 03062 Copyright (C) 2008 Hewlett-Packard Development Company, L.P. Page 1 of 65 Preface Version 1.4 of the AdvFS Command Line and API External Reference Specification is being made available to all partners in order to allow them to design and implement code meeting the specifications contained herein. 1 INTRODUCTION ....................................................................................................................................................................4 1.1 ABSTRACT .........................................................................................................................................................................4 1.2 AUDIENCE ..........................................................................................................................................................................4 1.3 TERMS AND DEFINITIONS ...................................................................................................................................................4 1.4 RELATED DOCUMENTS ......................................................................................................................................................4 1.5 ACKNOWLEDGEMENTS ......................................................................................................................................................4 -
(MSCS) Computer Forensics
Master of Science(Cyber Security) (MSCS) Computer Forensics (CSP-18) Block 1 Introduction to Computer Forensics Unit – 1: INTRODUCTION TO DIGITAL FORENSIC Unit – 2: COMPUTER FORENSICS INVESTIGATION PROCESS Unit – 3: DIGITAL EVIDENCE AND FIRST RESPONDER PROCEDURE Unit – 4: UNDERSTANDING STORAGE MEDIA AND FILE SYSTEM Master of Science(Cyber Security) (MSCS) EXPERT COMMITTEE Dr. P.K Behera (Chairman) Reader in Computer Science Utkal University Bhubaneswar, Odisha Dr.J.RMohanty (Member) Professor and HOD KIIT University Bhubaneswar, Odisha Sri PabitranandaPattnaik (Member) Scientist-E, NIC Bhubaneswar, Odisha Sri Malaya Kumar Das (Member) Scientist-E, NIC Bhubaneswar, Odisha Dr. Bhagirathi Nayak (Member) Professor and Head (IT & System) Sri Sri University, Bhubaneswar,Odisha Dr.Manoranjan Pradhan (Member) Professor and Head (IT & System) G.I.T.A Bhubaneswar, Odisha Sri Chandrakant Mallick (Convener) Consultant (Academic) School of Computer and Information Science Odisha State Open University Sambalpur, Odisha Master of Science(Cyber Security) (MSCS) Course Writers Aseem Kumar Patel Academic Consultant Odisha State Open University,Sambalpur Material Production Dr. Manas Ranjan Pujari Registrar Odisha State Open University, Sambalpur © OSOU, 2019. Promoting Use and Contribution of Open Education Resources is made available under a Creative Commons Attribution- ShareAlike4.0http://creativecommons.org/licences/by-sa/4.0 Unit Structure 1.1 Learning Objectives 02 1.2 Introduction 02 1.3 Definition of Computer Forensics 02 1.4 Cybercrime 03 1.5 -
Petascale Data Management: Guided by Measurement
Petascale Data Management: Guided by Measurement petascale data storage institute www.pdsi-scidac.org/ MPP2 www.pdsi-scidac.org MEMBER ORGANIZATIONS & Lustre • Los Alamos National Laboratory – institute.lanl.gov/pdsi/ • Parallel Data Lab, Carnegie Mellon University – www.pdl.cmu.edu/ • Oak Ridge National Laboratory – www.csm.ornl.gov/ • Sandia National Laboratories – www.sandia.gov/ • National Energy Research Scientific Computing Center • Center for Information Technology Integration, U. of Michigan pdsi.nersc.gov/ www.citi.umich.edu/projects/pdsi/ • Pacific Northwest National Laboratory – www.pnl.gov/ • University of California at Santa Cruz – www.pdsi.ucsc.edu/ The Computer Failure Data Repository Filesystems Statistics Survey • Goal: to collect and make available failure data from a large variety of sites GOALS • Better understanding of the characteristics of failures in the real world • Gather & build large DB of static filetree summary • Now maintained by USENIX at cfdr.usenix.org/ • Build small, non-invasive, anonymizing stats gather tool • Distribute fsstats tool via easily used web site Red Storm NAME SYSTEM TYPE SYSTEM SIZE TIME PERIOD TYPE OF DATA • Encourage contributions (output of tool) from many FSs Any node • Offer uploaded statistics & summaries to public & Lustre 22 HPC clusters 5000 nodes 9 years outage . Label Date Type File Total Size Total Space # files # dirs max size max space max dir max name avg file avg dir . 765 nodes (2008) System TB TB M K GB GB ents bytes MB ents . 1 HPC cluster 5 years PITTSBURGH 3,400 disks -
Oracle Database Administrator's Reference for UNIX-Based Operating Systems
Oracle® Database Administrator’s Reference 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 March 2009 Oracle Database Administrator's Reference, 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved. Primary Author: Brintha Bennet Contributing Authors: Kevin Flood, Pat Huey, Clara Jaeckel, Emily Murphy, Terri Winters, Ashmita Bose Contributors: David Austin, Subhranshu Banerjee, Mark Bauer, Robert Chang, Jonathan Creighton, Sudip Datta, Padmanabhan Ganapathy, Thirumaleshwara Hasandka, Joel Kallman, George Kotsovolos, Richard Long, Rolly Lv, Padmanabhan Manavazhi, Matthew Mckerley, Sreejith Minnanghat, Krishna Mohan, Rajendra Pingte, Hanlin Qian, Janelle Simmons, Roy Swonger, Lyju Vadassery, Douglas Williams This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. -
Performance and Scalability of a Sensor Data Storage Framework
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Paul Tötterman Performance and Scalability of a Sensor Data Storage Framework Master’s Thesis Helsinki, March 10, 2015 Supervisor: Associate Professor Keijo Heljanko Advisor: Lasse Rasinen M.Sc. (Tech.) Aalto University School of Science ABSTRACT OF Degree Programme in Computer Science and Engineering MASTER’S THESIS Author: Paul Tötterman Title: Performance and Scalability of a Sensor Data Storage Framework Date: March 10, 2015 Pages: 67 Major: Software Technology Code: T-110 Supervisor: Associate Professor Keijo Heljanko Advisor: Lasse Rasinen M.Sc. (Tech.) Modern artificial intelligence and machine learning applications build on analysis and training using large datasets. New research and development does not always start with existing big datasets, but accumulate data over time. The same storage solution does not necessarily cover the scale during the lifetime of the research, especially if scaling up from using common workgroup storage technologies. The storage infrastructure at ZenRobotics has grown using standard workgroup technologies. The current approach is starting to show its limits, while the storage growth is predicted to continue and accelerate. Successful capacity planning and expansion requires a better understanding of the patterns of the use of storage and its growth. We have examined the current storage architecture and stored data from different perspectives in order to gain a better understanding of the situation. By performing a number of experiments we determine key properties of the employed technologies. The combination of these factors allows us to make informed decisions about future storage solutions. -
Guido Van Rossum on PYTHON 3 Get Your Sleep From
JavaScript | Inform 6 & 7 | Falcon | Sleep | Enlightenment | PHP LINUX JOURNAL ™ THE STATE OF LINUX AUDIO SOFTWARE LANGUAGES Since 1994: The Original Magazine of the Linux Community OCTOBER 2008 | ISSUE 174 Inform 7 REVIEWED JavaScript | Inform 6 & 7 | Falcon | Sleep Enlightenment PHP Audio | Inform 6 & 7 Falcon JavaScript Don’t Get Eaten HP Media by a Grue! Vault 5150 Scalent’s Managing Virtual Operating PHP Code Environment Guido van Rossum on PYTHON 3 Get Your Sleep from OCTOBER Java www.linuxjournal.com 2008 $5.99US $5.99CAN 10 ISSUE Martin Messner Enlightenment E17 Insights from SUSE’s Lightweight Alternative 174 + Security Team Lead to KDE and GNOME 0 09281 03102 4 MULTIPLY ENERGY EFFICIENCY AND MAXIMIZE COOLING. THE WORLD’S FIRST QUAD-CORE PROCESSOR FOR MAINSTREAM SERVERS. THE NEW QUAD-CORE INTEL® XEON® PROCESSOR 5300 SERIES DELIVERS UP TO 50% 1 MORE PERFORMANCE*PERFORMANCE THAN PREVIOUS INTEL XEON PROCESSORS IN THE SAME POWERPOWER ENVELOPE.ENVELOPE. BASEDBASED ONON THETHE ULTRA-EFFICIENTULTRA-EFFICIENT INTEL®INTEL® CORE™CORE™ MICROMICROARCHITECTURE, ARCHITECTURE IT’S THE ULTIMATE SOLUTION FOR MANAGING RUNAWAY COOLING EXPENSES. LEARN WHYWHY GREAT GREAT BUSINESS BUSINESS COMPUTING COMPUTING STARTS STARTS WITH WITH INTEL INTEL INSIDE. INSIDE. VISIT VISIT INTEL.CO.UK/XEON INTEL.COM/XEON. RELION 2612 s 1UAD #ORE)NTEL®8EON® RELION 1670 s 1UAD #ORE)NTEL®8EON® PROCESSOR PROCESSOR s 5SERVERWITHUPTO4" s )NTEL@3EABURG CHIPSET s )DEALFORCOST EFFECTIVE&ILE$" WITH-(ZFRONTSIDEBUS APPLICATIONS s 5PTO'"2!-IN5CLASS s 2!32ELIABILITY !VAILABILITY LEADINGMEMORYCAPACITY 3ERVICEABILITY s -ANAGEMENTFEATURESTOSUPPORT LARGECLUSTERDEPLOYMENTS 34!24).'!4$2429.00 34!24).'!4$1969.00 Penguin Computing provides turnkey x86/Linux clusters for high performance technical computing applications. -
Ted Ts'o on Linux File Systems
Ted Ts’o on Linux File Systems An Interview RIK FARROW Rik Farrow is the Editor of ;login:. ran into Ted Ts’o during a tutorial luncheon at LISA ’12, and that later [email protected] sparked an email discussion. I started by asking Ted questions that had I puzzled me about the early history of ext2 having to do with the perfor- mance of ext2 compared to the BSD Fast File System (FFS). I had met Rob Kolstad, then president of BSDi, because of my interest in the AT&T lawsuit against the University of California and BSDi. BSDi was being sued for, among other things, Theodore Ts’o is the first having a phone number that could be spelled 800-ITS-UNIX. I thought that it was important North American Linux for the future of open source operating systems that AT&T lose that lawsuit. Kernel Developer, having That said, when I compared the performance of early versions of Linux to the current version started working with Linux of BSDi, I found that they were closely matched, with one glaring exception. Unpacking tar in September 1991. He also archives using Linux (likely .9) was blazingly fast compared to BSDi. I asked Rob, and he served as the tech lead for the MIT Kerberos explained that the issue had to do with synchronous writes, finally clearing up a mystery for me. V5 development team, and was the architect at IBM in charge of bringing real-time Linux Now I had a chance to ask Ted about the story from the Linux side, as well as other questions in support of real-time Java to the US Navy. -
Windows Internals, Sixth Edition, Part 2
spine = 1.2” Part 2 About the Authors Mark Russinovich is a Technical Fellow in ® the Windows Azure™ group at Microsoft. Windows Internals He is coauthor of Windows Sysinternals SIXTH EDITION Administrator’s Reference, co-creator of the Sysinternals tools available from Microsoft Windows ® The definitive guide—fully updated for Windows 7 TechNet, and coauthor of the Windows Internals and Windows Server 2008 R2 book series. Delve inside Windows architecture and internals—and see how core David A. Solomon is coauthor of the Windows Internals book series and has taught components work behind the scenes. Led by a team of internationally his Windows internals class to thousands of renowned internals experts, this classic guide has been fully updated Windows developers and IT professionals worldwide, SIXTH for Windows 7 and Windows Server® 2008 R2—and now presents its including Microsoft staff. He is a regular speaker 6EDITION coverage in two volumes. at Microsoft conferences, including TechNet As always, you get critical, insider perspectives on how Windows and PDC. operates. And through hands-on experiments, you’ll experience its Alex Ionescu is a chief software architect and internal behavior firsthand—knowledge you can apply to improve consultant expert in low-level system software, application design, debugging, system performance, and support. kernel development, security training, and Internals reverse engineering. He teaches Windows internals courses with David Solomon, and is ® In Part 2, you will: active in the security research community. -
Exploration of Windows Vista Advanced Forensic Topics – Day 1
Windows Vista and NTFS File System Internals Exploration of Windows Vista Advanced Forensic Topics – Day 1 LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Windows Client Forensics (Windows Vista Advanced Topics) Transactional NTFS and Registry Explained LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved New Features Important Changes of Interest LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Vista includes a “self-healing” function which can correct certain errors in the system • Vista maintains a list of hashes of known files and checks the hashes periodically • On non-system files Vista will validate the file metadata • Files whose hashes do not match or metadata is not valid will be replaced the next time the system is rebooted LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Equivalent to Chkdsk and defrag processes constantly running in the background • This has the potential to decrease the usefulness of the free space and slack space on the disk as well as limit the ability to recover deleted files LAW ENFORCEMENT SENSITIVE INFORMATION – DO NOT SHARE THESE MATERIALS ©2007 Microsoft Corporation – All Rights Reserved Self-Healing File System • Healed files can be identified by an examination of the event -
NTFS from Wikipedia, the Free Encyclopedia Jump To: Navigation, Search NTFS Developer Microsoft Introduced July 1993 (Windows
NTFS From Wikipedia, the free encyclopedia Jump to: navigation, search NTFS Developer Microsoft Introduced July 1993 (Windows NT 3.1) Partition identifier 0x07 (MBR) EBD0A0A2-B9E5-4433-87C0-68B6B72699C7 (GPT) Structures Directory contents B+ tree[1] File allocation Bitmap/Extents Bad blocks $badclus Limits Max file size 264 bytes (16 EiB) minus 1 KiB [2] Max number of files 4,294,967,295 (232-1)[2] Max filename length 255 UTF-16 code units[3] Max volume size 264 ? 1 clusters [2] Allowed characters in filenames In Posix namespace, any UTF-16 code unit (case sensitive) except U+0000 (NUL) and / (slash). In Win32 namespace, any UTF-16 code unit (case insensitive) except U+0000 (NUL) / (slash) \ (backslash) : (colon) * (asterisk) ? (Question mark) " (quote) < (less than) > (greater than) and | (pipe) [3] Features Dates recorded Creation, modification, POSIX change, access Date range 1 January 1601 ʹ 28 May 60056 (File times are 64-bit numbers counting 100- nanosecond intervals (ten million per second) since 1601, which is 58,000+ years) Date resolution 100ns Forks Yes (see Alternate data streams below) Attributes Read-only, hidden, system, archive, not content indexed, off-line, temporary File system permissions ACLs Transparent compression Per-file, LZ77 (Windows NT 3.51 onward) Transparent encryption Per-file, DESX (Windows 2000 onward), Triple DES (Windows XP onward), AES (Windows XP Service Pack 1, Windows Server 2003 onward) Single Instance Storage Yes Supported operating systems Windows NT family (Windows NT 3.1 to Windows NT 4.0, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008) NTFS is the standard file system of Windows NT, including its later versions Windows 2000, Windows XP, Windows Server 2003, Windows Server 2008, and Windows Vista.[4] NTFS supersedes the FAT file system as the preferred file system for Microsoft͛s ͞Windows͟-branded operating systems.