Innovative Double Bypass Engine for Increased Performance
Total Page:16
File Type:pdf, Size:1020Kb
Dissertations and Theses Fall 2011 Innovative Double Bypass Engine for Increased Performance Sanjivan Manoharan Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Manoharan, Sanjivan, "Innovative Double Bypass Engine for Increased Performance" (2011). Dissertations and Theses. 100. https://commons.erau.edu/edt/100 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Innovative Double Bypass Engine for Increased Performance by Sanjivan Manoharan A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 Copyright by Sanjivan Manoharan 2011 All Rights Reserved ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................. v ABSTRACT .................................................................................................................................... vi LIST OF TABLES ......................................................................................................................... vii LIST OF FIGURES ...................................................................................................................... viii NOMENCLATURE ........................................................................................................................ x 1 INTRODUCTION ........................................................................................................................ 1 1.1 Background ............................................................................................................................ 1 1.2 Problem Description .............................................................................................................. 3 1.3 Literature Survey ................................................................................................................... 3 2 METHODOLOGY ..................................................................................................................... 10 2.1 Introduction .......................................................................................................................... 10 2.2 HDBPE Excel Analysis ....................................................................................................... 11 2.3 Benchmark Engine NPSS Model ......................................................................................... 21 2.4 HDBPE NPSS Model .......................................................................................................... 28 2.5 Design Constraints ............................................................................................................... 32 3 RESULTS ................................................................................................................................... 33 3.1 Introduction .......................................................................................................................... 33 3.2 Excel Results for HDBPE .................................................................................................... 34 3.3 Benchmark Engine NPSS Results ....................................................................................... 53 3.4 HDBPE NPSS Results ......................................................................................................... 56 3.5 HDBPE – Benchmark Engine NPSS Comparison. .............................................................. 60 3.6 HDBPE Basic Sensitivity Analysis...................................................................................... 64 4 CONCLUSIONS AND RECOMMENDATIONS ..................................................................... 72 5 REFERENCES ........................................................................................................................... 74 6 APPENDIX ................................................................................................................................. 76 iv ACKNOWLEDGEMENTS I would like to express my sincere thanks and gratitude to my thesis advisor Dr. Magdy Attia for providing this wonderful experience and opportunity. Dr. Attia has been and will continue to be a great idol and mentor. I would like to also acknowledge committee members Dr. Lakshmanan Narayanaswami and Dr. Eric Perell for their generous support and time spent towards preparing this report. I also wish to thank Mr. Paul Aghassi, Mr. Vladislav Shulman, and Mr. Vinod Gehlot for providing valuable insights and for their continuous support and guidance. They were there from the beginning to the end of this thesis and without their help this project would have been very difficult. I wish to dedicate this thesis to my parents and brother for all what they have given to me. They have seen me through numerous difficulties and made this dream come true. v ABSTRACT Author: Sanjivan Manoharan Title: Innovative Double Bypass Engine for Improved Performance Institution: Embry-Riddle Aeronautical University Degree: Master of Science in Aerospace Engineering Year: 2011 Engines continue to grow in size to meet the current thrust requirements of the civil aerospace industry. Large engines pose significant transportation problems and require them to be split in order to be shipped. Thus, large amounts of time have been spent in researching methods to increase thrust capabilities while maintaining a reasonable engine size. Unfortunately, much of this research has been focused on increasing the performance and efficiencies of individual components while limited research has been done on innovative engine configurations. This thesis focuses on an innovative engine configuration, the High Double Bypass Engine, aimed at increasing fuel efficiency and thrust while maintaining a competitive fan diameter and engine length. The 1-D analysis was done in Excel and then compared to the results from Numerical Propulsion Simulation System (NPSS) software and were found to be within 4% error. Flow performance characteristics were also determined and validated against their criteria. vi LIST OF TABLES Table 1: Selected HDBPE Components and Their Major Design Choices at Cruise .................... 11 Table 2: Compressor and the Required Power ............................................................................... 19 Table 3: Turbine and the Power Generated ................................................................................... 19 Table 4: GE90-115B Scaled Station Areas .................................................................................... 23 Table 5: GE90-115B Available Data ............................................................................................. 26 Table 6: Compressor Total Pressure ratios, RPMs, and Total to Total Efficiencies ...................... 31 Table 7: Important Parameters and Their Constrained Values ...................................................... 32 Table 8: Important Cruise Design Choices and Results ................................................................ 50 Table 9: Mass Flow Rates at Cruise .............................................................................................. 50 Table 10: Compressor RPM's at Cruise ......................................................................................... 50 Table 11: Benchmark Engine NPSS Design Choices and Results at Take-Off and Cruise ........... 53 Table 12: Mass flow Rates and RPM's at Cruise and Take-off ..................................................... 53 Table 13: Important HDBPE NPSS Results at Cruise and Take-off ............................................. 57 Table 14: Mass Flow Rates at Cruise and Take-Off ...................................................................... 57 Table 15: Compressor RPM's at Cruise and Take-Off .................................................................. 57 Table 16: HDBPE and Benchmark Engine NPSS Cruise Comparison ......................................... 60 Table 17: HDBPE and Benchmark Engine Mass Flow Rates ....................................................... 60 Table 18: HDBPE and Benchmark Engine Compressor RPM's .................................................... 60 Table 19: NPSS Important Design Choices and Results ............................................................... 70 Table 20: Mass Flow Rates of the New Engine ............................................................................. 70 Table 21: RPMs of the New Engine .............................................................................................. 71 Table 22: Base HDBPE and Optimized HDBPE Comparison ...................................................... 71 vii LIST OF FIGURES Figure 1: Side View of HDBPE ..................................................................................................... 12 Figure 2: Meridional View of a Typical Compressor Rotor Blade ................................................ 14 Figure 3: Velocity Triangles for a Typical Compressor Rotor Blade ............................................ 14 Figure 4: Generic h-s Diagram for Nozzle ....................................................................................