Lempel-Ziv-Welch (LZW) Compression
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Data Compression: Dictionary-Based Coding 2 / 37 Dictionary-Based Coding Dictionary-Based Coding
Dictionary-based Coding already coded not yet coded search buffer look-ahead buffer cursor (N symbols) (L symbols) We know the past but cannot control it. We control the future but... Last Lecture Last Lecture: Predictive Lossless Coding Predictive Lossless Coding Simple and effective way to exploit dependencies between neighboring symbols / samples Optimal predictor: Conditional mean (requires storage of large tables) Affine and Linear Prediction Simple structure, low-complex implementation possible Optimal prediction parameters are given by solution of Yule-Walker equations Works very well for real signals (e.g., audio, images, ...) Efficient Lossless Coding for Real-World Signals Affine/linear prediction (often: block-adaptive choice of prediction parameters) Entropy coding of prediction errors (e.g., arithmetic coding) Using marginal pmf often already yields good results Can be improved by using conditional pmfs (with simple conditions) Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 2 / 37 Dictionary-based Coding Dictionary-Based Coding Coding of Text Files Very high amount of dependencies Affine prediction does not work (requires linear dependencies) Higher-order conditional coding should work well, but is way to complex (memory) Alternative: Do not code single characters, but words or phrases Example: English Texts Oxford English Dictionary lists less than 230 000 words (including obsolete words) On average, a word contains about 6 characters Average codeword length per character would be limited by 1 -
Leveraging Activation Sparsity for Training Deep Neural Networks
Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks Minsoo Rhu Mike O’Connor Niladrish Chatterjee Jeff Pool Stephen W. Keckler NVIDIA Santa Clara, CA 95050 fmrhu, moconnor, nchatterjee, jpool, [email protected] Abstract—Popular deep learning frameworks require users to the time needed to copy data back and forth through PCIe is fine-tune their memory usage so that the training data of a deep smaller than the time the GPU spends computing the DNN neural network (DNN) fits within the GPU physical memory. forward and backward propagation operations, vDNN does Prior work tries to address this restriction by virtualizing the memory usage of DNNs, enabling both CPU and GPU memory not affect performance. For networks whose memory copying to be utilized for memory allocations. Despite its merits, vir- operation is bottlenecked by the data transfer bandwidth of tualizing memory can incur significant performance overheads PCIe however, vDNN can incur significant overheads with an when the time needed to copy data back and forth from CPU average 31% performance loss (worst case 52%, Section III). memory is higher than the latency to perform the computations The trend in deep learning is to employ larger and deeper required for DNN forward and backward propagation. We introduce a high-performance virtualization strategy based on networks that leads to large memory footprints that oversub- a “compressing DMA engine” (cDMA) that drastically reduces scribe GPU memory [13, 14, 15]. Therefore, ensuring the the size of the data structures that are targeted for CPU-side performance scalability of the virtualization features offered allocations. -
The Basic Principles of Data Compression
The Basic Principles of Data Compression Author: Conrad Chung, 2BrightSparks Introduction Internet users who download or upload files from/to the web, or use email to send or receive attachments will most likely have encountered files in compressed format. In this topic we will cover how compression works, the advantages and disadvantages of compression, as well as types of compression. What is Compression? Compression is the process of encoding data more efficiently to achieve a reduction in file size. One type of compression available is referred to as lossless compression. This means the compressed file will be restored exactly to its original state with no loss of data during the decompression process. This is essential to data compression as the file would be corrupted and unusable should data be lost. Another compression category which will not be covered in this article is “lossy” compression often used in multimedia files for music and images and where data is discarded. Lossless compression algorithms use statistic modeling techniques to reduce repetitive information in a file. Some of the methods may include removal of spacing characters, representing a string of repeated characters with a single character or replacing recurring characters with smaller bit sequences. Advantages/Disadvantages of Compression Compression of files offer many advantages. When compressed, the quantity of bits used to store the information is reduced. Files that are smaller in size will result in shorter transmission times when they are transferred on the Internet. Compressed files also take up less storage space. File compression can zip up several small files into a single file for more convenient email transmission. -
Lzw Compression and Decompression
LZW COMPRESSION AND DECOMPRESSION December 4, 2015 1 Contents 1 INTRODUCTION 3 2 CONCEPT 3 3 COMPRESSION 3 4 DECOMPRESSION: 4 5 ADVANTAGES OF LZW: 6 6 DISADVANTAGES OF LZW: 6 2 1 INTRODUCTION LZW stands for Lempel-Ziv-Welch. This algorithm was created in 1984 by these people namely Abraham Lempel, Jacob Ziv, and Terry Welch. This algorithm is very simple to implement. In 1977, Lempel and Ziv published a paper on the \sliding-window" compression followed by the \dictionary" based compression which were named LZ77 and LZ78, respectively. later, Welch made a contri- bution to LZ78 algorithm, which was then renamed to be LZW Compression algorithm. 2 CONCEPT Many files in real time, especially text files, have certain set of strings that repeat very often, for example " The ","of","on"etc., . With the spaces, any string takes 5 bytes, or 40 bits to encode. But what if we need to add the whole string to the list of characters after the last one, at 256. Then every time we came across the string like" the ", we could send the code 256 instead of 32,116,104 etc.,. This would take 9 bits instead of 40bits. This is the algorithm of LZW compression. It starts with a "dictionary" of all the single character with indexes from 0 to 255. It then starts to expand the dictionary as information gets sent through. Pretty soon, all the strings will be encoded as a single bit, and compression would have occurred. LZW compression replaces strings of characters with single codes. It does not analyze the input text. -
NXP Eiq Machine Learning Software Development Environment For
AN12580 NXP eIQ™ Machine Learning Software Development Environment for QorIQ Layerscape Applications Processors Rev. 3 — 12/2020 Application Note Contents 1 Introduction 1 Introduction......................................1 Machine Learning (ML) is a computer science domain that has its roots in 2 NXP eIQ software introduction........1 3 Building eIQ Components............... 2 the 1960s. ML provides algorithms capable of finding patterns and rules in 4 OpenCV getting started guide.........3 data. ML is a category of algorithm that allows software applications to become 5 Arm Compute Library getting started more accurate in predicting outcomes without being explicitly programmed. guide................................................7 The basic premise of ML is to build algorithms that can receive input data and 6 TensorFlow Lite getting started guide use statistical analysis to predict an output while updating output as new data ........................................................ 8 becomes available. 7 Arm NN getting started guide........10 8 ONNX Runtime getting started guide In 2010, the so-called deep learning started. It is a fast-growing subdomain ...................................................... 16 of ML, based on Neural Networks (NN). Inspired by the human brain, 9 PyTorch getting started guide....... 17 deep learning achieved state-of-the-art results in various tasks; for example, A Revision history.............................17 Computer Vision (CV) and Natural Language Processing (NLP). Neural networks are capable of learning complex patterns from millions of examples. A huge adaptation is expected in the embedded world, where NXP is the leader. NXP created eIQ machine learning software for QorIQ Layerscape applications processors, a set of ML tools which allows developing and deploying ML applications on the QorIQ Layerscape family of devices. -
Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks
Randomized Lempel-Ziv Compression for Anti-Compression Side-Channel Attacks by Meng Yang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2018 c Meng Yang 2018 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Security experts confront new attacks on TLS/SSL every year. Ever since the compres- sion side-channel attacks CRIME and BREACH were presented during security conferences in 2012 and 2013, online users connecting to HTTP servers that run TLS version 1.2 are susceptible of being impersonated. We set up three Randomized Lempel-Ziv Models, which are built on Lempel-Ziv77, to confront this attack. Our three models change the determin- istic characteristic of the compression algorithm: each compression with the same input gives output of different lengths. We implemented SSL/TLS protocol and the Lempel- Ziv77 compression algorithm, and used them as a base for our simulations of compression side-channel attack. After performing the simulations, all three models successfully pre- vented the attack. However, we demonstrate that our randomized models can still be broken by a stronger version of compression side-channel attack that we created. But this latter attack has a greater time complexity and is easily detectable. Finally, from the results, we conclude that our models couldn't compress as well as Lempel-Ziv77, but they can be used against compression side-channel attacks. -
Oak Park Area Visitor Guide
OAK PARK AREA VISITOR GUIDE COMMUNITIES Bellwood Berkeley Broadview Brookfield Elmwood Park Forest Park Franklin Park Hillside Maywood Melrose Park Northlake North Riverside Oak Park River Forest River Grove Riverside Schiller Park Westchester www.visitoakpark.comvisitoakpark.com | 1 OAK PARK AREA VISITORS GUIDE Table of Contents WELCOME TO THE OAK PARK AREA ..................................... 4 COMMUNITIES ....................................................................... 6 5 WAYS TO EXPERIENCE THE OAK PARK AREA ..................... 8 BEST BETS FOR EVERY SEASON ........................................... 13 OAK PARK’S BUSINESS DISTRICTS ........................................ 15 ATTRACTIONS ...................................................................... 16 ACCOMMODATIONS ............................................................ 20 EATING & DRINKING ............................................................ 22 SHOPPING ............................................................................ 34 ARTS & CULTURE .................................................................. 36 EVENT SPACES & FACILITIES ................................................ 39 LOCAL RESOURCES .............................................................. 41 TRANSPORTATION ............................................................... 46 ADVERTISER INDEX .............................................................. 47 SPRING/SUMMER 2018 EDITION Compiled & Edited By: Kevin Kilbride & Valerie Revelle Medina Visit Oak Park -
A Software Tool for Data Compression Using the LZ77 ("Sliding Window") Algorithm Student Authors: Vladan R
A Software Tool for Data Compression Using the LZ77 ("Sliding Window") Algorithm Student authors: Vladan R. Djokić1, Miodrag G. Vidojković1 Mentors: Radomir S. Stanković2, Dušan B. Gajić2 Abstract – Data compression is a field of computer science that close the paper with some conclusions in the final section. is always in need of fast algorithms and their efficient implementations. Lempel-Ziv algorithm is the first which used a dictionary method for data compression. In this paper, we II. LEMPEL-ZIV ALGORITHM present the software implementation of this so-called "sliding window" method for compression and decompression. We also include experimental results considering data compression rate A. Theoretical basis and running time. This software tool includes a graphical user interface and is meant for use in educational purposes. The Lempel-Ziv algorithm [1] is an algorithm for lossless data compression. It is actually a whole family of algorithms, Keywords – Lempel-Ziv algorithm, C# programming solution, (see Figure 1) stemming from the two original algorithms that text compression. were first proposed by Jacob Ziv and Abraham Lempel in their landmark papers in 1977. [1] and 1978. [2]. LZ77 and I. INTRODUCTION LZ78 got their name by year of publishing. The Lempel-Ziv algorithms belong to adaptive dictionary While reading a book it is noticeable that some words are coders [1]. On start of encoding process, dictionary does not repeating very often. In computer world, textual files exist. The dictionary is created during encoding. There is no represent those books and same logic may be applied there. final state of dictionary and it does not have fixed size. -
Effective Variations on Opened GIF Format Images
70 IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.5, May 2008 Effective Variations on Opened GIF Format Images Hamza A. Ali1† and Bashar M. Ne’ma2††, Isra Private University, Amman, JORDAN Picture Format (Pict), Portable Network Graphic Summary (PNG), Photoshop native file (PSD), PCX from Zsoft, The CompuServe GIF format and the LZW compression method Kodac PCD. Usually scanners and digital cameras used to compress image data in this format is investigated in this acquire images in bitmapped formats. paper. Because of its better compression and greater color depth, JPEG has generally replaced GIF for photographic images. - Vector formats: images are a series of pixels that are Thorough study and discussion on GIF format images is carried "turned on" based on a mathematical formula. They are out in details in this work. Although, opening the header of GIF format images is difficult to achieve, we opened this format and basically defined by shapes and lines with no more studied all acceptable variations which may be have influence on than 256 colors. They are not resolution dependent, the viewing of any GIF format images. To get appropriate results, infinitely scalable and not appropriate for photo all practical is carried out via both Object Oriented Programming realistic images. Examples of vector file formats are (OOP) and concepts of software engineering tools. Windows Metafile Format (MWF), PostScript Format, Portable Document Format (PDF), and Computer Key words: Graphic Metafile (CGM). GIF format, Image Header, Image processing, LZW, Compression, Software Engineering Tools, and Security. In the rest of this section, a short definition is included for the most widely used computer graphic formats. -
Cryptanalysis Of, and Practical Attacks Against E-Safenet Encryption
Master System and Network Engineering University of Amsterdam Cryptanalysis of, and practical attacks against E-Safenet encryption Jan Laan Cedric Van Bockhaven [email protected] [email protected] January, 2014 1 Attacks against E-Safenet encryption Abstract The Chinese company E-Safenet specializes in data leak prevention and provides software to encrypt files using a proprietary encryp- tion algorithm. Manufacturers are using the E-Safenet encryption to protect their source code. Since several licenses require that code modifications are made public, it must be possible to audit the source code for license compliance. For this purpose it is interesting to be able to decrypt this specific file format. In this report, the E-Safenet encryption algorithm and data format are detailed. Methods are given to find the encryption key and reverse the encryption using a known-plaintext attack, probable-plaintext attack, and a ciphertext-only attack. 1 Attacks against E-Safenet encryption CONTENTS Contents 1 Introduction 3 2 Research 4 3 Related work 5 4 Analysis 6 4.1 Autocorrelation .......................... 6 4.2 E-Safenet data format ...................... 8 4.2.1 Checksum deductions .................. 9 4.3 Compression ........................... 10 4.3.1 Lempel-Ziv-Oberhumer ................. 10 4.4 The E-Safenet company ..................... 12 5 Attacks 13 5.1 Known-plaintext attack ..................... 13 5.2 Probable-plaintext attack .................... 13 5.2.1 A probable-plaintext attack for source code files ... 14 5.2.2 A probable-plaintext attack for binary files ...... 15 5.2.3 Results .......................... 15 5.3 Ciphertext-only attack ...................... 16 5.3.1 Practical implementation ................ 17 5.3.2 Results ......................... -
Computational Hardness of Optimal Fair Computation: Beyond Minicrypt
Computational Hardness of Optimal Fair Computation: Beyond Minicrypt Hemanta K. Maji Department of Computer Science, Purdue University, USA [email protected] Mingyuan Wang Department of Computer Science, Purdue University, USA [email protected] Abstract Secure multi-party computation allows mutually distrusting parties to compute securely over their private data. However, guaranteeing output delivery to honest parties when the adversarial parties may abort the protocol has been a challenging objective. As a representative task, this work considers two-party coin-tossing protocols with guaranteed output delivery, a.k.a., fair coin- tossing. In the information-theoretic plain model, as in two-party zero-sum games, one of the parties can force an output with certainty. In the commitment-hybrid, any r-message coin-tossing proto- √ √ col is 1/ r-unfair, i.e., the adversary can change the honest party’s output distribution by 1/ r in the statistical distance. Moran, Naor, and Segev (TCC–2009) constructed the first 1/r-unfair protocol in the oblivious transfer-hybrid. No further security improvement is possible because Cleve (STOC–1986) proved that 1/r-unfairness is unavoidable. Therefore, Moran, Naor, and Segev’s coin-tossing protocol is optimal. However, is oblivious transfer necessary for optimal fair coin-tossing? Maji and Wang (CRYPTO–2020) proved that any coin-tossing protocol using one-way func- √ tions in a black-box manner is at least 1/ r-unfair. That is, optimal fair coin-tossing is impossible in Minicrypt. Our work focuses on tightly characterizing the hardness of computation assump- tion necessary and sufficient for optimal fair coin-tossing within Cryptomania, outside Minicrypt. -
Archive and Compressed [Edit]
Archive and compressed [edit] Main article: List of archive formats • .?Q? – files compressed by the SQ program • 7z – 7-Zip compressed file • AAC – Advanced Audio Coding • ace – ACE compressed file • ALZ – ALZip compressed file • APK – Applications installable on Android • AT3 – Sony's UMD Data compression • .bke – BackupEarth.com Data compression • ARC • ARJ – ARJ compressed file • BA – Scifer Archive (.ba), Scifer External Archive Type • big – Special file compression format used by Electronic Arts for compressing the data for many of EA's games • BIK (.bik) – Bink Video file. A video compression system developed by RAD Game Tools • BKF (.bkf) – Microsoft backup created by NTBACKUP.EXE • bzip2 – (.bz2) • bld - Skyscraper Simulator Building • c4 – JEDMICS image files, a DOD system • cab – Microsoft Cabinet • cals – JEDMICS image files, a DOD system • cpt/sea – Compact Pro (Macintosh) • DAA – Closed-format, Windows-only compressed disk image • deb – Debian Linux install package • DMG – an Apple compressed/encrypted format • DDZ – a file which can only be used by the "daydreamer engine" created by "fever-dreamer", a program similar to RAGS, it's mainly used to make somewhat short games. • DPE – Package of AVE documents made with Aquafadas digital publishing tools. • EEA – An encrypted CAB, ostensibly for protecting email attachments • .egg – Alzip Egg Edition compressed file • EGT (.egt) – EGT Universal Document also used to create compressed cabinet files replaces .ecab • ECAB (.ECAB, .ezip) – EGT Compressed Folder used in advanced systems to compress entire system folders, replaced by EGT Universal Document • ESS (.ess) – EGT SmartSense File, detects files compressed using the EGT compression system. • GHO (.gho, .ghs) – Norton Ghost • gzip (.gz) – Compressed file • IPG (.ipg) – Format in which Apple Inc.