Complexity-Theoretic Aspects of Interactive Proof Systems

Total Page:16

File Type:pdf, Size:1020Kb

Complexity-Theoretic Aspects of Interactive Proof Systems ComplexityTheoretic Asp ects of Interactive Pro of Systems by Lance Jeremy Fortnow BA Mathematics and Computer Science Cornell University Submitted to the Department of Mathematics in partial fulllment of the requirements for the degree of Do ctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June c Massachusetts Institute of Technology All rights reserved Signature of Author ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: Department of Mathematics May Certied by ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::: Michael Sipser Asso ciate Professor Mathematics Thesis Sup ervisor Accepted by ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::: Daniel Kleitman Chairman Applied Mathematics Committee Accepted by ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::: Sigurdur Helgason Chairman Departmental Graduate Committee Abstract In Goldwasser Micali and Racko formulated interactive pro of systems as a to ol for de veloping cryptographic proto cols Indeed many exciting cryptographic results followed from studying interactive pro of systems and the related concept of zeroknowledge Interactive pro of systems also have an imp ortant part in complexity theory merging the well established concepts of probabilistic and nondeterministic computation This thesis will study the com plexity of various mo dels of interactive pro of systems A p erfect zeroknowledge interactive proto col convinces a verier that a string is in a language without revealing any additional knowledge in an information theoretic sense This thesis will show that for any language that has a p erfect zeroknowledge pro of system its complement has a short interactive proto col This result implies that there are not any p erfect zeroknowledge proto cols for NPcomplete languages unless the p olynomialtime hierarchy collapses Thus knowledge complexity can show a language is easy to prove Interesting mo dels of interactive pro of systems arise by restricting the p ower of the verier This thesis examines the pro of systems with a verier required to run in logarithmic space as well as p olynomial time Relationships with circuit complexity and logspace Turing machines are develop ed We can increase the p ower of interactive pro of systems by allowing many provers that can not communicate among themselves during the proto col This thesis shows the equivalence b etween this multiprover mo del and probabilistic Turing machines with an untrustworthy oracle We additionally give an oracle under which coNP do es not have multiprover interac tive proto cols This result implies an oracle where coNP do es not have standard interactive proto cols Another natural mo del o ccurs when the verier has only linear time Towards this direc tion this thesis examines probabilistic machines and linear time We show an oracle under which linear time probabilistic Turing machines can accept all BPP languages an unusual collapse of a complexity time hierarchy We exhibit many other related relativized results Fi nally we show probabilistic linear time do es not contain all languages accepted by interactive pro of systems Keywords Computational Complexity Interactive Pro of Systems ZeroKnowledge Probabilistic Computation Oracles Acknowledgments Foremost I would like to thank my advisor Michael Sipser Mike has collab orated on much of my research and virtually every problem I have ever lo oked I have discussed with Mike Mike has greatly inuenced my graduate career and I will b e forever grateful for these four years I have sp ent working with him I sp ent the rst year of my graduate scho oling at the University of California at Berkeley I started working with Mike Sipser at Berkeley and some of the research in this thesis o ccurred during that p erio d I greatly thank the Oce of Naval Research for their generous fellowship that supp orted me for my rst three years in graduate scho ol as well as indirectly covering my travel exp enses through out my graduate career Thanks also to the American So ciety for Engineering Edu cation for eciently administering the fellowship Thanks to all of the graduate students I have worked and so cialized with during these four years In particular Eric Schwab e has b een a great friend ro ommate and pro ofreader since I arrived at MIT Thanks to Marcy App ell for her companionship over the last year and a half and the many new exp eriences she has given to me like skiing and coee Finally thanks to Juris Hartmanis whose courses at Cornell aroused my interests in theoretical computer science and complexity theory If Juris had not b een at Cornell I would probably b e writing a thesis on Hopf algebras and missing out of the excitement of complexity theory Contents Intro duction Victor and the Great Pulu A Short History Denitions Deterministic Time and Space Complexity Nondeterministic Turing Machines Completeness Probabilistic Turing Machines Oracles and The Polynomial Time Hierarchy Circuits and Nonuniform Computation Interactive Pro of Systems Relativization Basic Results An Example Graph Nonisomorphism Perfect ZeroKnowledge A Cryptographic Side of Interactive Pro of Systems Notation and Denitions Related Results Showing Sets are Large and Small Lower Bound Proto col Upp er Bound Proto col Comparison Proto col Main Theorem Structure of Pro of An Example Graph Isomorphism The Proto col Pro of of the Proto cols Correctness Extensions and Corollaries Further Research LogarithmicSpace Veriers Reducing the Power of the Verier Log Space Veriers and BPNL A Circuit Mo del for BPNL BPNL Contains LOGCFL Further Directions of Research Multiple Provers Corrob orating Susp ects Denitions Probabilistic Oracle Machines Are there MultiProver Proto cols for coNP Languages Bounded Round Proto cols Further Research Probabilistic Computation and Linear Time LinearTime Veriers Our Results and Related Results Deterministic Nondeterministic and Probabilistic Linear Time Pro of of the Main Theorem Structure of the Oracle A Simple Case Inuencing and Simulating Strings Order of Enco ding Creating the Dep endency Graph Pro cessing the Dep endency Graph Generalizing the Pro of for All BPP Machines Other Results Conclusions and Further Research Chapter Intro duction Victor and the Great Pulu Victor a venture capitalist had everything a man could desire money women and p ower But he felt something missing He decided he lacked knowledge So Victor packed up his bags and headed to the Himalayas in search of ultimate truths The natives p ointed Victor to a tall mountain and mentioned rumors of a great man full of wisdom Victor who smartly brought some climbing equipment tackled the mountain until he reached a small cave near the summit Victor found the great Pulu grand guru of all that is known Victor inquired to some ultimate truths and Pulu resp onded I wil l teach you but you must not trust my words Victor agreed and found he learned much even though he had to verify all the sayings of the great Pulu Victor though lacked complete happiness and he asked if he could learn knowledge b eyond what he could learn in this manner The grand guru replied You may ask and I wil l answer Victor p ondered this idea for a minute and said Since you know all that is known why can you not predict my questions A silence reigned over the mountain for a short while until the Guru nally sp oke You must use other implementssymbols of your past life Victor thought for a while and reached into his backpack and brought out some spare change he had unwittingly carried with him Even the great Pulu can not predict the ip of a coin He started ipping the coins to ask the guru and wondered what can I learn now In this thesis we will study the very question of what Victor can learn On his own Victor can only decide simple problems With the help of Pulu even when he can not trust the answers Victor found he could learn much more than b efore With a coin Victor could learn even more still We will formalize these interactions by lo oking at Victor as a computer with a restricted amount of p ower
Recommended publications
  • Database Theory
    DATABASE THEORY Lecture 4: Complexity of FO Query Answering Markus Krotzsch¨ TU Dresden, 21 April 2016 Overview 1. Introduction | Relational data model 2. First-order queries 3. Complexity of query answering 4. Complexity of FO query answering 5. Conjunctive queries 6. Tree-like conjunctive queries 7. Query optimisation 8. Conjunctive Query Optimisation / First-Order Expressiveness 9. First-Order Expressiveness / Introduction to Datalog 10. Expressive Power and Complexity of Datalog 11. Optimisation and Evaluation of Datalog 12. Evaluation of Datalog (2) 13. Graph Databases and Path Queries 14. Outlook: database theory in practice See course homepage [) link] for more information and materials Markus Krötzsch, 21 April 2016 Database Theory slide 2 of 41 How to Measure Query Answering Complexity Query answering as decision problem { consider Boolean queries Various notions of complexity: • Combined complexity (complexity w.r.t. size of query and database instance) • Data complexity (worst case complexity for any fixed query) • Query complexity (worst case complexity for any fixed database instance) Various common complexity classes: L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime Markus Krötzsch, 21 April 2016 Database Theory slide 3 of 41 An Algorithm for Evaluating FO Queries function Eval(', I) 01 switch (') f I 02 case p(c1, ::: , cn): return hc1, ::: , cni 2 p 03 case : : return :Eval( , I) 04 case 1 ^ 2 : return Eval( 1, I) ^ Eval( 2, I) 05 case 9x. : 06 for c 2 ∆I f 07 if Eval( [x 7! c], I) then return true 08 g 09 return false 10 g Markus Krötzsch, 21 April 2016 Database Theory slide 4 of 41 FO Algorithm Worst-Case Runtime Let m be the size of ', and let n = jIj (total table sizes) • How many recursive calls of Eval are there? { one per subexpression: at most m • Maximum depth of recursion? { bounded by total number of calls: at most m • Maximum number of iterations of for loop? { j∆Ij ≤ n per recursion level { at most nm iterations I • Checking hc1, ::: , cni 2 p can be done in linear time w.r.t.
    [Show full text]
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • Complexity Theory Lecture 9 Co-NP Co-NP-Complete
    Complexity Theory 1 Complexity Theory 2 co-NP Complexity Theory Lecture 9 As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form: ′ L = x y y <p( x ) R (x, y) { |∀ | | | | → } Anuj Dawar University of Cambridge Computer Laboratory NP – the collection of languages with succinct certificates of Easter Term 2010 membership. co-NP – the collection of languages with succinct certificates of http://www.cl.cam.ac.uk/teaching/0910/Complexity/ disqualification. Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 3 Complexity Theory 4 NP co-NP co-NP-complete P VAL – the collection of Boolean expressions that are valid is co-NP-complete. Any language L that is the complement of an NP-complete language is co-NP-complete. Any of the situations is consistent with our present state of ¯ knowledge: Any reduction of a language L1 to L2 is also a reduction of L1–the complement of L1–to L¯2–the complement of L2. P = NP = co-NP • There is an easy reduction from the complement of SAT to VAL, P = NP co-NP = NP = co-NP • ∩ namely the map that takes an expression to its negation. P = NP co-NP = NP = co-NP • ∩ VAL P P = NP = co-NP ∈ ⇒ P = NP co-NP = NP = co-NP • ∩ VAL NP NP = co-NP ∈ ⇒ Anuj Dawar May 14, 2010 Anuj Dawar May 14, 2010 Complexity Theory 5 Complexity Theory 6 Prime Numbers Primality Consider the decision problem PRIME: Another way of putting this is that Composite is in NP.
    [Show full text]
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • NP-Completeness: Reductions Tue, Nov 21, 2017
    CMSC 451 Dave Mount CMSC 451: Lecture 19 NP-Completeness: Reductions Tue, Nov 21, 2017 Reading: Chapt. 8 in KT and Chapt. 8 in DPV. Some of the reductions discussed here are not in either text. Recap: We have introduced a number of concepts on the way to defining NP-completeness: Decision Problems/Language recognition: are problems for which the answer is either yes or no. These can also be thought of as language recognition problems, assuming that the input has been encoded as a string. For example: HC = fG j G has a Hamiltonian cycleg MST = f(G; c) j G has a MST of cost at most cg: P: is the class of all decision problems which can be solved in polynomial time. While MST 2 P, we do not know whether HC 2 P (but we suspect not). Certificate: is a piece of evidence that allows us to verify in polynomial time that a string is in a given language. For example, the language HC above, a certificate could be a sequence of vertices along the cycle. (If the string is not in the language, the certificate can be anything.) NP: is defined to be the class of all languages that can be verified in polynomial time. (Formally, it stands for Nondeterministic Polynomial time.) Clearly, P ⊆ NP. It is widely believed that P 6= NP. To define NP-completeness, we need to introduce the concept of a reduction. Reductions: The class of NP-complete problems consists of a set of decision problems (languages) (a subset of the class NP) that no one knows how to solve efficiently, but if there were a polynomial time solution for even a single NP-complete problem, then every problem in NP would be solvable in polynomial time.
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors’ permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] — Thank You!! DRAFT ii DRAFT Chapter 9 Complexity of counting “It is an empirical fact that for many combinatorial problems the detection of the existence of a solution is easy, yet no computationally efficient method is known for counting their number.... for a variety of problems this phenomenon can be explained.” L. Valiant 1979 The class NP captures the difficulty of finding certificates. However, in many contexts, one is interested not just in a single certificate, but actually counting the number of certificates. This chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion. Counting problems arise in diverse fields, often in situations having to do with estimations of probability. Examples include statistical estimation, statistical physics, network design, and more. Counting problems are also studied in a field of mathematics called enumerative combinatorics, which tries to obtain closed-form mathematical expressions for counting problems. To give an example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph using a simple determinant computation. Results in this chapter will show that for many natural counting problems, such efficiently computable expressions are unlikely to exist.
    [Show full text]
  • Chapter 24 Conp, Self-Reductions
    Chapter 24 coNP, Self-Reductions CS 473: Fundamental Algorithms, Spring 2013 April 24, 2013 24.1 Complementation and Self-Reduction 24.2 Complementation 24.2.1 Recap 24.2.1.1 The class P (A) A language L (equivalently decision problem) is in the class P if there is a polynomial time algorithm A for deciding L; that is given a string x, A correctly decides if x 2 L and running time of A on x is polynomial in jxj, the length of x. 24.2.1.2 The class NP Two equivalent definitions: (A) Language L is in NP if there is a non-deterministic polynomial time algorithm A (Turing Machine) that decides L. (A) For x 2 L, A has some non-deterministic choice of moves that will make A accept x (B) For x 62 L, no choice of moves will make A accept x (B) L has an efficient certifier C(·; ·). (A) C is a polynomial time deterministic algorithm (B) For x 2 L there is a string y (proof) of length polynomial in jxj such that C(x; y) accepts (C) For x 62 L, no string y will make C(x; y) accept 1 24.2.1.3 Complementation Definition 24.2.1. Given a decision problem X, its complement X is the collection of all instances s such that s 62 L(X) Equivalently, in terms of languages: Definition 24.2.2. Given a language L over alphabet Σ, its complement L is the language Σ∗ n L. 24.2.1.4 Examples (A) PRIME = nfn j n is an integer and n is primeg o PRIME = n n is an integer and n is not a prime n o PRIME = COMPOSITE .
    [Show full text]
  • Succinctness of the Complement and Intersection of Regular Expressions Wouter Gelade, Frank Neven
    Succinctness of the Complement and Intersection of Regular Expressions Wouter Gelade, Frank Neven To cite this version: Wouter Gelade, Frank Neven. Succinctness of the Complement and Intersection of Regular Expres- sions. STACS 2008, Feb 2008, Bordeaux, France. pp.325-336. hal-00226864 HAL Id: hal-00226864 https://hal.archives-ouvertes.fr/hal-00226864 Submitted on 30 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 325-336 www.stacs-conf.org SUCCINCTNESS OF THE COMPLEMENT AND INTERSECTION OF REGULAR EXPRESSIONS WOUTER GELADE AND FRANK NEVEN Hasselt University and Transnational University of Limburg, School for Information Technology E-mail address: [email protected] Abstract. We study the succinctness of the complement and intersection of regular ex- pressions. In particular, we show that when constructing a regular expression defining the complement of a given regular expression, a double exponential size increase cannot be avoided. Similarly, when constructing a regular expression defining the intersection of a fixed and an arbitrary number of regular expressions, an exponential and double expo- nential size increase, respectively, can in worst-case not be avoided.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • Algorithms and NP
    Algorithms Complexity P vs NP Algorithms and NP G. Carl Evans University of Illinois Summer 2019 Algorithms and NP Algorithms Complexity P vs NP Review Algorithms Model algorithm complexity in terms of how much the cost increases as the input/parameter size increases In characterizing algorithm computational complexity, we care about Large inputs Dominant terms p 1 log n n n n log n n2 n3 2n 3n n! Algorithms and NP Algorithms Complexity P vs NP Closest Pair 01 closestpair(p1;:::; pn) : array of 2D points) 02 best1 = p1 03 best2 = p2 04 bestdist = dist(p1,p2) 05 for i = 1 to n 06 for j = 1 to n 07 newdist = dist(pi ,pj ) 08 if (i 6= j and newdist < bestdist) 09 best1 = pi 10 best2 = pj 11 bestdist = newdist 12 return (best1, best2) Algorithms and NP Algorithms Complexity P vs NP Mergesort 01 merge(L1,L2: sorted lists of real numbers) 02 if (L1 is empty and L2 is empty) 03 return emptylist 04 else if (L2 is empty or head(L1) <= head(L2)) 05 return cons(head(L1),merge(rest(L1),L2)) 06 else 07 return cons(head(L2),merge(L1,rest(L2))) 01 mergesort(L = a1; a2;:::; an: list of real numbers) 02 if (n = 1) then return L 03 else 04 m = bn=2c 05 L1 = (a1; a2;:::; am) 06 L2 = (am+1; am+2;:::; an) 07 return merge(mergesort(L1),mergesort(L2)) Algorithms and NP Algorithms Complexity P vs NP Find End 01 findend(A: array of numbers) 02 mylen = length(A) 03 if (mylen < 2) error 04 else if (A[0] = 0) error 05 else if (A[mylen-1] 6= 0) return mylen-1 06 else return findendrec(A,0,mylen-1) 11 findendrec(A, bottom, top: positive integers) 12 if (top
    [Show full text]
  • Notes on Space Complexity of Integration of Computable Real
    Notes on space complexity of integration of computable real functions in Ko–Friedman model Sergey V. Yakhontov Abstract x In the present paper it is shown that real function g(x)= 0 f(t)dt is a linear-space computable real function on interval [0, 1] if f is a linear-space computable C2[0, 1] real function on interval R [0, 1], and this result does not depend on any open question in the computational complexity theory. The time complexity of computable real functions and integration of computable real functions is considered in the context of Ko–Friedman model which is based on the notion of Cauchy functions computable by Turing machines. 1 2 In addition, a real computable function f is given such that 0 f ∈ FDSPACE(n )C[a,b] but 1 f∈ / FP if FP 6= #P. 0 C[a,b] R RKeywords: Computable real functions, Cauchy function representation, polynomial-time com- putable real functions, linear-space computable real functions, C2[0, 1] real functions, integration of computable real functions. Contents 1 Introduction 1 1.1 CF computablerealnumbersandfunctions . ...... 2 1.2 Integration of FP computablerealfunctions. 2 2 Upper bound of the time complexity of integration 3 2 3 Function from FDSPACE(n )C[a,b] that not in FPC[a,b] if FP 6= #P 4 4 Conclusion 4 arXiv:1408.2364v3 [cs.CC] 17 Nov 2014 1 Introduction In the present paper, we consider computable real numbers and functions that are represented by Cauchy functions computable by Turing machines [1]. Main results regarding computable real numbers and functions can be found in [1–4]; main results regarding computational complexity of computations on Turing machines can be found in [5].
    [Show full text]