Advanced Modern Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Modern Algebra Advanced Modern Algebra Third Edition, Part 1 Joseph J. Rotman Graduate Studies in Mathematics Volume 165 American Mathematical Society Advanced Modern Algebra Third Edition, Part 1 https://doi.org/10.1090//gsm/165 Advanced Modern Algebra Third Edition, Part 1 Joseph J. Rotman Graduate Studies in Mathematics Volume 165 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dan Abramovich Daniel S. Freed Rafe Mazzeo (Chair) Gigliola Staffilani The 2002 edition of this book was previously published by Pearson Education, Inc. 2010 Mathematics Subject Classification. Primary 12-01, 13-01, 14-01, 15-01, 16-01, 18-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-165 Library of Congress Cataloging-in-Publication Data Rotman, Joseph J., 1934– Advanced modern algebra / Joseph J. Rotman. – Third edition. volumes cm. – (Graduate studies in mathematics ; volume 165) Includes bibliographical references and index. ISBN 978-1-4704-1554-9 (alk. paper : pt. 1) 1. Algebra. I. Title. QA154.3.R68 2015 512–dc23 2015019659 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. Third edition c 2015 by the American Mathematical Society. All rights reserved. Second edition c 2010 by the American Mathematical Society. All rights reserved. First edition c 2002 by the American Mathematical Society. All right reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 201918171615 To my wife Marganit and our two wonderful kids Danny and Ella, whom I love very much Contents Preface to Third Edition: Part 1 xi Acknowledgments xiv Part A. Course I Chapter A-1. Classical Formulas 3 Cubics 4 Quartics 6 Chapter A-2. Classical Number Theory 9 Divisibility 9 Euclidean Algorithms 16 Congruence 19 Chapter A-3. Commutative Rings 29 Polynomials 41 Homomorphisms 47 Quotient Rings 55 From Arithmetic to Polynomials 62 Maximal Ideals and Prime Ideals 74 Finite Fields 83 Irreducibility 89 Euclidean Rings and Principal Ideal Domains 97 Unique Factorization Domains 104 Chapter A-4. Groups 115 Permutations 116 vii viii Contents Even and Odd 123 Groups 127 Lagrange’s Theorem 139 Homomorphisms 150 Quotient Groups 159 Simple Groups 173 Chapter A-5. Galois Theory 179 Insolvability of the Quintic 179 Classical Formulas and Solvability by Radicals 187 Translation into Group Theory 190 Fundamental Theorem of Galois Theory 200 Calculations of Galois Groups 223 Chapter A-6. Appendix: Set Theory 235 Equivalence Relations 243 Chapter A-7. Appendix: Linear Algebra 247 Vector Spaces 247 Linear Transformations and Matrices 259 Part B. Course II Chapter B-1. Modules 273 Noncommutative Rings 273 Chain Conditions on Rings 282 Left and Right Modules 288 Chain Conditions on Modules 300 Exact Sequences 305 Chapter B-2. Zorn’s Lemma 313 Zorn, Choice, and Well-Ordering 313 Zorn and Linear Algebra 319 Zorn and Free Abelian Groups 323 Semisimple Modules and Rings 334 Algebraic Closure 339 Transcendence 345 L¨uroth’s Theorem 353 Chapter B-3. Advanced Linear Algebra 359 Torsion and Torsion-free 359 Basis Theorem 362 Contents ix Fundamental Theorem 371 Elementary Divisors 371 Invariant Factors 374 From Abelian Groups to Modules 378 Rational Canonical Forms 383 Eigenvalues 388 Jordan Canonical Forms 395 Smith Normal Forms 402 Inner Product Spaces 417 Orthogonal and Symplectic Groups 429 Hermitian Forms and Unitary Groups 436 Chapter B-4. Categories of Modules 441 Categories 441 Functors 461 Galois Theory for Infinite Extensions 475 Free and Projective Modules 481 Injective Modules 492 Divisible Abelian Groups 501 Tensor Products 509 Adjoint Isomorphisms 522 Flat Modules 529 Chapter B-5. Multilinear Algebra 543 Algebras and Graded Algebras 543 Tensor Algebra 552 Exterior Algebra 561 Grassmann Algebras 566 Exterior Algebra and Differential Forms 573 Determinants 575 Chapter B-6. Commutative Algebra II 591 Old-Fashioned Algebraic Geometry 591 Affine Varieties and Ideals 593 Nullstellensatz 599 Nullstellensatz Redux 604 Irreducible Varieties 614 Affine Morphisms 623 Algorithms in k[x1,...,xn] 628 Monomial Orders 629 x Contents Division Algorithm 636 Gr¨obner Bases 639 Chapter B-7. Appendix: Categorical Limits 651 Inverse Limits 651 Direct Limits 657 Directed Index Sets 659 Adjoint Functors 666 Chapter B-8. Appendix: Topological Spaces 673 Topological Groups 678 Bibliography 681 Special Notation 687 Index 693 Preface to Third Edition: Part 1 Algebra is used by virtually all mathematicians, be they analysts, combinatorists, computer scientists, geometers, logicians, number theorists, or topologists. Nowa- days, everyone agrees that some knowledge of linear algebra, group theory, and commutative algebra is necessary, and these topics are introduced in undergrad- uate courses. Since there are many versions of undergraduate algebra courses, I will often review definitions, examples, and theorems, sometimes sketching proofs and sometimes giving more details.1 Part 1 of this third edition can be used as a text for the first year of graduate algebra, but it is much more than that. It and the forthcoming Part 2 can also serve more advanced graduate students wishing to learn topics on their own. While not reaching the frontiers, the books provide a sense of the successes and methods arising in an area. In addition, they comprise a reference containing many of the standard theorems and definitions that users of algebra need to know. Thus, these books are not merely an appetizer, they are a hearty meal as well. When I was a student, Birkhoff–Mac Lane, A Survey of Modern Algebra [8], was the text for my first algebra course, and van der Waerden, Modern Algebra [118], was the text for my second course. Both are excellent books (I have called this book Advanced Modern Algebra in homage to them), but times have changed since their first publication: Birkhoff and Mac Lane’s book appeared in 1941; van der Waerden’s book appeared in 1930. There are today major directions that either did not exist 75 years ago, or were not then recognized as being so important, or were not so well developed. These new areas involve algebraic geometry, category 1It is most convenient for me, when reviewing earlier material, to refer to my own text FCAA: A First Course in Abstract Algebra,3rded.[94], as well as to LMA, the book of A. Cuoco and myself [23], Learning Modern Algebra from Early Attempts to Prove Fermat’s Last Theorem. xi xii Preface to Third Edition: Part 1 theory,2 computer science, homological algebra, and representation theory. Each generation should survey algebra to make it serve the present time. The passage from the second edition to this one involves some significant changes, the major change being organizational. This can be seen at once, for the elephantine 1000 page edition is now divided into two volumes. This change is not merely a result of the previous book being too large; instead, it reflects the structure of beginning graduate level algebra courses at the University of Illinois at Urbana–Champaign. This first volume consists of two basic courses: Course I (Galois theory) followed by Course II (module theory). These two courses serve as joint prerequisites for the forthcoming Part 2, which will present more advanced topics in ring theory, group theory, algebraic number theory, homological algebra, representation theory, and algebraic geometry. In addition to the change in format, I have also rewritten much of the text. For example, noncommutative rings are treated earlier. Also, the section on alge- braic geometry introduces regular functions and rational functions. Two proofs of the Nullstellensatz (which describes the maximal ideals in k[x1,...,xn]whenk is an algebraically closed field) are given. The first proof, for k = C (which easily generalizes to uncountable k), is the same proof as in the previous edition. But the second proof I had written, which applies to countable algebraically closed fields as well, was my version of Kaplansky’s account [55] of proofs of Goldman and of Krull. I should have known better! Kaplansky was a master of exposition, and this edition follows his proof more closely. The reader should look at Kaplansky’s book, Selected Papers and Writings [58], to see wonderful mathematics beautifully expounded. I have given up my attempted spelling reform, and I now denote the ring of integers mod m by Zm instead of by Im. A star * before an exercise indicates that it will be cited elsewhere in the book, possibly in a proof. The first part of this volume is called Course I; it follows a syllabus for an actual course of lectures. If I were king, this course would be a transcript of my lectures.
Recommended publications
  • Survey of Modern Mathematical Topics Inspired by History of Mathematics
    Survey of Modern Mathematical Topics inspired by History of Mathematics Paul L. Bailey Department of Mathematics, Southern Arkansas University E-mail address: [email protected] Date: January 21, 2009 i Contents Preface vii Chapter I. Bases 1 1. Introduction 1 2. Integer Expansion Algorithm 2 3. Radix Expansion Algorithm 3 4. Rational Expansion Property 4 5. Regular Numbers 5 6. Problems 6 Chapter II. Constructibility 7 1. Construction with Straight-Edge and Compass 7 2. Construction of Points in a Plane 7 3. Standard Constructions 8 4. Transference of Distance 9 5. The Three Greek Problems 9 6. Construction of Squares 9 7. Construction of Angles 10 8. Construction of Points in Space 10 9. Construction of Real Numbers 11 10. Hippocrates Quadrature of the Lune 14 11. Construction of Regular Polygons 16 12. Problems 18 Chapter III. The Golden Section 19 1. The Golden Section 19 2. Recreational Appearances of the Golden Ratio 20 3. Construction of the Golden Section 21 4. The Golden Rectangle 21 5. The Golden Triangle 22 6. Construction of a Regular Pentagon 23 7. The Golden Pentagram 24 8. Incommensurability 25 9. Regular Solids 26 10. Construction of the Regular Solids 27 11. Problems 29 Chapter IV. The Euclidean Algorithm 31 1. Induction and the Well-Ordering Principle 31 2. Division Algorithm 32 iii iv CONTENTS 3. Euclidean Algorithm 33 4. Fundamental Theorem of Arithmetic 35 5. Infinitude of Primes 36 6. Problems 36 Chapter V. Archimedes on Circles and Spheres 37 1. Precursors of Archimedes 37 2. Results from Euclid 38 3. Measurement of a Circle 39 4.
    [Show full text]
  • Math 3010 § 1. Treibergs First Midterm Exam Name
    Math 3010 x 1. First Midterm Exam Name: Solutions Treibergs February 7, 2018 1. For each location, fill in the corresponding map letter. For each mathematician, fill in their principal location by number, and dates and mathematical contribution by letter. Mathematician Location Dates Contribution Archimedes 5 e β Euclid 1 d δ Plato 2 c ζ Pythagoras 3 b γ Thales 4 a α Locations Dates Contributions 1. Alexandria E a. 624{547 bc α. Advocated the deductive method. First man to have a theorem attributed to him. 2. Athens D b. 580{497 bc β. Discovered theorems using mechanical intuition for which he later provided rigorous proofs. 3. Croton A c. 427{346 bc γ. Explained musical harmony in terms of whole number ratios. Found that some lengths are irrational. 4. Miletus D d. 330{270 bc δ. His books set the standard for mathematical rigor until the 19th century. 5. Syracuse B e. 287{212 bc ζ. Theorems require sound definitions and proofs. The line and the circle are the purest elements of geometry. 1 2. Use the Euclidean algorithm to find the greatest common divisor of 168 and 198. Find two integers x and y so that gcd(198; 168) = 198x + 168y: Give another example of a Diophantine equation. What property does it have to be called Diophantine? (Saying that it was invented by Diophantus gets zero points!) 198 = 1 · 168 + 30 168 = 5 · 30 + 18 30 = 1 · 18 + 12 18 = 1 · 12 + 6 12 = 3 · 6 + 0 So gcd(198; 168) = 6. 6 = 18 − 12 = 18 − (30 − 18) = 2 · 18 − 30 = 2 · (168 − 5 · 30) − 30 = 2 · 168 − 11 · 30 = 2 · 168 − 11 · (198 − 168) = 13 · 168 − 11 · 198 Thus x = −11 and y = 13 .
    [Show full text]
  • CSU200 Discrete Structures Professor Fell Integers and Division
    CSU200 Discrete Structures Professor Fell Integers and Division Though you probably learned about integers and division back in fourth grade, we need formal definitions and theorems to describe the algorithms we use and to very that they are correct, in general. If a and b are integers, a ¹ 0, we say a divides b if there is an integer c such that b = ac. a is a factor of b. a | b means a divides b. a | b mean a does not divide b. Theorem 1: Let a, b, and c be integers, then 1. if a | b and a | c then a | (b + c) 2. if a | b then a | bc for all integers, c 3. if a | b and b | c then a | c. Proof: Here is a proof of 1. Try to prove the others yourself. Assume a, b, and c be integers and that a | b and a | c. From the definition of divides, there must be integers m and n such that: b = ma and c = na. Then, adding equals to equals, we have b + c = ma + na. By the distributive law and commutativity, b + c = (m + n)a. By closure of addition, m + n is an integer so, by the definition of divides, a | (b + c). Q.E.D. Corollary: If a, b, and c are integers such that a | b and a | c then a | (mb + nc) for all integers m and n. Primes A positive integer p > 1 is called prime if the only positive factor of p are 1 and p.
    [Show full text]
  • History of Mathematics Log of a Course
    History of mathematics Log of a course David Pierce / This work is licensed under the Creative Commons Attribution–Noncommercial–Share-Alike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ CC BY: David Pierce $\ C Mathematics Department Middle East Technical University Ankara Turkey http://metu.edu.tr/~dpierce/ [email protected] Contents Prolegomena Whatishere .................................. Apology..................................... Possibilitiesforthefuture . I. Fall semester . Euclid .. Sunday,October ............................ .. Thursday,October ........................... .. Friday,October ............................. .. Saturday,October . .. Tuesday,October ........................... .. Friday,October ............................ .. Thursday,October. .. Saturday,October . .. Wednesday,October. ..Friday,November . ..Friday,November . ..Wednesday,November. ..Friday,November . ..Friday,November . ..Saturday,November. ..Friday,December . ..Tuesday,December . . Apollonius and Archimedes .. Tuesday,December . .. Saturday,December . .. Friday,January ............................. .. Friday,January ............................. Contents II. Spring semester Aboutthecourse ................................ . Al-Khw¯arizm¯ı, Th¯abitibnQurra,OmarKhayyám .. Thursday,February . .. Tuesday,February. .. Thursday,February . .. Tuesday,March ............................. . Cardano .. Thursday,March ............................ .. Excursus.................................
    [Show full text]
  • Discrete Mathematics Homework 3
    Discrete Mathematics Homework 3 Ethan Bolker November 15, 2014 Due: ??? We're studying number theory (leading up to cryptography) for the next few weeks. You can read Unit NT in Bender and Williamson. This homework contains some programming exercises, some number theory computations and some proofs. The questions aren't arranged in any particular order. Don't just start at the beginning and do as many as you can { read them all and do the easy ones first. I may add to this homework from time to time. Exercises 1. Use the Euclidean algorithm to compute the greatest common divisor d of 59400 and 16200 and find integers x and y such that 59400x + 16200y = d I recommend that you do this by hand for the logical flow (a calculator is fine for the arith- metic) before writing the computer programs that follow. There are many websites that will do the computation for you, and even show you the steps. If you use one, tell me which one. We wish to find gcd(16200; 59400). Solution LATEX note. These are separate equations in the source file. They'd be better formatted in an align* environment. 59400 = 3(16200) + 10800 next find gcd(10800; 16200) 16200 = 1(10800) + 5400 next find gcd(5400; 10800) 10800 = 2(5400) + 0 gcd(16200; 59400) = 5400 59400x + 16200y = 5400 5400(11x + 3y) = 5400 11x + 3y = 1 By inspection, we can easily determine that (x; y) = (−1; 4) (among other solutions), but let's use the algorithm. 11 = 3 · 3 + 2 3 = 2 · 1 + 1 1 = 3 − (2) · 1 1 = 3 − (11 − 3 · 3) 1 = 11(−1) + 3(4) (x; y) = (−1; 4) 1 2.
    [Show full text]
  • Math 105 History of Mathematics First Test February 2015
    Math 105 History of Mathematics First Test February 2015 You may refer to one sheet of notes on this test. Points for each problem are in square brackets. You may do the problems in any order that you like, but please start your answers to each problem on a separate page of the bluebook. Please write or print clearly. Problem 1. Essay. [30] Select one of the three topics A, B, and C. Please think about these topics and make an outline before you begin writing. You will be graded on how well you present your ideas as well as your ideas themselves. Each essay should be relatively short|one to three written pages. There should be no fluff in your essays. Make your essays well-structured and your points as clearly as you can. Topic A. Explain the logical structure of the Elements (axioms, propositions, proofs). How does this differ from earlier mathematics of Egypt and Babylonia? How can such a logical structure affect the mathematical advances of a civilization? Topic B. Compare and contrast the arithmetic of the Babylonians with that of the Egyptians. Be sure to mention their numerals, algorithms for the arithmetic operations, and fractions. Illustrate with examples. Don't go into their algebra or geometry for this essay. Topic C. Aristotle presented four of Zeno's paradoxes: the Dichotomy, the Achilles, the Arrow, and the Stadium. Select one, but only one, of them and write about it. State the paradox as clearly and completely as you can. Explain why it was considered important. Refute the paradox, either as Aristotle did, or as you would from a modern point of view.
    [Show full text]
  • Ruler and Compass Constructions and Abstract Algebra
    Ruler and Compass Constructions and Abstract Algebra Introduction Around 300 BC, Euclid wrote a series of 13 books on geometry and number theory. These books are collectively called the Elements and are some of the most famous books ever written about any subject. In the Elements, Euclid described several “ruler and compass” constructions. By ruler, we mean a straightedge with no marks at all (so it does not look like the rulers with centimeters or inches that you get at the store). The ruler allows you to draw the (unique) line between two (distinct) given points. The compass allows you to draw a circle with a given point as its center and with radius equal to the distance between two given points. But there are three famous constructions that the Greeks could not perform using ruler and compass: • Doubling the cube: constructing a cube having twice the volume of a given cube. • Trisecting the angle: constructing an angle 1/3 the measure of a given angle. • Squaring the circle: constructing a square with area equal to that of a given circle. The Greeks were able to construct several regular polygons, but another famous problem was also beyond their reach: • Determine which regular polygons are constructible with ruler and compass. These famous problems were open (unsolved) for 2000 years! Thanks to the modern tools of abstract algebra, we now know the solutions: • It is impossible to double the cube, trisect the angle, or square the circle using only ruler (straightedge) and compass. • We also know precisely which regular polygons can be constructed and which ones cannot.
    [Show full text]
  • The Distance Geometry of Music
    The Distance Geometry of Music Erik D. Demaine∗ Francisco Gomez-Martin† Henk Meijer‡ David Rappaport§ Perouz Taslakian¶ Godfried T. Toussaint§k Terry Winograd∗∗ David R. Wood†† Abstract We demonstrate relationships between the classical Euclidean algorithm and many other fields of study, particularly in the context of music and distance geometry. Specifically, we show how the structure of the Euclidean algorithm defines a family of rhythms that encompass over forty timelines (ostinatos) from traditional world music. We prove that these Euclidean rhythms have the mathematical property that their onset patterns are distributed as evenly as possible: they maximize the sum of the Euclidean distances between all pairs of onsets, viewing onsets as points on a circle. Indeed, Euclidean rhythms are the unique rhythms that maximize this notion of evenness. We also show that essentially all Euclidean rhythms are deep: each distinct distance between onsets occurs with a unique multiplicity, and these multiplicities form an interval 1, 2, . , k − 1. Finally, we characterize all deep rhythms, showing that they form a subclass of generated rhythms, which in turn proves a useful property called shelling. All of our results for musical rhythms apply equally well to musical scales. In addition, many of the problems we explore are interesting in their own right as distance geometry problems on the circle; some of the same problems were explored by Erd˝osin the plane. ∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
    [Show full text]
  • Math 3110: Summary of Linear Diophantine Equations January 30, 2019
    Math 3110: Summary of Linear Diophantine Equations January 30, 2019 Goal: Given a; b; c 2 Z, to find all integer solutions (x; y) to ax + by = c. The Homogeneous Case The term homogeneous means the number after the = is zero. Theorem 1 (Homogeneous Case). Let a; b 2 Z. The set of integer solutions (x; y) to the equation ax + by = 0 is bk −ak ; : k 2 : gcd(a; b) gcd(a; b) Z Proof. See Course Notes of Mon, Jan 28 (used the gcd(a; b) · lcm(a; b) = ab theorem). The principle of adding solutions If (x; y) is a solution to ax + by = c, and (x0; y0) is a solution to ax + by = c0, then (x + x0; y + y0) is a solution to ax + by = c + c0. 1 Extended GCD Replacement Theorem 2 (Extended GCD Replacement). Let A; B 2 Z. Let k 2 Z, and write C = A + kB. Then 1. gcd(A; B) = gcd(B; C) 2 2. Let a; b 2 Z. Suppose gcd(a; b) = 1. Suppose that (xA; yA) 2 Z is a solution to ax + by = A and (xB; yB) is a solution to ax + by = B. Then (xA + kxB; yA + kyB) is a solution to ax + by = C. Proof. Item 1 is the GCD Replacement Theorem (proven in class) for A, B and C = A + kB. The additional statement, Item 2, is a consequence of the principle of adding solutions. Extended Euclidean Algorithm The regular Euclidean Algorithm is written in regular typeface (to match your course notes), and the Extended Euclidean Algorithm includes the extra italicized parts.
    [Show full text]
  • And the Golden Ratio
    Chapter 15 p Q( 5) and the golden ratio p 15.1 The field Q( 5 Recall that the quadratic field p p Q( 5) = fx + y 5 : x; y 2 Qg: Recall too that the conjugate and norm of p z = x + y 5 are p z¯ = x − y 5; N (z) = zz¯ = x2 − 5y2: We will be particularly interested in one element of this field. Definition 15.1. The golden ratio is the number p 1 + 5 φ = : 2 The Greek letter φ (phi) is used for this number after the ancient Greek sculptor Phidias, who is said to have used the ratio in his work. Leonardo da Vinci explicitly used φ in analysing the human figure. Evidently p Q( 5) = Q(φ); ie each element of the field can be written z = x + yφ (x; y 2 Q): The following results are immediate: 88 p ¯ 1− 5 Proposition 15.1. 1. φ = 2 ; 2. φ + φ¯ = 1; φφ¯ = −1; 3. N (x + yφ) = x2 + xy − y2; 4. φ, φ¯ are the roots of the equation x2 − x − 1 = 0: 15.2 The number ring Z[φ] As we saw in the last Chapter, since 5 ≡ 1 mod 4 the associated number ring p p Z(Q( 5)) = Q( 5) \ Z¯ consists of the numbers p m + n 5 ; 2 where m ≡ n mod 2, ie m; n are both even or both odd. And we saw that this is equivalent to p Proposition 15.2. The number ring associated to the quadratic field Q( 5) is Z[φ] = fm + nφ : m; n 2 Zg: 15.3 Unique Factorisation Theorem 15.1.
    [Show full text]
  • Euclid's Algorithm
    Euclid’s Algorithm Sudeshna Chakraborty, Mark Heller, Alex Phipps. Faculty Advisor: Dr. Ivan Soprunov, Department of Mathematics, Cleveland State University Introduction Proof continued Worst Case The Euclidean algorithm, also known as Euclid’s algorithm, is an Earlier we determined that the distance between the numbers algorithm for finding the greatest common divisor (GCD) between 1 GCD(a, b) b ≥ a > 0 was an important factor in determining the runtime, so this leads two numbers. The GCD is the largest number that divides two to the question what is the worst possible distance? Consecutive numbers without a remainder. The GCD of two numbers can be 2 b = q1 × a + r1 a > r1 ≥ 0 Fibonacci numbers give the worst possible run time. Fibonacci found by making a list of factors for the two numbers, and finding × numbers are recursive in nature adding the two previous the largest factor that is in both sets. This works well for small 3 a = q2 r1 + r2 r1 > r2 ≥ 0 numbers to get the next number. This leads to each q value (the numbers, but it can become quite tedious and time consuming 4 r = q × r + r r > r ≥ 0 same q value shown in figure 2) being 1 and the remainder when for larger numbers. To address this problem, Euclid’s algorithm 1 3 2 3 2 3 they are divided being the previous Fibonacci number. The can be used, which allows for the GCD of large numbers to be … example below demonstrates this on two small Fibonacci found much faster. Euclid’s algorithm uses the principle that the numbers 8 and 5: GCD of a set of two numbers does not change if you replace the 1: 8 = 1 × 5 + 3; n rn - 1 = qn + 1 × rn + 0 larger of the two with the remainder when you divide the larger of 2: 5 = 1 × 3 + 2; the two by the smaller.
    [Show full text]
  • Square Roots of Matrices J.B
    Volume 16 Part 1 February 1992 A SCHOOL MATHEMATICS MAGAZINE FUNCTION is a mathematics magazine addressed principallyto~~d~ntsmthe:upper forms of.secondary schools. .. ...... It is a's.peci~l interest' j()umal for those who are .inter.es.t~inth~th:~m~tics. Windsurfers, chess-players and gardeners all have magazines that cater to theiikter~sts. FUNCfION is a counterpart of these. Coverage is wide - pure mathematics, statIstiCS, computer science and applications of mathematics are all included. Recent issues have carried articles on advances in mathematics,- news items on mathematics and its ~pplications, special interest matters, such as computer chess, problems and solutions, discussions, cover diagrams, even cartoons. * **** Articles, correspondence, .problems {with or without solutions) 'and other material for publication are invited. Addressthetn to: 1'beJ3dit()fS; ~SFI<?N, .... ' D~p,8ft:JA~P:f'of .. ¥athematics, M911~$h.···yniyersity, Gl~yton; 'V'ietona, 3168. Alternatively·corresPondence'·Jllay.be-:acidressednindividually to any of the editors at the mathematics departments of the institution's listed on the· inside back cover. FUNCfION is pUbli~hed five times~y~~,app~aripg in 'Fe~ruary, April, June, August, October. Price for five. issues .(:i.n.cl\l,c!!n~ .. pQ~ta.ge): $17.00*; .si:n.g1e issues ·$4.00. Payments should be .. sent to theBusiness':1\I1aJl~gerat the above .address: .cheques and money orders should be made payable to Monash::Wnjversity. Enquiries about advertising should be directed to the business· manager. *$8.00 for bona fide secondary or tertiary students. ** * ** .FUNCTION Volume 16 Part 1 (Founder editor: G.B_. Preston) CONTENTS About Function 2 The Front Cover Michael A.B.
    [Show full text]