Numerische Mathematik Numerische Mathematik

Total Page:16

File Type:pdf, Size:1020Kb

Numerische Mathematik Numerische Mathematik Numerische Mathematik Numerische https://doi.org/10.1007/s00211-021-01215-6 Mathematik Fiber product homotopy method for multiparameter eigenvalue problems Jose Israel Rodriguez1 · Jin-Hong Du2 · Yiling You3 · Lek-Heng Lim4 Author Proof Received: 30 June 2018 / Revised: 14 May 2021 / Accepted: 24 May 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 1 Abstract 2 We develop a new homotopy method for solving multiparameter eigenvalue problems 3 (MEPs) called the fiber product homotopy method. For a k-parameter eigenvalue 4 problem with matrices of sizes n1,...,nk O(n), fiber product homotopy method = 5 requires deformation of O(1) linear equations, while existing homotopy methods for 6 MEPs require O(n) nonlinear equations. We show that the fiber product homotopy 7 method theoretically finds all eigenpairs of an MEP with probability one. It is especially 8 well-suited for a class of problems we call dimension-deficient singular problems that 9 are generic with respect to intrinsic dimension, as the fiber product homotopy method 10 is provably convergent with probability one for such problems as well, a fact borne 11 out by numerical experiments. More generally, our numerical experiments indicate 12 that the fiber product homotopy method significantly outperforms the standard Delta 16 13 method in terms of accuracy, with consistent backward errors on the order of 10− 14 without any use of extended precision. In terms of speed, it significantly outperforms 15 previous homotopy-based methods on all problems and outperforms the Delta method The work in this article is generously supported by DARPA D15AP00109, HR00112190040, and NSF IIS 1546413, DMS 1854831. LHL has also received support from the Eckhardt Faculty Fund. B Jose Israel Rodriguez [email protected] Jin-Hong Du [email protected] Yiling You [email protected] Lek-Heng Lim [email protected] 1 Department of Mathematics, University of Wisconsin, Madison, WI, USA 2 Department of Statistics, University of Chicago, Chicago, IL, USA 3 Department of Mathematics,uncorrected University of California, Berkeley, CA, USA proof 4 Computational and Applied Mathematics Initiative, University of Chicago, Chicago, IL, USA 123 SPI Journal: 211 Article No.: 1215 TYPESET DISK LE CP Disp.:2021/7/29 Pages: 36 Layout: Small-Ex J. I. Rodriguez et al. 1 16 on larger problems, and is also highly parallelizable. We show that the fiber product 17 MEP that we solve in the fiber product homotopy method, although mathematically 2 18 equivalent to a standard MEP, is typically a much better conditioned problem. 19 Mathematics Subject Classification 65H20 65H17 65H10 35P30 · · · 20 1 Introduction Author Proof 21 A multiparameter eigenvalue problem (MEP) is, in an appropriate sense, a system of 22 linear equations 23 a11x1 a12x2 a1k xk b1, + +···+ = 24 a21x1 a22x2 a2k xk b2, + +···+ = . 25 . 26 ak1x1 ak2x2 akkxk bk, (1) + +···+ = 27 where the coefficients aij’s and bi ’s are matrices, and where equality is interpreted 28 to mean on a point in a product of projective spaces (this will be made precise later). 29 These coefficients are square matrices but are of different dimensions in general, so 30 one may not usually regard (1) as a linear system over a matrix ring. There is a rich 31 mathematical theory behind MEP [2,3] that places it at the crossroad of linear and 32 multilinear algebra, ordinary and partial differential equations, spectral theory and 33 Sturm–Liouville theory, among other areas. The problem appeared as early as 1836 in 34 the works of Sturm and Liouville on periodic heat flow in a bar, and was studied over 35 the years by many: Klein, Lamé, Heine, Stieltjes, Pell, Carmichael, Bocher, Hilbert 36 among them (see [2, Preface] and [3, Chapter 1]). 37 An MEP encompasses many known types of eigenvalue problems: Standard eigen- 38 value problems Ax λx; generalized eigenvalue problems Ax λBx; quadratic = 2 = 39 eigenvalue problems (λ A λB C)x 0; polynomial eigenvalue problems m m 1 + + = 40 (λ Am λ − Am 1 A0)x 0; quadratic two-parameter eigenvalue problems + − +···+ = 2 2 41 (A00 λA10 µA01 λ A20 λµA11 µ A02)x1 0, + + + + + = 2 2 42 (B00 λB10 µB01 λ B20 λµB11 µ B02)x2 0 + + + + + = ; 43 may all be reduced to mathematically equivalent MEPs. 44 Nevertheless MEP remains in the blind spot of most modern mathematicians, 45 whether pure or applied. This is not for its lack of applications; as we pointed out, 46 the problem in fact originated from a study of heat flow, and we will see yet other 47 applications of MEP in Sect. 7 and that it contains eigenvalue problem and linear 48 system, both ubiquitous in science and engineering, as special cases. We think that a 49 main reason for the obscurityuncorrected of MEPs is that there are not many effective proof methods 50 for its computation and there is thus little to be gained from formulating a problem 123 SPI Journal: 211 Article No.: 1215 TYPESET DISK LE CP Disp.:2021/7/29 Pages: 36 Layout: Small-Ex Fiber product homotopy method... 51 as an MEP. It is with this in mind that we propose a new homotopy method based on 52 what we call fiber product homotopy for computing MEP solutions. 53 We will now formally define an MEP in more conventional notations. Instead of 54 having a single eigenvalue parameter λ, an MEP has multiple eigenvalue parameters 55 λ (λ1,...,λk). We will call = 56 H(λ) A0 λ1 A1 λk Ak, := − −···− 57 a linear polynomial matrix in k parameters λ1,...,λk with matrix coefficients Author Proof n n n 58 A0,...,Ak C . We will write P for the complex projective n-space. ∈ × n n 59 Definition 1 For a fixed k 2 and given matrices Aij C i i with j 0, 1,...,k, ≥ ∈ × = 60 i 1,...,k, consider the linear polynomial matrices = 61 Hi (λ) Ai0 λ1 Ai1 λ2 Ai2 λk Aik. := − − −···− 62 The multiparameter eigenvalue problem (MEP), or, more precisely, a k-parameter 63 eigenvalue problem, is to find λ1,...,λk C and corresponding (x1,...,xk) n 1 n 1 ∈ ∈ 64 P 1 P k such that − ×···× − 65 Hi (λ)xi 0, i 1,...,k. (2) = = k n1 1 nk 1 66 A solution (λ1,...,λk, x1,...,xk) C P − P − to the MEP is called ∈ ×n1 1 ×···×nk 1 67 an eigenpair,thek-tuple (x1,...,xk) P − P − an eigenvector, and the k ∈ ×···× 68 k-tuple λ (λ1,...,λk) C an eigenvalue. = ∈ 69 Written out in full, (2) takes the form 70 (λ1 A11 λ2 A12 λk A1k)x1 A10 x1, + +···+ = 71 (λ1 A21 λ2 A22 λk A2k)x2 A20 x2, + +···+ = . 72 . 73 (λ1 Ak1 λ2 Ak2 λk Akk)xk Ak0 xk. (3) + +···+ = 74 With λi ’s playing the role of xi ’s, Aij’s and Ai0’s playing the roles of aij’s and bi ’s 75 respectively in (1), and interpreting equality of the ith equation in (1) to mean equality n 1 76 on some xi P i , we may view (3) as an analogue of a linear system that we ∈ − 77 referred to at the beginning. The analogy is precise when n1 nk 1—(3)is =···= = 78 a linear system in the usual sense. 79 When k 1, (3) is a generalized eigenvalue problem. More generally, if Aij 0 = = 80 for all i j and j 0, then (3) is decoupled into k generalized eigenvalue problems. = = 81 Hence (3) contains both eigenvalue problems and linear systems as special cases. The 82 multiparameter eigenvalue problem is well studied and readers may refer to the books 83 [2,3,23] for a comprehensive treatment. 84 Since any scalar multiple of xi is also an eigenvector it is fitting to consider xi as an 85 Pni 1 element of the projective spaceuncorrected− although for practical reason oneproof might prefer 86 to simply normalize xi to have unit norm. 123 SPI Journal: 211 Article No.: 1215 TYPESET DISK LE CP Disp.:2021/7/29 Pages: 36 Layout: Small-Ex J. I. Rodriguez et al. 87 We develop a new homotopy method to solve a multiparameter eigenvalue problem 88 effectively, where effectiveness is measured by the following factors: 89 – Speed as measured by wall time. We record time per path, maximum time over 90 all paths, and total track time of all paths. Our algorithm is highly parallelizable 91 and the per-path times give good speed estimates when there are enough cores to 92 track all paths in parallel. 93 – Accuracy as measured by the backward error. We use the normwise backward error 94 in [14, Theorem 2] for an approximate eigenpair. Our homotopy method tracks Author Proof 95 several copies of the eigenvalue λ; they should all converge to the same value if 96 our method performs correctly and we include the difference between copies of 97 λ’s as another measure of accuracy. 98 – Certificates of quadratic convergence in terms of Shub–Smale α-theory. 99 – Number of divergent paths that fail to converge to the solutions. 100 The last two measures only apply to methods based on homotopy continuation. We 101 will compare our method to two existing methods: 102 (i) The Delta method [2], which is the de facto standard method for solving MEPs 103 by transforming them into a coupled system of generalized eigenvalue problems; 104 we use the MultiParEig package [17] in our experiments with this method. For 105 singular MEPs, we perform Delta method after extracting the common regular 106 parts of the Delta matrices with a staircase algorithm [17]. 107 (ii) The diagonal coefficient homotopy method recently proposed in [8] for solving 108 MEPs, where the start system is a random choice of diagonal matrices and the 109 homotopy is a straight-line homotopy that deforms n1 nk of n1 nk k +···+ +···+ + 110 equations.
Recommended publications
  • Using Macaulay2 Effectively in Practice
    Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay.
    [Show full text]
  • Research in Algebraic Geometry with Macaulay2
    Research in Algebraic Geometry with Macaulay2 1 Macaulay2 a software system for research in algebraic geometry resultants the community, packages, the journal, and workshops 2 Tutorial the ideal of a monomial curve elimination: projecting the twisted cubic quotients and saturation 3 the package PHCpack.m2 solving polynomial systems numerically MCS 507 Lecture 39 Mathematical, Statistical and Scientific Software Jan Verschelde, 25 November 2019 Scientific Software (MCS 507) Macaulay2 L-39 25November2019 1/32 Research in Algebraic Geometry with Macaulay2 1 Macaulay2 a software system for research in algebraic geometry resultants the community, packages, the journal, and workshops 2 Tutorial the ideal of a monomial curve elimination: projecting the twisted cubic quotients and saturation 3 the package PHCpack.m2 solving polynomial systems numerically Scientific Software (MCS 507) Macaulay2 L-39 25November2019 2/32 Macaulay2 D. R. Grayson and M. E. Stillman: Macaulay2, a software system for research in algebraic geometry, available at https://faculty.math.illinois.edu/Macaulay2. Funded by the National Science Foundation since 1992. Its source is at https://github.com/Macaulay2/M2; licence: GNU GPL version 2 or 3; try it online at http://habanero.math.cornell.edu:3690. Several workshops are held each year. Packages extend the functionality. The Journal of Software for Algebra and Geometry (at https://msp.org/jsag) started its first volume in 2009. The SageMath interface to Macaulay2 requires its binary M2 to be installed on your computer. Scientific
    [Show full text]
  • An Alternative Algorithm for Computing the Betti Table of a Monomial Ideal 3
    AN ALTERNATIVE ALGORITHM FOR COMPUTING THE BETTI TABLE OF A MONOMIAL IDEAL MARIA-LAURA TORRENTE AND MATTEO VARBARO Abstract. In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of describing the method, we also prove new constraints on the shape of the possible Betti tables of a monomial ideal. 1. Introduction Since many years syzygies, and more generally free resolutions, are central in purely theo- retical aspects of algebraic geometry; more recently, after the connection between algebra and statistics have been initiated by Diaconis and Sturmfels in [DS98], free resolutions have also become an important tool in statistics (for instance, see [D11, SW09]). As a consequence, it is fundamental to have efficient algorithms to compute them. The usual approach uses Gr¨obner bases and exploits a result of Schreyer (for more details see [Sc80, Sc91] or [Ei95, Chapter 15, Section 5]). The packages for free resolutions of the most used computer algebra systems, like [Macaulay2, Singular, CoCoA], are based on these techniques. In this paper, we introduce a new algorithmic method to compute the minimal graded free resolution of any finitely generated graded module over a polynomial ring such that some (possibly non- minimal) graded free resolution is known a priori. We describe this method and we present the resulting algorithm in the case of monomial ideals in a polynomial ring, in which situ- ation we always have a starting nonminimal graded free resolution.
    [Show full text]
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • What Can Computer Algebraic Geometry Do Today?
    What can computer Algebraic Geometry do today? Gregory G. Smith Wolfram Decker Mike Stillman 14 July 2015 Essential Questions ̭ What can be computed? ̭ What software is currently available? ̭ What would you like to compute? ̭ How should software advance your research? Basic Mathematical Types ̭ Polynomial Rings, Ideals, Modules, ̭ Varieties (affine, projective, toric, abstract), ̭ Sheaves, Divisors, Intersection Rings, ̭ Maps, Chain Complexes, Homology, ̭ Polyhedra, Graphs, Matroids, ̯ Established Geometric Tools ̭ Elimination, Blowups, Normalization, ̭ Rational maps, Working with divisors, ̭ Components, Parametrizing curves, ̭ Sheaf Cohomology, ঠ-modules, ̯ Emerging Geometric Tools ̭ Classification of singularities, ̭ Numerical algebraic geometry, ̭ ैक़௴Ь, Derived equivalences, ̭ Deformation theory,Positivity, ̯ Some Geometric Successes ̭ GEOGRAPHY OF SURFACES: exhibiting surfaces with given invariants ̭ BOIJ-SÖDERBERG: examples lead to new conjectures and theorems ̭ MODULI SPACES: computer aided proofs of unirationality Some Existing Software ̭ GAP,Macaulay2, SINGULAR, ̭ CoCoA, Magma, Sage, PARI, RISA/ASIR, ̭ Gfan, Polymake, Normaliz, 4ti2, ̭ Bertini, PHCpack, Schubert, Bergman, an idiosyncratic and incomplete list Effective Software ̭ USEABLE: documented examples ̭ MAINTAINABLE: includes tests, part of a larger distribution ̭ PUBLISHABLE: Journal of Software for Algebra and Geometry; www.j-sag.org ̭ CITATIONS: reference software Recent Developments in Singular Wolfram Decker Janko B¨ohm, Hans Sch¨onemann, Mathias Schulze Mohamed Barakat TU Kaiserslautern July 14, 2015 Wolfram Decker (TU-KL) Recent Developments in Singular July 14, 2015 1 / 24 commutative and non-commutative algebra, singularity theory, and with packages for convex and tropical geometry. It is free and open-source under the GNU General Public Licence.
    [Show full text]
  • GNU Texmacs User Manual Joris Van Der Hoeven
    GNU TeXmacs User Manual Joris van der Hoeven To cite this version: Joris van der Hoeven. GNU TeXmacs User Manual. 2013. hal-00785535 HAL Id: hal-00785535 https://hal.archives-ouvertes.fr/hal-00785535 Preprint submitted on 6 Feb 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GNU TEXMACS user manual Joris van der Hoeven & others Table of contents 1. Getting started ...................................... 11 1.1. Conventionsforthismanual . .......... 11 Menuentries ..................................... 11 Keyboardmodifiers ................................. 11 Keyboardshortcuts ................................ 11 Specialkeys ..................................... 11 1.2. Configuring TEXMACS ..................................... 12 1.3. Creating, saving and loading documents . ............ 12 1.4. Printingdocuments .............................. ........ 13 2. Writing simple documents ............................. 15 2.1. Generalities for typing text . ........... 15 2.2. Typingstructuredtext ........................... ......... 15 2.3. Content-basedtags
    [Show full text]
  • The Reesalgebra Package in Macaulay2
    Journal of Software for Algebra and Geometry The ReesAlgebra package in Macaulay2 DAVID EISENBUD vol 8 2018 JSAG 8 (2018), 49–60 The Journal of Software for dx.doi.org/10.2140/jsag.2018.8.49 Algebra and Geometry The ReesAlgebra package in Macaulay2 DAVID EISENBUD ABSTRACT: This note introduces Rees algebras and some of their uses, with illustrations from version 2.2 of the Macaulay2 package ReesAlgebra.m2. INTRODUCTION. A central construction in modern commutative algebra starts from an ideal I in a commutative ring R, and produces the Rees algebra R.I / VD R ⊕ I ⊕ I 2 ⊕ I 3 ⊕ · · · D∼ RTI tU ⊂ RTtU; where RTtU denotes the polynomial algebra in one variable t over R. For basics on Rees algebras, see[Vasconcelos 1994] and[Swanson and Huneke 2006], and for some other research, see[Eisenbud and Ulrich 2018; Kustin and Ulrich 1992; Ulrich 1994], and[Valabrega and Valla 1978]. From the point of view of algebraic geometry, the Rees algebra R.I / is a homo- geneous coordinate ring for the graph of a rational map whose total space is the blowup of Spec R along the scheme defined by I. (In fact, the “Rees algebra” is sometimes called the “blowup algebra”.) Rees algebras were first studied in the algebraic context by David Rees, in the now-famous paper[Rees 1958]. Actually, Rees mainly studied the ring RTI t; t−1U, now also called the extended Rees algebra of I. Mike Stillman and I wrote a Rees algebra script for Macaulay classic. It was aug- mented, and made into the[Macaulay2] package ReesAlgebra.m2 around 2002, to study a generalization of Rees algebras to modules described in[Eisenbud et al.
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • Numerical Algebraic Geometry
    JSAG 3 (2011), 5 – 10 The Journal of Software for Algebra and Geometry Numerical Algebraic Geometry ANTON LEYKIN ABSTRACT. Numerical algebraic geometry uses numerical data to describe algebraic varieties. It is based on numerical polynomial homotopy continuation, which is an alternative to the classical symbolic approaches of computational algebraic geometry. We present a package, whose primary purpose is to interlink the existing symbolic methods of Macaulay2 and the powerful engine of numerical approximate computations. The core procedures of the package exhibit performance competitive with the other homotopy continuation software. INTRODUCTION. Numerical algebraic geometry [SVW,SW] is a relatively young subarea of compu- tational algebraic geometry that originated as a blend of the well-understood apparatus of classical algebraic geometry over the field of complex numbers and numerical polynomial homotopy continua- tion methods. Recently steps have been made to extend the reach of numerical algorithms making it possible not only for complex algebraic varieties, but also for schemes, to be represented numerically. What we present here is a description of “stage one” of a comprehensive project that will make the machinery of numerical algebraic geometry available to the wide community of users of Macaulay2 [M2], a dominantly symbolic computer algebra system. Our open-source package [L1, M2] was first released in Macaulay2 distribution version 1.3.1. Stage one has been limited to implementation of algorithms that solve the most basic problem: Given polynomials f1;:::; fn 2 C[x1;:::;xn] that generate a 0-dimensional ideal I = ( f1;:::; fn), find numerical approximations of all points of the underlying n variety V(I) = fx 2 C j f(x) = 0g.
    [Show full text]
  • Arxiv:2010.08903V1 [Math.AC]
    STANDARD PAIRS OF MONOMIAL IDEALS OVER NON-NORMAL AFFINE SEMIGROUPS IN SageMath BYEONGSU YU ABSTRACT. We present stdPairs.spyx,a SageMath library to compute standard pairs of a monomial ideal over a pointed (non-normal) affine semigroup ring. Moreover, stdPairs.spyx provides the associated prime ideals, the correspondingmultiplicities, and an irredundant irreducible primary decomposition of a monomial ideal. The library expands on the standardPairs func- tion on Macaulay2 over polynomial rings, and is based on algorithms from [6]. We also provide methods that allow the outputs from this library to be compatible with the Normaliz package of Macaulay2 and SageMath. 1. INTRODUCTION Affine semigroup rings are objects of many studies in combinatorial commutative algebra. The goal of this article is to present the SageMath library stdPairs.spyx, which systematizes computations for monomial ideals in affine semigroup rings. The algorithms implemented here are based on the notion of standard pairs, introduced for monomial ideals in polynomial rings by [8], and generalized to the semigroup ring case in [6]. Standard pairs are a combinatorial structure that contains information on primary and irreducible decompositions of monomial ideals, as well as multiplicities. One of the main contributions of [6] is that standard pairs and the associated algebraic concepts can be effectively computed over affine semigroup rings. The SageMath library stdPairs.spyx implements the algorithms of [6] to calculate standard pairs for monomial ideals in any pointed (non-normal) affine semigroup ring. This library can be regarded as a generalization of standardPairs function in Macaulay2 implemented by [4]. This library can be obtained via https://github.com/byeongsuyu/StdPairs.
    [Show full text]
  • Modeling and Analysis of Hybrid Systems
    Building Bridges between Symbolic Computation and Satisfiability Checking Erika Abrah´ am´ RWTH Aachen University, Germany in cooperation with Florian Corzilius, Gereon Kremer, Stefan Schupp and others ISSAC’15, 7 July 2015 Photo: Prior Park, Bath / flickr Liam Gladdy What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially on similarities and differences in symbolic computation and SAT and SMT solving. Erika Abrah´ am´ - SMT solving and Symbolic Computation 2 / 39 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SMT solving and Symbolic Computation 3 / 39 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62]
    [Show full text]
  • Arxiv:2010.15331V2 [Math.AC] 19 Nov 2020 Rlqeto Nivratter.Ti Ril Ecie Significant a Describes R Article Action This Group Theory
    THE INVARIANTRING PACKAGE FOR MACAULAY2 LUIGI FERRARO, FEDERICO GALETTO, FRANCESCA GANDINI, HANG HUANG, MATTHEW MASTROENI, AND XIANGLONG NI Abstract. We describe a significant update to the existing InvariantRing package for Macaulay2. In addition to expanding and improving the methods of the existing package for actions of finite groups, the updated package adds func- tionality for computing invariants of diagonal actions of tori and finite abelian groups as well as invariants of arbitrary linearly reductive group actions. The implementation of the package has been completely overhauled with the aim of serving as a unified resource for invariant theory computations in Macaulay2. 1. Introduction Let G be a group acting linearly on an n-dimensional vector space V over a field K via v 7→ g · v for g ∈ G and v ∈ V . The action of G on V induces an action −1 of G on the polynomial ring K[V ]= K[x1,...,xn] by (g · f)(x)= f(g · x). By a classical result of Hilbert (see [DK15, 2.2.10]), the subring of invariant polynomials K[V ]G = {f ∈ K[V ] | g · f = f, ∀g ∈ G} is always a finitely generated K-algebra provided that G is linearly reductive and V is a rational representation of G.1 A linearly reductive group is a group that can be identified with a Zariski-closed subgroup of some general linear group GLn = GLn(K) and has good representation-theoretic properties while still being general enough to encompass all finite groups, all tori (K×)r, and all semisimple Lie groups (at least if char(K) = 0).
    [Show full text]