Effects of Temperature, Photoperiod, and Myxobolus Cerebralis On

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Temperature, Photoperiod, and Myxobolus Cerebralis On Journal of Aquatic Animal Health 17:338±344, 2005 q Copyright by the American Fisheries Society 2005 [Article] DOI: 10.1577/H04-061.1 Effects of Temperature, Photoperiod, and Myxobolus cerebralis Infection on Growth, Reproduction, and Survival of Tubifex tubifex Lineages ROBERT DUBEY* Department of Fishery and Wildlife Sciences, New Mexico State University, Box 30003, MSC 4901, Las Cruces, New Mexico 88003, USA COLLEEN CALDWELL U.S. Geological Survey, New Mexico Cooperative Fish and Wildlife Research Unit, New Mexico State University, Box 30003, MSC 4901, Las Cruces, New Mexico 88003, USA WILLIAM R. GOULD University Statistics Center, New Mexico State University, MSC 3QC, Las Cruces, New Mexico 88003, USA Abstract.ÐTubifex tubifex is the de®nitive host for Myxobolus cerebralis, the causative agent of whirling disease in salmonid ®sh. Several mitochondrial lineages of T. tubifex exhibit resistance to M. cerebralis infection. Release of the triactinomyxon form of the parasite from T. tubifex varies with water temperature; however, little is known about the interactive effects of temperature and photoperiod on the susceptibility of T. tubifex lineages to M. cerebralis infection. In addition, the environmental effects on the growth, reproduction, and survival of T. tubifex lineages are unknown. Monocultures of lineages III and VI were subjected to infection (0 and 500 myxospores per worm), a range of temperatures (5, 17, and 278C), and various diurnal photoperiods (12:12, 14:10, and 16:8 dark : light) over a 70-d period by using a split±split plot experimental design. Lineage VI resisted infection by M. cerebralis at all temperatures, whereas lineage III exhibited infection levels of 4.3% at 58C, 3.3% at 178C, and 0% at 278C. Lineage VI exhibited signi®cantly higher adult survival, weighed more initially, gained more weight, and had higher natality (production of immature tubi®cids) than did lineage III regardless of temperature, photoperiod, or infection treat- ment. There was no detectable effect of lineage, infection, or photoperiod on cysting. Both lineages III and VI cysted at 58C but not at 178Cor278C. Competition between lineage VI and other lineages for resources may serve to decrease the overall infection levels among T. tubifex popu- lations, thereby reducing both triactinomyxon production and the occurrence of whirling disease among susceptible salmonids. Whirling disease is a parasitic infestation of car- de®nitive host for M. cerebralis (Wolf and Markiw tilage in salmonids by the myxosporean Myxobolus 1984; El-Matbouli and Hoffmann 1989). The myx- cerebralis. Evidence of recent introduction in osporean-type spores released by infected salmo- North America is supported by genetic sequence nids are ingested by T. tubifex and are transformed data from M. cerebralis isolates from Europe and into the actinosporean triactinomyxon (TAM) in the United States (Andree et al. 1999; Whipps et the gut epithelium of the oligochaete hosts (El- al. 2004). The devastating effects of whirling dis- Matbouli and Hoffmann 1989). Salmonids con- ease on wild salmonid populations were not fully tract whirling disease by brief contact with wa- realized until its discovery in the intermountain terborne TAMs (El-Matbouli et al. 1995). west in association with the rapid decline of sal- Tubifex tubifex is a cosmopolitan freshwater spe- monid populations in Montana (Vincent 1996) and cies with morphological characteristics exhibiting Colorado (Nehring and Walker 1996). phenotypic plasticity, such as pectinate chaetae, The aquatic oligochaete Tubifex tubifex is the that make it dif®cult to distinguish from closely related species (Chapman and Brinkhurst 1987; Kathman and Brinkhurst 1999). Crossbreeding * Corresponding author: [email protected] studies between sympatric morphological forms of Received December 3, 2004; accepted April 18, 2005 T. tubifex (tubifex and blanchardi) indicated that Published online November 3, 2005 they did not interbreed with suf®cient genetic dif- 338 RESISTANCE OF TUBIFEX TUBIFEX TO MYXOBOLUS CEREBRALIS 339 ferences to be considered distinct species (Paoletti Methods 1989). Using allozymes, Anlauf (1994, 1997) de- Tubifex tubifex are parthogenic (Poddubnaya scribed lineages of T. tubifex that differed between 1984). Thus, progeny from this form of reproduc- pond and lake habitats. Phylogenetic analysis of tion were used to establish laboratory monocul- mitochondrial 16S ribosomal DNA from geo- tures of lineages III and VI. Original stocks of T. graphically distinct populations of T. tubifex pro- tubifex lineages were obtained from the San Juan vided evidence that cryptic lineages within both River, New Mexico. The lineage of each mono- North American and European populations were culture was veri®ed by screening individuals with similar (Sturmbauer et al. 1999; Beauchamp et al. a polymerase chain reaction (PCR) ampli®cation 2001). Sturmbauer et al. (1999) described Euro- of 16S mRNA, developed by Beauchamp et al. pean lineages that exhibited differential tolerance (2002). The PCR methodology for lineage deter- to cadmium exposure. Beauchamp et al. (2002) mination used the DNA template from DNeasy reported four lineages of T. tubifex (I, III, V, and (Qiagen, Valencia, California) mouse-tail protocol VI) at two sites on the Colorado River, Colorado. extractions and three rounds of ampli®cation using Those authors also observed varied susceptibility primers. In this protocol, four North American lin- of the lineages to experimental infection of M. eages were distinguished by size-speci®c PCR cerebralis. Recently, three lineages (I, III, and VI) product. Of the two lineages tested the PCR prod- were identi®ed in sympatric populations from the uct is 147 base pairs (bp) for lineage III and 125 tailwater of the San Juan River, New Mexico bp for lineage VI. (DuBey and Caldwell 2004). No infection was de- Myxobolus cerebralis spores were isolated from tected in lineages I and VI, in contrast to lineage infected rainbow trout Oncorhynchus mykiss. The III. Furthermore, lineage III exhibited higher in- ®sh heads were de¯eshed by heating at 458C, and fection levels in pools (3.0%) than in rif¯e habitats ¯esh and noncartilaginous material were manually (0.5%), demonstrating varied infection responses removed. The cartilaginous material was pulver- presumably attributable to different environmental ized and centrifuged to concentrate spores into a conditions. pellet. The pellet was resuspended and spores were Anlauf (1994) observed differences in growth, quanti®ed by microscopic examination and count- reproduction, and survival among cultures of three ing within a known volume. T. tubifex lineages originating from different hab- Tubifex tubifex lineages III and VI were ran- itats at 5, 15, and 208C. A positive linear rela- domly assigned to each of 18 treatment combi- tionship between T. tubifex fecundity, temperature, nations within nine 38-L glass aquaria by using a split±split plot experimental design. Each aquari- and percentage of organic matter in sediments was um was divided in half with clear Plexiglas. Eight observed in Montana headwater streams (Kaster 350-mL plastic tubs were placed within each 1980). Myxobolus cerebralis development in in- aquarium half, four tubs containing lineage III and fected T. tubifex was also shown to be temperature- four tubs containing lineage VI. Before placement dependent, the spore loads being highest at 158C, within the aquaria, 25 immature tubi®cids were whereas nonviable degenerating M. cerebralis randomly assigned to each tub with a mixture of 8 spores were detected at 30 C (El-Matbouli et al. sterilized silt, sand, and water. Subsequently, T. 1999). Furthermore, allopatric geographic popu- tubifex in eight tubs were challenged individually lations of T. tubifex differed in biomass, repro- with an infection of 500 spores per worm, a rate duction, growth, and TAM production when sub- similar to Stevens et al. (2001) and Blazer et al. jected to controlled infection of M. cerebralis (Ste- (2003). Eight plastic tubs received no spores. The vens et al. 2001). However, little is known re- challenged T. tubifex tubs were then assigned to garding lineage-speci®c responses of M. cerebralis an aquarium half; the nonchallenged T. tubifex tubs infection to combinations of temperature and pho- were placed in the other half to ensure indepen- toperiod. Thus, the objective of our research was dence of the treatment and control groups. to characterize the responses of two lineages of T. A range of temperatures (5, 17, and 278C) were tubifex found in the San Juan River tailwater selected to represent the optimum temperature at (DuBey and Caldwell 2004) to a range of photo- which T. tubifex is commonly found. Each tem- period and thermal regimes and determine whether perature treatment was applied to three aquaria at infection by M. cerebralis would affect growth and three separate locations. Treatment at 5 6 18C was survival of lineages. conducted in a Living Stream (Frigid Units, To- 340 DUBEY ET AL. ledo, Ohio) in a laboratory with a temperature- cerebralis infection was determined for individual controlled refrigeration unit (model DI-500; worms in the infected treatment and for worms Aquarium Systems, Mentor, Ohio). Treatment at composited from noninfected treatments. The in- 17 6 18C was conducted within the same labo- fection level for each treatment combination was ratory on a bench top. Treatment at 27 6 18C was computed by dividing the total number of infected conducted in a walk-in Sheerer environmental worms by the total number of worms examined chamber having a UP 780 digital control system (lineage-speci®c) from each aquarium half. to maintain the desired temperature (Yokogama The presence or absence of M. cerebralis infec- Corporation of America, Newton, Georgia). tion was determined with a nested PCR ampli®- Chamber temperature was measured with a Na- cation of 18S rRNA. The PCR methodology for tional Institute of Standards and Testing±certi®ed M. cerebralis used DNA template from phenol ex- sensor (Model MRHT3±2±1-D; General Instru- tractions, two rounds of ampli®cation according to ments, Woburn, Massachusetts). protocol, and primers developed by Andree et al.
Recommended publications
  • Asian Journal of Medical and Biological Research Identification Of
    Asian J. Med. Biol. Res. 2016, 2 (1), 27-32; doi: 10.3329/ajmbr.v2i1.27565 Asian Journal of Medical and Biological Research ISSN 2411-4472 (Print) 2412-5571 (Online) www.ebupress.com/journal/ajmbr Article Identification of genera of tubificid worms in Bangladesh through morphological study Mariom*, Sharmin Nahar Liza and Md. Fazlul Awal Mollah Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh *Corresponding author: Mariom, Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. E-mail: [email protected] Received: 12 January 2016/Accepted: 17 January 2016/ Published: 31 March 2016 Abstract: Tubificids are aquatic oligochaete worms (F- Naididae, O- Haplotaxida, P- Annelida) distributed all over the world. The worms are very important as they are used as live food for fish and other aquatic invertebrates. A step was taken to identify the genera of tubicifid worms that exist in Mymensingh district, Bangladesh on the basis of some external features including the shape of their anterior (prostomium) and posterior end, number of body segment and arrangement of setae. The study result indicated the existence of three genera among the tubificid worms. These were Tubifex, Limnodrilus and Aulodrilus. All these three genera possessed a cylindrical body with a bilateral symmetry formed by a series of metameres. The number of body segments ranged from 34 to 120 in Tubifex, 50 to 87 in Limnodrilus, and 35 to 100 in Aulodrilus. In Tubifex, the first segment, with the prostomium, was round or triangular bearing appendages, whereas, in Limnodrilus and Aulodrilus, the prostomium without appendages was triangular and conical, respectively.
    [Show full text]
  • Coleoptera: Hydrophilidae) Are Specialist Predators of Snails
    Eur. J. Entomol. 112(1): 145–150, 2015 doi: 10.14411/eje.2015.016 ISSN 1210-5759 (print), 1802-8829 (online) Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails TOSHIO INODA1, YUTA INODA1 and JUNE KATHYLEEN RULLAN 2 1 Shibamata 5-17-10, Katsushika, Tokyo 125-0052, Japan; e-mail: [email protected] 2 University of the Philippines, Manila, Philippines; e-mail: [email protected] Key words. Coleoptera, Hydrophilidae, Hydrophilus acuminatus, feeding preferences, snail specialist Abstract. Hydrophilus acuminatus larvae are known to feed on aquatic prey. However, there is no quantitative study of their feeding habits. In order to determine the feeding preferences and essential prey of larvae of H. acuminatus, both field and laboratory experi- ments were carried out. Among the five potential species of prey,Austropeplea ollula (Mollusca: Lymnaeidae), Physa acuta (Mollusca: Physidae), Asellus hilgendorfi (Crustacea: Asellidae), Palaemon paucidens (Crustacea: Palaemonidae) and larvae of Propsilocerus akamusi (Insecta: Chironomidae), the first instar larvae of H. acuminatus strongly prefered the Austropeplea and Physa snails in both cafeteria and single-prey species experiments. Larvae that were provided with only snails also successfully developed into second instar larvae, while larvae fed Palaemon, Propsilocerus larvae or Asellus died during the first instar. In addition, the size of adult H. acuminatus reared from first-instar larvae and fed only snails during their entire development was not different from that of adult H. acuminatus collected in the field. This indicates that even though the larvae ofH. acuminatus can feed on several kinds of invertebrates, they strongly prefer snails and without them cannot complete their development.
    [Show full text]
  • Selection of Suitable Media and Intervals of Media Inoculation for Culturing Tubificid Worms
    J. Bangladesh Agril. Univ. 10(2): 325–330, 2012 ISSN 1810-3030 Selection of suitable media and intervals of media inoculation for culturing Tubificid worms M. F. A. Mollah, K. Mosharaf and Mariom Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh, E-mail:[email protected] Abstract Tubificid worms are aquatic invertebrates, belonging to the class Oligochaeta and family Tubificidae, used as an important live food for fishes. The study was conducted to culture Tubificid worms under running water in order to develop a suitable culture media and an optimum duration of media inoculation for culturing Tubificid worms. The worms were cultured under two experiments in cemented culvert system (160×25×10 cm3) for 90 days. In the first experiment the worms were cultured in three different media designated as treatment-I, treatment-II and treatment-III. The highest yield (503.39±22.98 mg cm-2) was found at 70th day of culture duration in the culture media containing a mixture of 35% mustard oil cake, 20% wheat bran, 25% cow-dung and 20% fine sand (treatment-III). Only 1.99 kg media ingredients valued BDT 29.85 were needed to yield 1 kg worms. In the second experiment, the worms were cultured at three different intervals of media inoculation i.e., 6, 10 and 15 days interval designated as treatment-I, treatment-II and treatment-III respectively using the media found best in the first experiment. Inoculation of media at 10 days interval showed significantly (P<0.01) higher production (488.94±5.60 mg cm-2).
    [Show full text]
  • Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2Nd Edition
    Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2nd Edition By Mark D. Munn, Robert J. Gilliom, Patrick W. Moran, and Lisa H. Nowell National Water-Quality Assessment Program Scientific Investigations Report 2006-5148 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 Revised and reprinted: 2006 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested reference: Munn, M.D., Gilliom, R.J., Moran, P.W., and Nowell, L.H., 2006, Pesticide toxicity index for freshwater aquatic organisms, 2nd Edition: U.S. Geological Survey Scientific Investigations Report 2006-5148, 81 p. iii FOREWORD The U.S. Geological Survey (USGS) is committed to providing the Nation with accurate and timely scien- tific information that helps enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the quality of the Nation’s water resources is critical to assuring the long-term availability of water that is safe for drinking and recreation and suitable for industry, irrigation, and habitat for fish and wildlife.
    [Show full text]
  • Oligochaete Sampling to Determine the Presence of Tubifex Tubifex in Four Study Lakes in Interior Alaska, 2007
    Fishery Data Series No. 10-25 Oligochaete Sampling to Determine the Presence of Tubifex tubifex in Four Study Lakes in Interior Alaska, 2007 by Kelly Mansfield and April Behr April 2010 Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries Symbols and Abbreviations The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions. Weights and measures (metric) General Measures (fisheries) centimeter cm Alaska Administrative fork length FL deciliter dL Code AAC mideye-to-fork MEF gram g all commonly accepted mideye-to-tail-fork METF hectare ha abbreviations e.g., Mr., Mrs., standard length SL kilogram kg AM, PM, etc. total length TL kilometer km all commonly accepted liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics meter m R.N., etc. all standard mathematical milliliter mL at @ signs, symbols and millimeter mm compass directions: abbreviations east E alternate hypothesis HA Weights and measures (English) north N base of natural logarithm e cubic feet per second ft3/s south S catch per unit effort CPUE foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t, χ2, etc.) inch in corporate suffixes: confidence interval CI mile mi Company Co.
    [Show full text]
  • The Influence of Beaver Dams on Animal Communities of Streams and Surrounding Riparian Zones Audrey Rowe University of Chicago A
    The influence of beaver dams on animal communities of streams and surrounding riparian zones Audrey Rowe University of Chicago Adviser: Linda Deegan Abstract Beaver dams tend to increase habitat heterogeneity by breaking up streams into lentic and lotic sections. I investigated the impact of beaver dams on macroinvertebrates in and near Cart Creek in Newbury, MA. I found that the high spatial density of dams on this small creek suppresses aquatic species diversity, but the ponds might be increasing the species diversity of terrestrial macroinvertebrates. I also found that significant trophic subsidies are present between aquatic and terrestrial organisms, with terrestrial predators feeding on aquatic animals and aquatic herbivores and detritivores feeding on leaf litter and other detritus fallen into the creek from the land. Key words: beavers, benthic macroinvertebrates, species richness, trophic subsidies Introduction Due to hunting and habitat loss, the North American beaver (Castor canadensis) was extirpated from much of New England in the late 18th century (Jackson and Decker). Beavers returned to Massachusetts in the early 20th century, and have once again become populous throughout much of the state. Their unique behavior as ecosystem engineers often makes them problematic in areas inhabited by people, as they are destructive to trees and can cause flooding of manmade structures. However, beavers may be important to maintaining healthy stream ecosystems. Beavers alter free flowing streams by constructing dams. A series of dams in a stream forms a system of impoundments of lentic water upstream of the dams connected by shallow, lotic streams downstream of the dams, increasing habitat heterogeneity. The differences in flow velocity directly affect the populations of stream invertebrates and fish that prefer particular velocities.
    [Show full text]
  • Tubificidae (Annelida: Oligochaeta) As an Indicator of Water Quality in An
    Tubificidae (Annelida: Oligochaeta) as an indicator of water quality in an urban stream in southeast Brazil Tubificidae (Annelida: Oligochaeta) como indicador da qualidade da água de um córrego urbano do sudeste Brasileiro Martins, RT., Stephan, NNC. and Alves, RG. Departamento de Zoologia, Laboratório de Invertebrados Bentônicos – LIB, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora – UFJF, Campos Universitário, s/n, Martelos, CEP 36036 900, Juiz de Fora, Minas Gerais, Brazil e-mail: [email protected], [email protected], [email protected] Abstract: The water quality of an urban stream in southeast Brazil was evaluated using species of Tubificidae (Annelida: Oligochaeta) as biological indicators. From May 2005 to April 2006, a total of 75,746 specimens were collected, from which six species (Aulodrilus limnobius, Bothrioneurum sp., B. vejdovskyanum, L. hoffmeisteri, L. udekemianus, Tubifex tubifex) were found. In the majority of the sampling sites, the Tubificidae species were found at high densities (>5,000 ind.m–2). Limnodrilus hoffmeisteri, which is widely used as an indicator of organic pollution, composed more than 75% of collected fauna. Using some biotic indices such as density of Tubificidae, percentage of L. hoffmneisteri and Modified Howmiller and Scott Environmental Index, it was possible to verify that São Pedro stream receives large amounts of organic pollutants. These findings confirm Tubificidae as an effective biological indicator of stream conditions. Keywords: Tubificidae, organic pollution, bioindicator, urban stream. Resumo : Utilizando espécies da família Tubificidae (Annelida:Oligochaeta) avaliou-se a qualidade da água de um córrego urbano, no sudeste do Brasil. De maio de 2005 a abril de 2006, foram coletadas seis espécies (Aulodrilus limnobius, Bothrioneurum sp., B.
    [Show full text]
  • Annelida: Clitellata) in Korea
    Anim. Syst. Evol. Divers. Vol. 30, No. 4: 240-247, October 2014 http://dx.doi.org/10.5635/ASED.2014.30.4.240 Short communication Four Unrecorded Species of Tubificid Oligochaetes (Annelida: Clitellata) in Korea Jeounghee Lee1, Jongwoo Jung1,2,* 1The Division of EcoCreative, Ewha Womans University, Seoul 120-750, Korea 2Department of Science Education, Ewha Womans University, Seoul 120-750, Korea ABSTRACT Tubificid oligochaetes are common and frequently dominant in freshwater benthic habitats. They are so tolerant to water pollution that they are often used as biological indicators. Faunistic studies of Korean freshwater oligochaetes have been actively conducted recently. The most well studied oligochaete family in Korea is the tubificids following the naidids. Nine species of tubificids have been reported so far. Nevertheless, many species of tubificids still remain to be discovered in Korea. In this study, we added four species of tubificid oligochaetes to the Korean fauna, including Linmodrilus profundicola (Verrill, 1871), Potamothrix heuscheri (Bretscher, 1900), Tubifex blanchardi Vejdovsk´y, 1891, and Ilyodrilus templetoni (Southern, 1909) based on specimens collected from three locations in Korea: Cheonan-si, Geoje-si, and Seocheon-gun. In particular, P. heuscheri was first reported in Asia. Keywords: tubificid, freshwater oligochaete, Korea, Linmodrilus profundicola, Potamothrix heuscheri, Tubifex blanchardi, Ilyodrilus templetoni INTRODUCTION aréde, 1862, Monopylephorus rubroniveus Levinsen, 1884, Bothrioneurum vejdoskyanum Stolc, 1888, Rhyacodrilus Many species of Oligochaeta occur in a variety of freshwater coccineus (Vejdovsky, 1875), Rhyacodrilus sulptensis Timm, environments such as puddles, rice paddies, reservoirs, brooks, 1990 and Tubifex tubifex (Müller, 1774). Of these, L. hoffm- rivers, and streams. About 1,700 species are known (Caramelo eisteri and T.
    [Show full text]
  • Is Composed of One, Huge Germ-Line Cyst That Is Enriched with Cytoskeletal Components
    Title: The ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is composed of one, huge germ-line cyst that is enriched with cytoskeletal components Author: Anna Z. Urbisz , Łukasz Chajec, Piotr Świątek Citation style: Urbisz Anna Z., Chajec Łukasz, Świątek Piotr. (2015). The ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is composed of one, huge germ-line cyst that is enriched with cytoskeletal components. “PLoS ONE” (no. 10(5) (2015), art. no. e0126173), doi 10.1371/journal.pone.0126173. RESEARCH ARTICLE The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components Anna Z. Urbisz*, Łukasz Chajec, Piotr Świątek Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40–007 Katowice, Poland * [email protected] Abstract Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the com- OPEN ACCESS position of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging tech- Citation: Urbisz AZ, Chajec Ł, Świątek P (2015) The Ovary of Tubifex tubifex (Clitellata, Naididae, niques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellu- Tubificinae) Is Composed of One, Huge Germ-Line lar germ-line cyst, which may contain up to 2,600 cells.
    [Show full text]
  • Accelerated Deactivation of Myxobolus Cerebralis Myxospores by Susceptible and Non-Susceptible Tubifex Tubifex
    Vol. 121: 37–47, 2016 DISEASES OF AQUATIC ORGANISMS Published August 31 doi: 10.3354/dao03025 Dis Aquat Org OPENPEN ACCESSCCESS Accelerated deactivation of Myxobolus cerebralis myxospores by susceptible and non-susceptible Tubifex tubifex R. Barry Nehring1,*, George J. Schisler2, Luciano Chiaramonte3, Annie Horton1, Barbara Poole1 1Colorado Division of Parks and Wildlife, 2300 South Townsend Avenue, Montrose, Colorado 81401, USA 2Colorado Division of Parks and Wildlife, 317 West Prospect Street, Fort Collins, Colorado 80526, USA 3Idaho Department of Fish and Game, 1800 Trout Road, Eagle, Idaho 83616, USA ABSTRACT: In the 1990s, the Tubifex tubifex aquatic oligochaete species complex was parsed into 6 separate lineages differing in susceptibility to Myxobolus cerebralis, the myxozoan parasite that can cause whirling disease (WD). Lineage III T. tubifex oligochaetes are highly susceptible to M. cerebralis infection. Lineage I, IV, V and VI oligochaetes are highly resistant or refractory to infection and may function as biological filters by deactivating M. cerebralis myxospores. We designed a 2-phased laboratory experiment using triactinomyxon (TAM) production as the response variable to test that hypothesis. A separate study conducted concurrently demonstrated that M. cerebralis myxospores held in sand and water at temperatures ≤15°C degrade rapidly, becoming almost completely non-viable after 180 d. Those results provided the baseline to assess deactivation of M. cerebralis myxospores by replicates of mixed lineage (I, III, V and VI) and refractory lineage (V and VI) oligochaetes. TAM production was zero among 7 of 8 Lineage V and Lineage VI T. tubifex oligochaete groups exposed to 12 500 M. cerebralis myxospores for 15, 45, 90 and 135 d.
    [Show full text]
  • Fish Passesses Pa
    FISH PASSESPPAASSSSES DESIGN, DIMENSIONSNS ANDANNDD MONITORINGMMOMONON NG Fish passes – Design, dimensions and monitoring Published by the Food and Agriculture Organization of the United Nations in arrangement with Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (DVWK) Rome, 2002 This book was originally published by Deutscher Verband für Wasserwirtschaft und Kulturbau e.V., DVWK (German Association for Water Resources and Land Improvement) as DVWK-Merkblatt 232/1996: Fischaufstiegsanlagen – Bemessung, Gestaltung, Funktionskontrolle. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations ‘developed’ and ‘developing’ economies are intended for statistical convenience and do not necessarily express a judgement about the stage reached by a particular country, territory or area in the development process. The views expressed herein are those of the authors and do not necessarily represent those of the Food and Agriculture Organization of the United Nations. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged.
    [Show full text]
  • Orange-Lined Triggerfish Balistapus Undulatus 1 104 Y EARS of E DUCATING a QUARISTS AQUATICA VOL
    QUATICAQU AT H E O N - L I N E J O U R N A L O F T H E B R O O K L Y N A Q U A R I U M S O C I E T Y VOL. 29 SEPTEMBER - OCTOBER 2015 N o. 1 Orange-lined Triggerfish Balistapus undulatus 1 104 Y EARS OF E DUCATING A QUARISTS AQUATICA VOL. 29 SEPTEMBER - OCTOBER 2015 NO. 1 C ONTENT S PAGE 2 THE AQUATICA STAFF PAGE 22 GETTING THE LEAD OUT OF YOUR PENCILS. A report Nannostomus PAGE 3 CALENDAR OF EVENTS on the breeding of beckfordi - BAS Events for the years 2015 - 2016 The Pencil fish. TOM WOJTECH - MAS PAGE 4 THE OTHER CATFISH. An interesting description of 4 other glass PAGE 25 SPECIES PROFILE. The Nannostomus catfish in the hobby. Beckford’s Pencilfish, beckfordi. ANTHONY P. KROGGER - BAS JOHN TODARO - BAS PAGE 7 FISH FOOD, FOR DUMMIES . PAGE 26 CATFISH CONNECTIONS. An in depth survey of dry fish food. recipes and live foods for feeding fish. Another article on the cat fish family; GRANT GUSSIE - CAS this one is about everyone’s favorite, the Panda Cory. BAS PAGE 13 THE PRACTICAL PLANT. SY ANGELICUS - Instructions on propagating Telanthera lilacina , Red PAGE 27 SPECIES PROFILE. Telanthera.. The Panda Cory, Corydoras panda. - IZZY ZWERIN BAS JOHN TODARO - BAS PAGE 14 THE TANK CORPS. A short history of PAGE 28 THE REDDISH DWARF FIGHTER. the Brooklyn Aquarium Society’s and Virginia’s Betta Rutilans , considered endangered and are on review of a typical meeting, and notes about our the “Conservation Priority Species at Risk List of the former president, Joe Graffagnino, plus a shallow C.A.R.E.S.
    [Show full text]