Selecting an Excitation Wavelength for Raman Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Selecting an Excitation Wavelength for Raman Spectroscopy Electronically reprinted from March 2016 ® Molecular Spectroscopy Workbench Selecting an Excitation Wavelength for Raman Spectroscopy Were it not for the problem of photoluminescence, only one laser excitation wavelength would be neces- sary to perform Raman spectroscopy. Here, we examine the problem of photoluminescence from the material being analyzed and the substrate on which it is supported. We describe how to select an excita- tion wavelength that does not generate photoluminescence, reduces the noise level, and yields a Raman spectrum with a superior signal-to-noise ratio. Furthermore, we discuss the phenomenon of resonance Raman spectroscopy and the effect that laser excitation wavelength has on the Raman spectrum. David Tuschel ne of the most frequent questions that I hear from Another consideration when selecting an excitation people new to Raman spectroscopy is, “What laser wavelength can be the variation of the optical density of Oexcitation wavelength do I need?” Of course, the the material as a function of wavelength. If the material answer to that question is that it depends entirely upon the is transparent, then the depth of focus and focal volume materials one wishes to analyze. The Raman scattering of the laser beam will be dictated by the numerical aper- cross-section of the material is important and so too are its ture of the lens, the wavelength of the laser light, and the physical and optical properties. For example, if the sample real component of the sample’s refractive index at that is transparent to the excitation wavelength and thin enough, wavelength. However, if the sample is not transparent one can expect a spectral contribution from the substrate on (that is, the imaginary component of the refractive index which the sample is mounted or positioned. And that spec- of the sample is nonzero), then the depth of light penetra- tral contribution can be either Raman scattering or photolu- tion will be dictated not by the physical optics but by the minescence. absorptivity of the sample at that wavelength. These cir- Let’s work through some of the considerations relevant to cumstances have allowed many spectroscopists to perform choosing a laser excitation wavelength for Raman spectros- depth profiling of materials such as semiconductors by copy. To begin with, one should be aware that the Raman changing the excitation wavelength. In general, the longer scattering strength is proportional to the fourth power of the the excitation wavelength the deeper into the sample the 4 excitation frequency, νexc. Consequently, one can expect to light penetrates. The variation of depth penetration in obtain a much stronger Raman signal from a given sample semiconductors afforded by the range of commercially when using a higher excitation frequency. The frequency available visible wavelength lasers conveniently matches of the light is inversely proportional to the wavelength, and the depths to which certain microelectronic devices have so all other things being equal, the shorter excitation wave- been fabricated. The variation of depth penetration in the length will yield a stronger Raman signal. That is one of the visible region has allowed Raman spectroscopists to per- reasons why, when given a choice, Raman spectroscopists form depth profiles in ion implanted Si merely by chang- prefer shorter excitation wavelengths. ing the excitation wavelength (1–4). cal microscopes. The need to analyze samples whose chemical composition or solid state structure varies on a mi- crometer spatial scale is driving the use of micro-Raman spectroscopy. Here, spatial resolution of the measurement y is important and one needs a laser spot size commensurate with the spatially varying structure to be analyzed. Con- Intensit sequently, when selecting an excitation wavelength you should know that the size of the focused laser beam is dif- fraction limited and dependent upon the laser wavelength. The Airy disk di- 500 1000 1500 2000 2500 3000 3500 ameter (the ideal laser spot size [D ]) -1 Airy Raman shift (cm ) and spatial resolution (ρ) for the micro- Raman configuration are given by the Figure 1: Raman spectra of commercial polystyrene pipe obtained using excitation wavelengths following expressions: of 532 nm (red spectrum), 638 nm (blue spectrum), and 785 nm (black spectrum). DAiry = 1.22 λ/NA [1] ρ = 0.61 λ/NA [2] where λ is the wavelength of light and NA is the numerical aperture of the microscope objective. Therefore, the y choice of excitation wavelength directly affects the spatial resolution of micro- Raman measurements. For example, Intensit the diffraction limited spatial resolu- tions for excitation at 532 nm and 785 nm are 360 nm and 530 nm, respec- tively. Of course, these values represent the ideal and actual spatial resolution 550600 650700 750800 850900 95010001050 will depend on the quality and align- Wavelength (nm) ment of your optics. Figure 2: Raman spectra of commercial polystyrene pipe obtained using excitation wavelengths The Photoluminescent of 532 nm (red spectrum), 638 nm (blue spectrum), and 785 nm (black spectrum). Background Anyone having had any experience In some structures, it is essential signal from the very thin strained Si. with Raman spectroscopy will tell to control the depth of penetration to Consequently, the strained Si Raman you that fluorescence is the nemesis constrain the analysis to a thin film at scattering is buried in the substrate of Raman spectroscopists. Even if the the surface. This is particularly true signal at 520.7 cm-1. To resolve the primary substance in the sample does when analyzing strained Si. A common strained Si signal from that of the sub- not itself emit, even trace impurities structure is to have a thin strained Si strate Si one needs to limit the depth can cause enough photoluminescence layer grown on a SiGe layer that is on a of penetration of the laser light. There- to overwhelm the Raman signal. The strain-free Si substrate. If the excitation fore, most analyses of thin strained principal reason for this problem is wavelength is too long, the laser light Si structures built on a Si substrate that emission is a one photon process will penetrate through the strained Si require excitations wavelengths in the whereas Raman scattering is a two and SiGe to the strain-free Si substrate. violet region or shorter. photon process; that is, photolumines- The deeper the penetration of the laser Lateral spatial resolution is an- cence has a much higher probability light, the greater the fractional contri- other consideration when selecting of occurring than does Raman scat- bution of the substrate Si to the overall an excitation wavelength. Increas- tering. Related to that fact, you have Raman signal and spectrum. The re- ingly, Raman spectroscopy is being perhaps heard the oft given explana- sult is that the much stronger substrate done on the micrometer scale using tion of the weak Raman effect and how Si signal overwhelms the much weaker Raman spectrometers coupled to opti- in general only one Raman photon is generated for every 106 to 109 photons incident upon the sis of minority components would seem reasonable. There is sample. Therefore, the presence of a fluorophore with even a bit of craft involved in photobleaching and only laboratory extremely low quantum efficiency can produce an emission experience will teach you the right conditions (laser power that overwhelms the Raman signal. density, duration of laser exposure) for successfully photo- You may be asking yourself why a simple background bleaching a polymer or other sample to remove background subtraction of the photoluminescent component wouldn’t photoluminescence without altering or completely degrad- be sufficient to reveal the remaining Raman spectrum if the ing the material of interest. One must apply photobleaching Raman and photoluminescent signals are superimposed. with great care to be sure that the Raman spectrum that you The problem is that the background photoluminescence acquire is that of the original polymer or bulk material and can be so great that the noise generated by this signal is on not that of a laser-induced photolysis product. the order of or even greater than the Raman signal alone. Photobleaching may not always be a reasonable or accept- Consequently, software treatment of the data or any other able procedure for acquiring a Raman spectrum. There are experimental mechanism that does not eliminate the pho- times when even continued laser illumination at low power toluminescent background from the raw signal generally density over even tens of minutes will not remove the photo- does not produce results as good as those for which no luminescent background. If that is the case, you need to try a photoluminescent background is present. To avoid the pho- different excitation wavelength. The thinking behind select- toluminescence background and the noise that it produces ing a different excitation wavelength is to use one for which one should identify an excitation wavelength that does not the absorptivity is much lower and thereby yields much less induce photoluminescence in the sample either from the photoluminescence. Think of this as trying to move your principal component or even trace impurities. That is why Raman laser source out of the absorption spectrum or ex- old school Raman spectroscopists always want as many laser citation profile that is the source of the photoluminescence wavelengths as possible available to them when working of the sample. The default selection is to a longer excitation with a variety of materials. wavelength. The assumption is that there will be less absorp- Many samples that appear transparent will neverthe- tion if any at all and therefore generate weaker or no photo- less yield a photoluminescent background, sometimes so luminescence. strong that nothing but photoluminescence is observed in A sample of commercially available polystyrene pipe the Raman spectrum. One finds that this is often the case demonstrates this concept fairly effectively.
Recommended publications
  • A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts
    8600 J. Phys. Chem. B 2001, 105, 8600-8606 A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts Yek Tann Chua,† Peter C. Stair,*,† and Israel E. Wachs*,‡ Department of Chemistry, Center for Catalysis and Surface Science and Institute of EnVironmental Catalysis, Northwestern UniVersity, EVanston, Illinois 60208, and Zettlemoyer Center for Surface Studies and Department of Chemical Engineering, Lehigh UniVersity, Bethlehem, PennsylVania 18015 ReceiVed: April 11, 2001 The recent emergence of ultraviolet-wavelength-excited Raman spectroscopy as a tool for catalyst characterization has motivated the question of how UV Raman spectra compare to visible-wavelength-excited Raman spectra on the same catalyst system. Measurements of Raman spectra from five supported metal oxide systems (Al2O3-supported Cr2O3,V2O5, and MoO3 as well as TiO2-supported MoO3 and Re2O7), using visible (514.5 nm) and ultraviolet (244 nm) wavelength excitation have been compared to determine the similarities and differences in Raman spectra produced at the two wavelengths. The samples were in the form of self-supporting disks. Spectra from the oxides, both hydrated as a result of contact with ambient air and dehydrated as a result of calcination or laser-induced heating, were recorded. A combination of sample spinning and translation to produce a spiral pattern of laser beam exposure to the catalyst disk was found to be most effective in minimizing dehydration caused by laser-induced heating. Strong absorption by the samples in the ultraviolet significantly reduced the number of scatterers contributing to the Raman spectrum while producing only modest increases in the Raman scattering cross section due to resonance enhancement.
    [Show full text]
  • Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
    Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1.
    [Show full text]
  • Laser Raman Spectroscopy As a Technique for Identification Of
    ARTICLE IN PRESS CHEMGE-15589; No of Pages 13 Chemical Geology xxx (2008) xxx–xxx Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals Sheri N. White ⁎ Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02536, USA article info abstract Article history: In situ sensors capable of real-time measurements and analyses in the deep ocean are necessary to fulfill the Received 8 August 2008 potential created by the development of autonomous, deep-sea platforms such as autonomous and remotely Received in revised form 8 November 2008 operated vehicles, and cabled observatories. Laser Raman spectroscopy (a type of vibrational spectroscopy) is an Accepted 10 November 2008 optical technique that is capable of in situ molecular identification of minerals in the deep ocean. The goals of this Available online xxxx work are to determine the characteristic spectral bands and relative Raman scattering strength of hydrothermally- Editor: R.L. Rudnick and cold seep-relevant minerals, and to determine how the quality of the spectra are affected by changes in excitation wavelength and sampling optics. The information learned from this work will lead to the development Keywords: of new, smaller sea-going Raman instruments that are optimized to analyze minerals in the deep ocean. Raman spectroscopy Many minerals of interest at seafloor hydrothermal and cold seep sites are Raman active, such as elemental sulfur, Mineralogy carbonates, sulfates and sulfides. Elemental S8 sulfur is a strong Raman scatterer with dominant bands at ∼219 and Hydrothermal vents 472 Δcm−1.
    [Show full text]
  • Passively Q-Switched KTA Cascaded Raman Laser with 234 and 671 Cm−1 Shifts
    applied sciences Article Passively Q-Switched KTA Cascaded Raman Laser with 234 and 671 cm−1 Shifts Zhi Xie 1,2, Senhao Lou 2, Yanmin Duan 2, Zhihong Li 2, Limin Chen 1, Hongyan Wang 3, Yaoju Zhang 2 and Haiyong Zhu 2,* 1 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (Z.X.); [email protected] (L.C.) 2 Wenzhou Key Laboratory of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China; [email protected] (S.L.); [email protected] (Y.D.); [email protected] (Z.L.); [email protected] (Y.Z.) 3 Crystech Inc., Qingdao 266100, China; [email protected] * Correspondence: [email protected] Abstract: A compact KTA cascaded Raman system driven by a passively Q-switched Nd:YAG/Cr4+:YAG laser at 1064 nm was demonstrated for the first time. The output spectra with different cavity lengths were measured. Two strong lines with similar intensity were achieved with a 9 cm length cavity. One is the first-Stokes at 1146.8 nm with a Raman shift of 671 cm−1, and the other is the Stokes at 1178.2 nm with mixed Raman shifts of 234 cm−1 and 671 cm−1. At the shorter cavity length of 5 cm, the output Stokes lines with high intensity were still at 1146.8 nm and 1178.2 nm, but the intensity of 1178.2 nm was higher than that of 1146.8 nm. The maximum average output power of 540 mW was obtained at the incident pump power of 10.5 W with the pulse repetition frequency of 14.5 kHz and the pulse width around 1.1 ns.
    [Show full text]
  • Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life
    ASTROBIOLOGY Volume 10, Number 2, 2010 ª Mary Ann Liebert, Inc. DOI: 10.1089=ast.2009.0344 Understanding the Application of Raman Spectroscopy to the Detection of Traces of Life Craig P. Marshall,1 Howell G.M. Edwards,2 and Jan Jehlicka3 Abstract Investigating carbonaceous microstructures and material in Earth’s oldest sedimentary rocks is an essential part of tracing the origins of life on our planet; furthermore, it is important for developing techniques to search for traces of life on other planets, for example, Mars. NASA and ESA are considering the adoption of miniaturized Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for fossil or extant biomolecules. Recently, Raman spectroscopy has been used to infer a biological origin of putative carbonaceous microfossils in Early Archean rocks. However, it has been demonstrated that the spectral signature obtained from kerogen (of known biological origin) is similar to spectra obtained from many poorly ordered carbonaceous materials that arise through abiotic processes. Yet there is still confusion in the literature as to whether the Raman spectroscopy of carbonaceous materials can indeed delineate a signature of ancient life. Despite the similar nature in spectra, rigorous structural interrogation between the thermal alteration products of biological and nonbiological organic materials has not been undertaken. There- fore, we propose a new way forward by investigating the second derivative, deconvolution, and chemometrics of the carbon first-order spectra to build a database of structural parameters that may yield distinguishable characteristics between biogenic and abiogenic carbonaceous material.
    [Show full text]
  • Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy
    Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy Giovanni Batignani,y Carino Ferrante,y,z and Tullio Scopigno∗,y,z yDipartimento di Fisica, Universitá di Roma “La Sapienza", Roma, I-00185, Italy z Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma, I-00161, Italy E-mail: [email protected] arXiv:2010.05029v1 [physics.optics] 10 Oct 2020 1 Abstract Excited-state vibrations are crucial for determining photophysical and photochem- ical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally re- stricted to ground state properties. Working in resonance conditions, indeed, enables cross-section enhancement and selective excitation to a targeted electronic level, but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information on ground and excited state vi- brations can be disentangled, by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring to the signal generation. The proposed method is then exploited to elucidate the vibrational properties of ground and excited electronic states in the paradigmatic case of Cresyl Violet. We anticipate that the presented approach holds the potential for selective mapping the reaction coordinates pertaining to transient electronic stages implied in photo-active compounds. Graphical TOC Entry 2 Raman spectroscopy is a powerful tool to access the vibrational fingerprints of molecules or solid state compounds and it can be used to extract structural and dynamical information of the samples under investigation.
    [Show full text]
  • Combining Chemical Information from Grass Pollen in Multimodal Characterization
    ORIGINAL RESEARCH published: 31 January 2020 doi: 10.3389/fpls.2019.01788 Combining Chemical Information From Grass Pollen in Multimodal Characterization Sabrina Diehn 1,2, Boris Zimmermann 3, Valeria Tafintseva 3, Stephan Seifert 1,2, Murat Bag˘ cıog˘ lu 3, Mikael Ohlson 4, Steffen Weidner 2, Siri Fjellheim 5, Achim Kohler 3,6 and Janina Kneipp 1,2* 1 Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany, 2 BAM Federal Institute for Materials Research and Testing, Berlin, Germany, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway, 5 Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway, 6 Nofima AS, Ås, Norway Edited by: Lisbeth Garbrecht Thygesen, fi University of Copenhagen, The analysis of pollen chemical composition is important to many elds, including Denmark agriculture, plant physiology, ecology, allergology, and climate studies. Here, the Reviewed by: potential of a combination of different spectroscopic and spectrometric methods Wesley Toby Fraser, regarding the characterization of small biochemical differences between pollen samples Oxford Brookes University, United Kingdom was evaluated using multivariate statistical approaches. Pollen samples, collected from Åsmund Rinnan, three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared University of Copenhagen, Denmark (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), Anna De Juan, and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The University of Barcelona, Spain variation in the sample set can be described in a hierarchical framework comprising three *Correspondence: populations of the same grass species and four different growth conditions of the parent Janina Kneipp [email protected] plants for each of the populations.
    [Show full text]
  • Raman Scattering and Fluorescence
    Fluorescence 01 Raman Scattering and Fluorescence Introduction The existence of such virtual states also explains why the non-resonance Raman effect Raman scattering and Fluorescence emission does not depend on the wavelength of the are two competing phenomena, which have excitation, since no real states are involved in similar origins. Generally, a laser photon this interaction mechanism. In fact, the Raman bounces off a molecule and looses a certain spectrum generally does not depend on the amount of energy that allows the molecule to laser excitation. vibrate (Stokes process). The scattered photon is therefore less energetic and the associated However, when the energy of the excitation light exhibits a frequency shift. The various photon gets close to the transition energy frequency shifts associated with different between two electronic states, one then deals molecular vibrations give rise to a spectrum, with resonance Raman or resonance that is characteristic of a specific compound. fluorescence (fig.1, case (d)). The basic difference between these two processes is In contrast, fluorescence or luminescence related to the time scales involved, as well as emission follows an absorption process. For a with the nature of the so-called intermediate better understanding, one can refer to the states. In contrast with resonant fluorescent, diagram below. relaxed fluorescence results from the emission of a photon from the lowest vibrational level of an excited electronic state, following a direct absorption of the photon and relaxation of the molecule from its vibrationally excited level of the electronic state back to the lowest vibrational level of the electronic state. A fluorescence process typically requires more than 10-9 s.
    [Show full text]
  • Venus Elemental and Mineralogical Camera (Vemcam)
    EPSC Abstracts Vol. 13, EPSC-DPS2019-827-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Venus Elemental and Mineralogical Camera (VEMCam) Samuel M. Clegg (1), Brett S. Okhuysen (1), David S. DeCroix (1), Raymond T. Newell (1), Roger C. Wiens (1), Shiv K. Sharma (2), Sylvestre Maurice (3), Ronald K. Martinez (1), Adriana Reyes-Newell (1), and Melinda D. Dyar (4), (1) Los Alamos National Laboratory, Los Alamos, NM, [email protected], (2) Hawaii Inst. of Geophysics and Planetology, Univ. of Hawaii, Honolulu, USA, (3) L'Institut de Recherche en Astrophysique et Planétologie, Toulouse France, (4) Planetary Science Inst., Tucson, AZ, USA Abstract The Venus Elemental and Mineralogical Camera The Venus Elemental and Mineralogical Camera (VEMCam) is an integrated remote LIBS and Raman (VEMCam) can make thousands of measurements instrument concept designed to operate from within within the first two hours on the surface, providing the safety of the lander. The extreme Venus surface an unprecedented description of the Venus surface. conditions requires rapid analyses and VEMCam can VEMCam is based on the ChemCam instrument on collect over 1000 chemical and mineralogical spectra the Mars Science Laboratory rover and the within the first hour. Here, we discuss the VEMCam SuperCam instrument selected for the Mars 2020 prototype calibration and analysis in which samples rover. VEMCam includes an integrated Raman and are placed in a 2 m long chamber capable of Laser-Induced Breakdown Spectroscopy (LIBS) simulating the Venus surface atmosphere. instrument capable of probing many disparate locations around the lander. VEMCam also includes 1.
    [Show full text]
  • Article Intends to Provide a for the Necessary Virtual Electronic Brief Overview of the Differences and Transition
    ADVANCES IN RAMAN TECHNIQUES Laser requirements and advances for Raman techniques Andreas Isemann Laser Quantum GmbH, 78467 Konstanz, Germany INTRODUCTION 473 nm and 1064 nm, a narrow Raman scattering as a probe of bandwidth output of few tens of GHz vibrational transitions has made or below 1 MHz if needed within the leaps and bounds since its discovery, linewidth of vibrational transitions and various schemes based on this for high resolution, low noise (less phenomenon have been developed than 0.02%) and excellent beam with great success. quality (fundamental transversal Applications range from basic electromagnetic mode TEM00) scientific research, to medical and provides optimised performance industrial instrumentation. Some for the resolution of the Raman schemes utilise linear Raman measurement needed. scattering, whilst others take advantage The wavelength is chosen based of high peak-power fields to probe on the sample under investigation, nonlinear Raman responses. with 532 nm being commonly used This article intends to provide a for the necessary virtual electronic brief overview of the differences and transition. In the following section, benefits, together with the laser source four examples from different areas of requirements and the advancements Raman applications show the diverse in techniques enabled by recent applications of linear Raman and what developments in lasers. advances have been achieved. An example of studying a real-world LINEAR RAMAN application, the successful control of Figure 1 An example of the RR microfluidic device counting of The advent of the laser in providing a food quality using Raman spectroscopy photosynthetic microorganisms. As the cells of the model strain high-intensity coherent light source and multivariate analysis, is described Synechocystis sp.
    [Show full text]
  • New Exploratory Experiments for Raman Laser Spectroscopy
    5 Lasers for Science Facility Programme I Chemistry New exploratory experiments for Raman laser spectroscopy M. Hippler and C. Mohr Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK Main contact email address [email protected] Introduction using a modification of the optophone detection [3,4] The analysis of high-resolution rovibrational spectra is introduced by Zare and coworkers. We will also introduce a relevant because it allows the study of the structure and first application, the study of the anharmonic and Coriolis dynamics of molecules and molecular association, and how resonance system of cyclo-propane (C3H6) in the CH- this changes under vibrational excitation. Topics in this stretching region near 3000 cm-1 [5] and present first tentative context are the determination of equilibrium geometries of assignments. [6] isolated molecules and of complexes, the study of the coupling of vibrations, intramolecular vibrational energy Discussion redistribution (IVR), tunnelling and rearrangement To set-up a stimulated laser Raman experiment, a strong processes (for a recent overview, see ref. [1]. Raman Raman pump source at fixed wavelength and a tuneable spectroscopy is an important technique in these studies, stimulating Raman source are required. For this purpose, because it can provide complimentary information which is we modified a Nd:YAG pumped dye laser system not available by IR spectroscopy due to different selection (Continuum Sirah PrecisionScan, NSL4 on loan from the rules and experimental difficulties
    [Show full text]
  • High Performance Raman Spectroscopy with Simple Optical Components ͒ ͒ W
    High performance Raman spectroscopy with simple optical components ͒ ͒ W. R. C. Somerville, E. C. Le Ru,a P. T. Northcote, and P. G. Etchegoinb The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ͑Received 6 December 2009; accepted 19 April 2010͒ Several simple experimental setups for the observation of Raman scattering in liquids and gases are described. Typically these setups do not involve more than a small ͑portable͒ CCD-based spectrometer ͑without scanning͒, two lenses, and a portable laser. A few extensions include an inexpensive beam-splitter and a color filter. We avoid the use of notch filters in all of the setups. These systems represent some of the simplest but state-of-the-art Raman spectrometers for teaching/ demonstration purposes and produce high quality data in a variety of situations; some of them traditionally considered challenging ͑for example, the simultaneous detection of Stokes/anti-Stokes spectra or Raman scattering from gases͒. We show examples of data obtained with these setups and highlight their value for understanding Raman spectroscopy. We also provide an intuitive and nonmathematical introduction to Raman spectroscopy to motivate the experimental findings. © 2010 American Association of Physics Teachers. ͓DOI: 10.1119/1.3427413͔ I. INTRODUCTION and finish with a higher energy than the original one. This case corresponds to anti-Stokes Raman scattering. The Raman effect was discovered in 1928 by Raman1 and In reality, the photon is usually provided by a laser, which is now a major research tool with applications in physics, has a well defined frequency.
    [Show full text]