Notes on Monoids and Automata
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Classifying Regular Languages Via Cascade Products of Automata
Classifying Regular Languages via Cascade Products of Automata Marcus Gelderie RWTH Aachen, Lehrstuhl f¨urInformatik 7, D-52056 Aachen [email protected] Abstract. Building on the celebrated Krohn-Rhodes Theorem we char- acterize classes of regular languages in terms of the cascade decomposi- tions of minimal DFA of languages in those classes. More precisely we provide characterizations for the classes of piecewise testable languages and commutative languages. To this end we use biased resets, which are resets in the classical sense, that can change their state at most once. Next, we introduce the concept of the scope of a cascade product of reset automata in order to capture a notion of locality inside a cascade prod- uct and show that there exist constant bounds on the scope for certain classes of languages. Finally we investigate the impact of biased resets in a product of resets on the dot-depth of languages recognized by this product. This investigation allows us to refine an upper bound on the dot-depth of a language, given by Cohen and Brzozowski. 1 Introduction A significant result in the structure theory of regular languages is the Krohn- Rhodes Theorem [7], which states that any finite automaton can be decomposed into simple \prime factors" (a detailed exposition is given in [4, 6, 9, 10]). We use the Krohn-Rhodes Theorem to characterize classes of regular lan- guages in terms of the decompositions of the corresponding minimal automata. In [8] this has been done for star-free languages by giving an alternative proof for the famous Sch¨utzenberger Theorem [11]. -
The Partial Function Computed by a TM M(W)
CS601 The Partial Function Computed by a TM Lecture 2 8 y if M on input “.w ” eventually <> t M(w) halts with output “.y ” ≡ t :> otherwise % Σ Σ .; ; Usually, Σ = 0; 1 ; w; y Σ? 0 ≡ − f tg 0 f g 2 0 Definition 2.1 Let f :Σ? Σ? be a total or partial function. We 0 ! 0 say that f is a partial, recursive function iff TM M(f = M( )), 9 · i.e., w Σ?(f(w) = M(w)). 8 2 0 Remark 2.2 There is an easy to compute 1:1 and onto map be- tween 0; 1 ? and N [Exercise]. Thus we can think of the contents f g of a TM tape as a natural number and talk about f : N N ! being a recursive function. If the partial, recursive function f is total, i.e., f : N N then we ! say that f is a total, recursive function. A partial function that is not total is called strictly partial. 1 CS601 Some Recursive Functions Lecture 2 Proposition 2.3 The following functions are recursive. They are all total except for peven. copy(w) = ww σ(n) = n + 1 plus(n; m) = n + m mult(n; m) = n m × exp(n; m) = nm (we let exp(0; 0) = 1) 1 if n is even χ (n) = even 0 otherwise 1 if n is even p (n) = even otherwise % Proof: Exercise: please convince yourself that you can build TMs to compute all of these functions! 2 Recursive Sets = Decidable Sets = Computable Sets Definition 2.4 Let S Σ? or S N. -
Automata, Semigroups and Duality
Automata, semigroups and duality Mai Gehrke1 Serge Grigorieff2 Jean-Eric´ Pin2 1Radboud Universiteit 2LIAFA, CNRS and University Paris Diderot TANCL’07, August 2007, Oxford LIAFA, CNRS and University Paris Diderot Outline (1) Four ways of defining languages (2) The profinite world (3) Duality (4) Back to the future LIAFA, CNRS and University Paris Diderot Part I Four ways of defining languages LIAFA, CNRS and University Paris Diderot Words and languages Words over the alphabet A = {a, b, c}: a, babb, cac, the empty word 1, etc. The set of all words A∗ is the free monoid on A. A language is a set of words. Recognizable (or regular) languages can be defined in various ways: ⊲ by (extended) regular expressions ⊲ by finite automata ⊲ in terms of logic ⊲ by finite monoids LIAFA, CNRS and University Paris Diderot Basic operations on languages • Boolean operations: union, intersection, complement. • Product: L1L2 = {u1u2 | u1 ∈ L1,u2 ∈ L2} Example: {ab, a}{a, ba} = {aa, aba, abba}. • Star: L∗ is the submonoid generated by L ∗ L = {u1u2 · · · un | n > 0 and u1,...,un ∈ L} {a, ba}∗ = {1, a, aa, ba, aaa, aba, . .}. LIAFA, CNRS and University Paris Diderot Various types of expressions • Regular expressions: union, product, star: (ab)∗ ∪ (ab)∗a • Extended regular expressions (union, intersection, complement, product and star): A∗ \ (bA∗ ∪ A∗aaA∗ ∪ A∗bbA∗) • Star-free expressions (union, intersection, complement, product but no star): ∅c \ (b∅c ∪∅caa∅c ∪∅cbb∅c) LIAFA, CNRS and University Paris Diderot Finite automata a 1 2 The set of states is {1, 2, 3}. b The initial state is 1. b a 3 The final states are 1 and 2. -
Iris: Monoids and Invariants As an Orthogonal Basis for Concurrent Reasoning
Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning Ralf Jung David Swasey Filip Sieczkowski Kasper Svendsen MPI-SWS & MPI-SWS Aarhus University Aarhus University Saarland University [email protected] fi[email protected] [email protected] [email protected] rtifact * Comple * Aaron Turon Lars Birkedal Derek Dreyer A t te n * te A is W s E * e n l l C o L D C o P * * Mozilla Research Aarhus University MPI-SWS c u e m s O E u e e P n R t v e o d t * y * s E a [email protected] [email protected] [email protected] a l d u e a t Abstract TaDA [8], and others. In this paper, we present a logic called Iris that We present Iris, a concurrent separation logic with a simple premise: explains some of the complexities of these prior separation logics in monoids and invariants are all you need. Partial commutative terms of a simpler unifying foundation, while also supporting some monoids enable us to express—and invariants enable us to enforce— new and powerful reasoning principles for concurrency. user-defined protocols on shared state, which are at the conceptual Before we get to Iris, however, let us begin with a brief overview core of most recent program logics for concurrency. Furthermore, of some key problems that arise in reasoning compositionally about through a novel extension of the concept of a view shift, Iris supports shared state, and how prior approaches have dealt with them. -
CAI 2017 Book of Abstracts.Pdf
Table of Contents Track 1: Automata Theory and Logic ........................... 1 Invited speaker: Heiko Vogler . 1 Languages and formations generated by D4 and D8: Jean-Éric Pin, Xaro Soler-Escrivà . 2 Syntactic structures of regular languages: O. Klíma, L. Polák . 26 Improving witnesses for state complexity of catenation combined with boolean operations: P. Caron, J.-G. Luque, B. Patrou . 44 Track 2: Cryptography and Coding Theory ..................... 63 Invited speaker: Claude Carlet . 63 A topological approach to network coding: Cristina Martínez and Alberto Besana . 64 Pairing-friendly elliptic curves resistant to TNFS attacks: G. Fotiadis, E. Konstantinou . 65 Collaborative multi-authority key-policy attribute-based encryption for shorter keys and parameters: R. Longo, C. Marcolla, M. Sala 67 Conditional blind signatures: A. Zacharakis, P. Grontas, A. Pagourtzis . 68 Hash function design for cloud storage data auditing: Nikolaos Doukas, Oleksandr P. Markovskyi, Nikolaos G. Bardis . 69 Method for accelerated zero-knowledge identification of remote users based on standard block ciphers: Nikolaos G. Bardis, Oleksandr P. Markovskyi, Nikolaos Doukas . 81 Determining whether a given block cipher is a permutation of another given block cipher— a problem in intellectual property (Extended Abstract): G. V. Bard . 91 Track 3: Computer Algebra ..................................... 95 Invited speaker: Michael Wibmer . 95 Interpolation of syzygies for implicit matrix representations: Ioannis Z. Emiris, Konstantinos Gavriil, and Christos Konaxis . 97 Reduction in free modules: C. Fürst, G. Landsmann . 115 Instructing small cellular free resolutions for monomial ideals: J. Àlvarez Montaner, O. Fernández-Ramos, P. Gimenez . 117 Low autocorrelation binary sequences (LABS): lias S. Kotsireas . 123 A signature based border basis algorithm: J. Horáček, M. -
Sage 9.4 Reference Manual: Monoids Release 9.4
Sage 9.4 Reference Manual: Monoids Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Monoids 3 2 Free Monoids 5 3 Elements of Free Monoids 9 4 Free abelian monoids 11 5 Abelian Monoid Elements 15 6 Indexed Monoids 17 7 Free String Monoids 23 8 String Monoid Elements 29 9 Utility functions on strings 33 10 Hecke Monoids 35 11 Automatic Semigroups 37 12 Module of trace monoids (free partially commutative monoids). 47 13 Indices and Tables 55 Python Module Index 57 Index 59 i ii Sage 9.4 Reference Manual: Monoids, Release 9.4 Sage supports free monoids and free abelian monoids in any finite number of indeterminates, as well as free partially commutative monoids (trace monoids). CONTENTS 1 Sage 9.4 Reference Manual: Monoids, Release 9.4 2 CONTENTS CHAPTER ONE MONOIDS class sage.monoids.monoid.Monoid_class(names) Bases: sage.structure.parent.Parent EXAMPLES: sage: from sage.monoids.monoid import Monoid_class sage: Monoid_class(('a','b')) <sage.monoids.monoid.Monoid_class_with_category object at ...> gens() Returns the generators for self. EXAMPLES: sage: F.<a,b,c,d,e>= FreeMonoid(5) sage: F.gens() (a, b, c, d, e) monoid_generators() Returns the generators for self. EXAMPLES: sage: F.<a,b,c,d,e>= FreeMonoid(5) sage: F.monoid_generators() Family (a, b, c, d, e) sage.monoids.monoid.is_Monoid(x) Returns True if x is of type Monoid_class. EXAMPLES: sage: from sage.monoids.monoid import is_Monoid sage: is_Monoid(0) False sage: is_Monoid(ZZ) # The technical math meaning of monoid has ....: # no bearing whatsoever on the result: it's ....: # a typecheck which is not satisfied by ZZ ....: # since it does not inherit from Monoid_class. -
Enumerations of the Kolmogorov Function
Enumerations of the Kolmogorov Function Richard Beigela Harry Buhrmanb Peter Fejerc Lance Fortnowd Piotr Grabowskie Luc Longpr´ef Andrej Muchnikg Frank Stephanh Leen Torenvlieti Abstract A recursive enumerator for a function h is an algorithm f which enu- merates for an input x finitely many elements including h(x). f is a aEmail: [email protected]. Department of Computer and Information Sciences, Temple University, 1805 North Broad Street, Philadelphia PA 19122, USA. Research per- formed in part at NEC and the Institute for Advanced Study. Supported in part by a State of New Jersey grant and by the National Science Foundation under grants CCR-0049019 and CCR-9877150. bEmail: [email protected]. CWI, Kruislaan 413, 1098SJ Amsterdam, The Netherlands. Partially supported by the EU through the 5th framework program FET. cEmail: [email protected]. Department of Computer Science, University of Mas- sachusetts Boston, Boston, MA 02125, USA. dEmail: [email protected]. Department of Computer Science, University of Chicago, 1100 East 58th Street, Chicago, IL 60637, USA. Research performed in part at NEC Research Institute. eEmail: [email protected]. Institut f¨ur Informatik, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany. fEmail: [email protected]. Computer Science Department, UTEP, El Paso, TX 79968, USA. gEmail: [email protected]. Institute of New Techologies, Nizhnyaya Radi- shevskaya, 10, Moscow, 109004, Russia. The work was partially supported by Russian Foundation for Basic Research (grants N 04-01-00427, N 02-01-22001) and Council on Grants for Scientific Schools. hEmail: [email protected]. School of Computing and Department of Mathe- matics, National University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore. -