Abstracts by Mathematics Subject Classification

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts by Mathematics Subject Classification PORTO, Portugal, June 10–13, 2015 00 ! General 1111-00-22 Dirk R. H. Schlingmann* ([email protected]), 800 University Way, Contr.Session Spartanburg, SC 29303. Mathematics and Music. In this paper, I will present my work on how I use mathematics and the technical computing software Math- ematica to analyze, manipulate, and create music. Musical pieces are available as Musical Instrument Digital Interface (MIDI) files. I will compare the work of well-known composers through statistical analysis, and will present variations of their compositions by performing geometrical transformations on their musical data. Fur- thermore, I will play musical creations that are entirely based on mathematical functions. (Received December 31, 2014) 1111-00-77 Anne Mendes Burns* ([email protected]), Mathematics Department, Long Island Session 39 University, Brookville, NY 11548. Variation of Parameters: Visual Proof in Complex Analysis. Preliminary report. Complex analysis, taking place in two dimensions, is ideally suited for visualization. In addition to providing insight into the mathematics of complex variable theory, visualization produces beautiful works of art that awe even non-mathematicians. Topics taken from complex variable theory such as complex vector fields, circle inversions, Mobius Transformations and Dynamical Systems provide a variety of ways to assign color, value and transparency to a two-dimensional space. Interpreting a complex function as a vector field, stunning works of art can be produced. Vector fields can be plotted over one or more paths defined by complex functions; singularities and their multiplicities are easily discerned by the assignment of hue, value and transparency as functions of magnitude, direction and time. Transformations acting on circles provides a limitless source for mathematically inspired art. Mobius Transformations are ideal for use in iterated functon systems where circles are mapped to circles. ”Continuously” varying the parameters in the Unit Circle Group leads to fascinating and sometimes surprising animations. The complexity of a dynamical system involving rational functions produces amazing pictures suggesting truths that can later be proved analytically. (Received January 19, 2015) 1111-00-89 Marcus du Sautoy* ([email protected]), Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom. The Secret Evening Public Lecture Mathematicians. From composers to painters, writers to choreographers, the mathematician’s palette of shapes, patterns and numbers has proved a powerful inspiration. Artists can be subconsciously drawn to the same structures that fascinate mathematicians as they hunt for interesting new structures to frame their creative process. Professor du Sautoy will explore the hidden mathematical ideas that underpin the creative output of well- known artists and reveal that the work of the mathematician is also driven by strong aesthetic values. (Received January 21, 2015) 1111-00-197 Bren Cavallo and Delaram Kahrobaei* ([email protected]), New York, NY Session 1 10016. Afamilyofpolycyclicgroupsoverwhichtheuniformconjugacyproblemis NP-complete. Our main result is that we construct polycyclic groups Gn whose conjugacy problem is at least as hard as the subset sum problem with n indeterminates. As such, the conjugacy problem over the groups Gn is NP-complete where the parameters of the problem are taken in terms of n and the length of the elements given on input. (Received February 02, 2015) 1111-00-280 Carolyn A Yackel* ([email protected]), 1501 Mercer University Dr., Macon, GA Session 39 31207. An Analysis of Fair Isle Knitting. Preliminary report. During this talk we will discuss Fair Isle knitting. Fair Isle knitting is a type of stranded knitting employing two strands on any given row with floats of limited length.Thecombinatorialanalysisofasinglerowdefines the variety of potential row patterns, yet further investigation is required to discover how the row patterns can be assembled together to create two-dimensional patterns displaying specific crystallographic symmetries. (Received February 04, 2015) 1 200 GENERAL [email protected] Session 1 1111-00-284 Bren Cavallo, Jonathan Gryak* ( ), Delaram Kahrobaei and Conchita Martinez-Perez. Conjugacy Problem in Polycyclic and Metabelian Groups: Algorithms and Complexity. Preliminary report. In this talk we present a couple of algorithms for solving the conjugacy problem in various polycyclic and metabelian groups. We analyze the complexity of such algorithms, and present experimental results of the algorithms’ performance. (Received February 04, 2015) 1111-00-386 Jos´eTenreiroMachado*([email protected]), Rua Dr. Ant´onio Bernardino Session 21 de Almeida, 431, 4200-07 Porto, Portugal, and Ant´onio M Lopes ([email protected]), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Analysis of complex phenomena by means of signal processing and fractional calculus. Complex systems (CS) emerge from the relationships between multiple objects that contribute to a collective behaviour often revealing surprisingdynamicalphenomena.ThemodellingofCScanadoptsophisticatedmath- ematical tools, but often we verify that those are still far from capturing the overall richness of the involved dynamics. A common property to CS is the absence of a characteristic length-scale, meaning that CS reveal frequency-size power-law (PL) behaviour. PL distributions have been associated to systems with memory, as is the case of fractional-order systems. We study several natural and man-made CS in the perspective of dynamical systems. From such a viewpoint, a CS has an output that results from stimuli, being that signal interpreted as amanifestationoftheglobalsystemdynamics.ThesystemoutputisanalysedbymeansoftheFouriertrans- form (FT). The amplitude spectrum is approximated by a PL function and the parameters are interpreted as a signature of the CS characteristics. In a complementary approach, we compare and visualize similarities among several cases studied. Our approach contributes to better understand CS dynamics and their ruling principles, as well as to expose hidden correlations between systems from very distinct areas. (Received February 06, 2015) 1111-00-397 Radmila Sazdanovic* ([email protected]), Department of Mathematics, Session 39 North Carolina State University, SAS Hall PO Box 8205, Raleigh, NC 27695, and Andrew Cooper. Visual thinking in mathematics. Preliminary report. Visualizations and visual thinking are essential to progress in many areas of mathematics. Visual representations of mathematical objects, structures or relations among them often provide a simple, natural description, useful for communicating complex ideas. But visual methods in mathematics are used for more than just presenting information. Visualization also advances understanding by distilling essential information and building intuition. When there is an equivalence between mathematical objects and their visual descriptions, both can be used exclusively, simultaneously, or interchangeably in constructing proofs. In addition to visualization as a tool, several fields of research study the mathematics of the visual, regarding visual objects as the primitives on which mathematical structures are built. (Received February 06, 2015) 1111-00-468 Susan Goldstine* ([email protected]), Dept of Mathematics and Computer Science, Session 39 St. Mary’s College of Maryland, 18952 E Fisher Road, St. Mary’s City, MD 20686. Thinking Outside the Torus: New directions in bead crochet. Preliminary report. For the past six years, Ellie Baker and I have studied the mathematics of bead crochet rope bracelets. The traditional form for such a bracelet is an apparently seamless torus of beads arranged in a single spiral. This spiral structure introduces fascinating constraints on pattern design, and we have spoken about our discoveries at various conferences and published them in several papers and a book. The underlying crochet in a standard bead crochet bracelet is very simple, with the same stitch repeated throughout the piece; the intricate patterns and textures in a bracelet stem entirely from the choice and ar- rangement of beads. Incorporating different crochet stitches such as increases, decreases, and chain stitches can produce bead crochet with more complicated geometry and topology. This talk will cover some of these new explorations into the mathematical possibilities of the art form. (Received February 08, 2015) 1111-00-772 Luke Wolcott* ([email protected]). The phenomenology of mathematical Contr.Session understanding: an experiential investigation. What is it like to understand mathematics? We have investigated the lived experience of understanding the notion of groups in mathematics, and extracted a generic structure of it as a series of mental cognitive gestures and embodiments. We use the first-person methodology of theinterviewofelicitation(entretiend’explication in French), developed by Pierre Vermersch and Francisco Varela and now used extensively for investigating the microdynamics of lived experience. This work is a collaboration between Luke Wolcott, a mathematics professor from Lawrence University, and Alexandra Van-Quynh, a philosopher of mathematics from Universidade de Lisboa. (Received February 10, 2015) 01 HISTORY AND BIOGRAPHY 3 1111-00-781 Luke Wolcott* ([email protected])andElizabeth McTernan Contr.Session ([email protected]). Aclassificationofmath-artwork. We present a rough classification
Recommended publications
  • Undecidability of the Word Problem for Groups: the Point of View of Rewriting Theory
    Universita` degli Studi Roma Tre Facolta` di Scienze M.F.N. Corso di Laurea in Matematica Tesi di Laurea in Matematica Undecidability of the word problem for groups: the point of view of rewriting theory Candidato Relatori Matteo Acclavio Prof. Y. Lafont ..................................... Prof. L. Tortora de falco ...................................... questa tesi ´estata redatta nell'ambito del Curriculum Binazionale di Laurea Magistrale in Logica, con il sostegno dell'Universit´aItalo-Francese (programma Vinci 2009) Anno Accademico 2011-2012 Ottobre 2012 Classificazione AMS: Parole chiave: \There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, . " Italian nursery rhyme Even if you don't know this tale, it's easy to understand that this could continue indefinitely, but it doesn't have to. If now we want to know if the nar- ration will finish, this question is what is called an undecidable problem: we'll need to listen the tale until it will finish, but even if it will not, one can never say it won't stop since it could finish later. those things make some people loose sleep, but usually children, bored, fall asleep. More precisely a decision problem is given by a question regarding some data that admit a negative or positive answer, for example: \is the integer number n odd?" or \ does the story of the king on the sofa admit an happy ending?".
    [Show full text]
  • CLASS DESCRIPTIONS—WEEK 2, MATHCAMP 2016 Contents 9:10
    CLASS DESCRIPTIONS|WEEK 2, MATHCAMP 2016 Contents 9:10 Classes 2 Dynamical Systems 2 Field Extensions and Galois Theory (Week 1 of 2) 2 Model Theory 2 Neural Networks 3 Problem Solving: Induction 3 10:10 Classes 4 Almost Planar 4 Extending Inclusion-Exclusion 4 Multilinear Algebra 5 The Word Problem for Groups 5 Why Are We Learning This? A seminar on the history of math education in the U.S. 6 11:10 Classes 6 Building Mathematical Structures 6 Graph Minors 7 History of Math 7 K-Theory 7 Linear Algebra (Week 2 of 2) 7 The Banach{Tarski Paradox 8 1:10 Classes 8 Divergent Series 8 Geometric Group Theory 8 Group Actions 8 The Chip-Firing Game 9 Colloquia 9 There Are Eight Flavors of Three-Dimensional Geometry 9 Tropical Geometry 9 Oops! I Ran Out of Axioms 10 Visitor Bios 10 Moon Duchin 10 Sam Payne 10 Steve Schweber 10 1 MC2016 ◦ W2 ◦ Classes 2 9:10 Classes Dynamical Systems. ( , Jane, Tuesday{Saturday) Dynamical systems are spaces that evolve over time. Some examples are the movement of the planets, the bouncing of a ball around a billiard table, or the change in the population of rabbits from year to year. The study of dynamical systems is the study of how these spaces evolve, their long-term behavior, and how to predict the future of these systems. It is a subject that has many applications in the real world and also in other branches of mathematics. In this class, we'll survey a variety of topics in dynamical systems, exploring both what is known and what is still open.
    [Show full text]
  • BRANCHING PROGRAM UNIFORMIZATION, REWRITING LOWER BOUNDS, and GEOMETRIC GROUP THEORY IZAAK MECKLER Mathematics Department U.C. B
    BRANCHING PROGRAM UNIFORMIZATION, REWRITING LOWER BOUNDS, AND GEOMETRIC GROUP THEORY IZAAK MECKLER Mathematics Department U.C. Berkeley Berkeley, CA Abstract. Geometric group theory is the study of the relationship between the algebraic, geo- metric, and combinatorial properties of finitely generated groups. Here, we add to the dictionary of correspondences between geometric group theory and computational complexity. We then use these correspondences to establish limitations on certain models of computation. In particular, we establish a connection between read-once oblivious branching programs and growth of groups. We then use Gromov’s theorem on groups of polynomial growth to give a simple argument that if the word problem of a group G is computed by a non-uniform family of read-once, oblivious, polynomial-width branching programs, then it is computed by an O(n)-time uniform algorithm. That is, efficient non-uniform read-once, oblivious branching programs confer essentially no advantage over uniform algorithms for word problems of groups. We also construct a group EffCirc which faithfully encodes reversible circuits and note the cor- respondence between certain proof systems for proving equations of circuits and presentations of groups containing EffCirc. We use this correspondence to establish a quadratic lower bound on the proof complexity of such systems, using geometric techniques which to our knowledge are new to complexity theory. The technical heart of this argument is a strengthening of the now classical the- orem of geometric group theory that groups with linear Dehn function are hyperbolic. The proof also illuminates a relationship between the notion of quasi-isometry and models of computation that efficiently simulate each other.
    [Show full text]
  • [Math.GR] 2 Mar 2002 ∆ Missing”
    COXETER GROUPS, 2-COMPLETION, PERIMETER REDUCTION AND SUBGROUP SEPARABILITY Paul E. Schupp Abstract. We show that all groups in a very large class of Coxeter groups are locally quasiconvex and have uniform membership problem solvable in quadratic time. If a group in the class satisfies a further hypothesis it is subgroup separable and relevant homomorphisms are also calculable in quadratic time. The algorithm also decides if a finitely generated subgroup has finite index. §1. Introduction. Several years ago the author [S2] raised the question of whether or not small cancellation methods could be used to investigate questions about finitely gener- ated subgroups of “sufficiently nice” groups— in particular the solvability of the membership problem and the Howson property. Rips [R] replied “No” by con- ′ 1 structing, for every metric small cancellation condition C n , finitely presented groups which satisfy the condition but which have unsolvable membership prob- lem and are neither Howson nor coherent. However, recent work of McCammond and Wise [M-W] and of Arzhantseva and Olshanskii[A-O] shows that the answer is actually “Yes” in many cases. McCammond and Wise introduced the use of “distributive” small cancellation hypotheses where the condition involves how the generators are distributed among all the defining relators and the ingenious idea of “perimeter reduction” where one counts “what is missing”. In this paper we introduce the idea that if one has a “suitable” subgroup graph, ∆1(H), of a subgroup H, one can construct from it a “complete” subgroup graph, arXiv:math/0203020v1 [math.GR] 2 Mar 2002 ∆2(H) which has most of the properties of subgroup graphs in the case of free groups and which directly reveals desired information about H.
    [Show full text]
  • The Compressed Word Problem for Groups
    Markus Lohrey The Compressed Word Problem for Groups – Monograph – April 3, 2014 Springer Dedicated to Lynda, Andrew, and Ewan. Preface The study of computational problems in combinatorial group theory goes back more than 100 years. In a seminal paper from 1911, Max Dehn posed three decision prob- lems [46]: The word problem (called Identitatsproblem¨ by Dehn), the conjugacy problem (called Transformationsproblem by Dehn), and the isomorphism problem. The first two problems assume a finitely generated group G (although Dehn in his paper requires a finitely presented group). For the word problem, the input con- sists of a finite sequence w of generators of G (also known as a finite word), and the goal is to check whether w represents the identity element of G. For the con- jugacy problem, the input consists of two finite words u and v over the generators and the question is whether the group elements represented by u and v are conju- gated. Finally, the isomorphism problem asks, whether two given finitely presented groups are isomorphic.1 Dehns motivation for studying these abstract group theo- retical problems came from topology. In a previous paper from 1910, Dehn studied the problem of deciding whether two knots are equivalent [45], and he realized that this problem is a special case of the isomorphism problem (whereas the question of whether a given knot can be unknotted is a special case of the word problem). In his paper from 1912 [47], Dehn gave an algorithm that solves the word problem for fundamental groups of orientable closed 2-dimensional manifolds.
    [Show full text]
  • Séminaire BOURBAKI Octobre 2018 71E Année, 2018–2019, N 1154 ESPACES ET GROUPES NON EXACTS ADMETTANT UN PLONGEMENT GROSSIER
    S´eminaireBOURBAKI Octobre 2018 71e ann´ee,2018{2019, no 1154 ESPACES ET GROUPES NON EXACTS ADMETTANT UN PLONGEMENT GROSSIER DANS UN ESPACE DE HILBERT [d'apr`esArzhantseva, Guentner, Osajda, Spakula]ˇ by Ana KHUKHRO 1. INTRODUCTION The landscape of modern group theory has been shaped by the use of geometry as a tool for studying groups in various ways. The concept of group actions has always been at the heart of the theory, and the idea that one can link the geometry of the space on which the group acts to properties of the group, or that one can view groups as geometric objects themselves, has opened up many possibilities of interaction between algebra and geometry. Given a finitely generated discrete group and a finite generating set of this group, one can construct an associated graph called a Cayley graph. This graph has the set of elements of the group as its vertex set, and two vertices are connected by an edge if one can obtain one from the other by multiplying on the right by an element of the generating set. This gives us a graph on which the group acts by isometries, viewing the graph as a metric space with the shortest path metric. While a different choice of generating set will result in a non-isomorphic graph, the two Cayley graphs will be the same up to quasi-isometry, a coarse notion of equivalence for metric spaces. The study of groups from a geometric viewpoint, geometric group theory, often makes use of large-scale geometric information.
    [Show full text]
  • Amenable Groups Without Finitely Presented Amenable Covers
    Bull. Math. Sci. (2013) 3:73–131 DOI 10.1007/s13373-013-0031-5 Amenable groups without finitely presented amenable covers Mustafa Gökhan Benli · Rostislav Grigorchuk · Pierre de la Harpe Received: 10 June 2012 / Revised: 25 June 2012 / Accepted: 2 February 2013 / Published online: 1 May 2013 © The Author(s) 2013. This article is published with open access at SpringerLink.com Abstract The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups G with the following properties: (i) G is finitely generated, (ii) G is amenable, e.g. of intermediate growth, (iii) any finitely presented group with a quotient isomorphic to G contains non-abelian free subgroups, or the stronger (iii’) any finitely presented group with a quotient isomorphic to G is large. Keywords Finitely generated groups · Finitely presented covers · Self-similar groups · Metabelian groups · Soluble groups · Groups of intermediate growth · Amenable groups · Groups with non-abelian free subgroups · Large groups Mathematics Subject Classification (2000) 20E08 · 20E22 · 20F05 · 43A07 Communicated by Dr. Efim Zelmanov. We are grateful to the Swiss National Science Foundation for supporting a visit of the first author to Geneva. The first author is grateful to the department of mathematics, University of Geneva, for their hospitality during his stay. The first and the second authors are partially supported by NSF grant DMS – 1207699. The second author was supported by ERC starting grant GA 257110 “RaWG”. M. G. Benli (B) · R. Grigorchuk Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843–3368, USA e-mail: [email protected] R.
    [Show full text]
  • Some Characterizations of Howson PC-Groups
    AN ELECTRONIC JOURNAL OF THE SOCIETAT CATALANA DE MATEMATIQUES` Some characterizations of Howson PC-groups ∗Jordi Delgado Resum (CAT) Universitat Polit`ecnica de Es demostra que, a la classe dels grups parcialment commutatius, les condicions Catalunya d'´esserHowson, ´essertotalment residualment lliure, i ´esserproducte lliure de grups [email protected] lliure-abelians, s´onequivalents. ∗Corresponding author Abstract (ENG) We show that, within the class of partially commutative groups, the conditions of being Howson, being fully residually free, and being a free product of free-abelian groups, are equivalent. Acknowledgement The author gratefully acknowledges the Keywords: PC-group, residually free, support of Universitat Polit`ecnica de Howson group. Catalunya through PhD grant number MSC (2010): 20Exx. 81--727, and the partial support from the Received: May 9, 2014. MEC (Spanish Government) through re- Accepted: May 20, 2014. search project number MTM2011-25955. http://reportsascm.iec.cat Reports@SCM 1 (2014), 33{38; DOI:10.2436/20.2002.02.3. 33 Some characterizations of Howson PC-groups In [10], the authors study the family of finitely generated partially commutative groups for which the fixed points subgroup of every endomorphism is finitely generated. Concretely, they characterize this family as those groups consisting in (finite) free products of finitely generated free-abelian groups. In this note we provide an elementary proof for two extra characterizations of this same family, namely: being Howson, and being a limit group. Moreover, we observe that, for some of the properties, no restriction in the cardinal of the generating set is needed, and the result holds in full generality (i.e.
    [Show full text]
  • Kurosh Rank of Intersections of Subgroups of Free Products of Right-Orderable Groups Yago Antol´In, Armando Martino and Inga Schwabrow
    Math. Res. Lett. c 2014 International Press Volume 21, Number 04, 649–661, 2014 Kurosh rank of intersections of subgroups of free products of right-orderable groups Yago Antol´ın, Armando Martino and Inga Schwabrow We prove that the reduced Kurosh rank of the intersection of two subgroups H and K of a free product of right-orderable groups is bounded above by the product of the reduced Kurosh ranks of H and K. In particular, taking the fundamental group of a graph of groups with trivial vertex and edge groups, and its Bass–Serre tree, our theorem becomes the desired inequality of the usual strengthened Hanna Neumann conjecture for free groups. 1. Introduction Let H and K be subgroups of a free group F, and r(H)=max{0, rank(H) − 1}. It was an open problem dating back to the 1950s to find an optimal bound of the rank of H ∩ K in terms of the ranks of H and K. In [14], Hanna Neumann proved the following: (1) r(H ∩ K) ≤ 2 · r(H) · r(K). The Hanna Neumann conjecture says that (1) holds replacing the 2 with a 1. Later, in [15], Walter Neumann improved (1) to (2) r(Hg ∩ K) ≤ 2 · r(H) · r(K), g∈K\F/H where Hg = g−1Hg. The strengthened Hanna Neumann conjecture,intro- duced by Walter Neumann, says that (2) holds replacing the 2 with a 1. These two conjectures have received a lot of attention, and recently, Igor Mineyev [13] proved that both conjectures are true (independently and at the same time, Joel Friedman also proved these conjectures (see [5, 8])).
    [Show full text]
  • Formal Languages and the Word Problem for Groups 1 Introduction 2
    Formal Languages and the Word Problem for Groups Iain A. Stewart∗ and Richard M. Thomas† Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, England. 1 Introduction The aim of this article is to survey some connections between formal language theory and group theory with particular emphasis on the word problem for groups and the consequence on the algebraic structure of a group of its word problem belonging to a certain class of formal languages. We define our terms in Section 2 and then consider the structure of groups whose word problem is regular or context-free in Section 3. In Section 4 we look at groups whose word- problem is a one-counter language, and we move up the Chomsky hierarchy to briefly consider what happens above context-free in Section 5. In Section 6, we see what happens if we consider languages lying in certain complexity classes, and we summarize the situation in Section 7. For general background material on group theory we refer the reader to [25, 26], and for formal language theory to [7, 16, 20]. 2 Word problems and decidability In this section we set up the basic notation we shall be using and introduce the notions of “word problems” and “decidability”. In order to consider the word problem of a group as a formal language, we need to introduce some terminology. Throughout, if Σ is a finite set (normally referred to in this context as an alphabet) then we let Σ∗ denote the set of all finite words of symbols from Σ, including the empty word , and Σ+ denote the set of all non-empty finite words of symbols from Σ.
    [Show full text]
  • [Math.GR] 31 Dec 2002 Upre Ne S Rn O DMS-9971511
    COHERENCE, LOCAL QUASICONVEXITY, AND THE PERIMETER OF 2-COMPLEXES JONATHAN P. MCCAMMOND 1 AND DANIEL T. WISE 2 Abstract. A group is coherent if all its finitely generated subgroups are finitely presented. In this article we provide a criterion for positively determining the coherence of a group. This criterion is based upon the notion of the perimeter of a map between two finite 2-complexes which is introduced here. In the groups to which this theory applies, a presentation for a finitely generated subgroup can be computed in quadratic time relative to the sum of the lengths of the generators. For many of these groups we can show in addition that they are locally quasiconvex. As an application of these results we prove that one-relator groups with sufficient torsion are coherent and locally quasiconvex and we give an alternative proof of the coherence and local quasiconvexity of certain 3-manifold groups. The main application is to establish the coherence and local quasiconvexity of many small cancellation groups. Contents 1. Introduction 2 2. Perimeter 5 3. Coherence theorem 12 4. Attachments 15 5. 2-cell coherence theorem 19 6. Algorithms 21 7. Path coherence theorem 24 8. One-relator groups with torsion 30 9. Small cancellation I 32 arXiv:math/0212381v1 [math.GR] 31 Dec 2002 10. Fan coherence theorems 36 11. Quasi-isometries and quasiconvexity 40 12. Fan quasiconvexity theorems 44 13. Small cancellation II 48 14. 3-manifold groups 51 15. Related properties 53 1Supported under NSF grant no. DMS-99781628 2Supported as an NSF Postdoctoral Fellow under grant no.
    [Show full text]
  • Fifty Years of Homotopy Theory
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 1, January 1983 FIFTY YEARS OF HOMOTOPY THEORY BY GEORGE W. WHITEHEAD The subject of homotopy theory may be said to have begun in 1930 with the discovery of the Hopf map. Since I began to work under Norman Steenrod as a graduate student at Chicago in 1939 and received my Ph.D. in 1941, I have been active in the field for all but the first ten years of its existence. Thus the present account of the development of the subject is based, to a large extent, on my own recollections. I have divided my discussion into two parts, the first covering the period from 1930 to about 1960 and the second from 1960 to the present. Each part is accompanied by a diagram showing the connections among the results dis­ cussed, and one reason for the twofold division is the complication of the diagram that would result were we to attempt to merge the two eras into one. The dating given in this paper reflects, not the publication dates of the papers involved, but, as nearly as I can determine them, the actual dates of discovery. In many cases, this is based on my own memory; this failing, I have used the date of the earliest announcement in print of the result (for example, as the abstract of a paper presented to the American Mathematical Society or as a note in the Comptes Rendus or the Proceedings of the National Academy). Failing these, I have used the date of submission of the paper, whenever available.
    [Show full text]