Introduction Current status Recent & near-future improvements

Neutrino telescope searches for in the

Pat Scott

Imperial College London

Slides available from tinyurl.com/patscott

1 Pat Scott – July 25 – Exploring the Dark Universe from solar DM Introduction Current status Recent & near-future improvements Neutrinos from solar dark matter

You are HERE

The Sun

neutrinos (lots of) dark matter

2 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Outline

1. Current status Latest results from IceCube, Antares, SuperK nulike likelihoods

2. Recent & near-future improvements: extension to usage with different DM models NR effective operator capture calculations for ADM→ Recent updates of solar atmospheric ν calculations Prospects for combination of different telescopes Prospects for combination with other DM searches

3 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements

Current status

4 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements

Spin-dependent limits IceCube, arXiv:1612.0549

-36 10 10 0 IceCube (2011-2014) Super-K (1996-2012) Antares (2007-2012)

-37 -1 PICO-2L PICO-60 10 10 (2015) (2013-2014)

-38 -2 ] 10 10 2 [cm [pb]

p -39 10 10 -3 SD

-40 10 10 -4

bb¯ + -41 W W -5 10 + 10 10 1 10 2 10 3 10 4 m [GeV] 5 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements

Spin-dependent limits LUX, arXiv:1705.03380

0 36 1 37 10 10− 10− 10−

DAMA ] ] 2

2 2 38 1 XENON100 37 10− 10− 10− 10− LUX WS2013

3 XENON100 39 LUX WS2013+WS2014–16 10− LUX WS2013 10− PandaX-II PandaX-II 2 38 10− 10− LUX WS2013+WS2014–16 ¯ ) bb 4 40 10− 10− PICO-2L IceCube ( 3 39 10 ) 10 MSSM (Strege et al, 2014) − − − W + 5 41 10− 10− W ¯ SuperK ( ττ) ) τ¯ 4 τ 40 ATLAS: 10− IceCube ( 10− = 1 6 gq = 0.25,gχ MSSM (GAMBIT, 2017) 42 WIMP–proton cross section [pb] 10 10

WIMP–neutron cross section [pb] − − WIMP–proton cross section [cm WIMP–neutron cross section [cm IceCube ( PICO-60 CMS: gq = 0.25,gχ = 1 5 41 7 43 10− 10− 10− 10− 101 102 103 104 105 101 102 103 104 105 WIMP Mass [GeV/c2] WIMP Mass [GeV/c2]

6 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Spin-independent limits

-39 10 10-3 IceCube (2011-2014) Super-K (1996-2012) -40 10 Antares (2007-2012) 10-4

-41 10 10-5

] -42 -6 2 10 10 [cm [pb] p

− -43 -7

SI 10 χ 10 σ

-44 10 10-8 LUX (2013,2014-2016) -45 Xenon100 (2010-2014) 10 bb¯ 10-9 PandaX-II (2016) W +W − τ+τ− -46 10 10-10 101 102 103 104 mχ [GeV]

7 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements A general word on how (not) to recast indirect detection limits

Indirect limits always presented in terms of hard process final states Actual experiments do not measure those final states – they detect one type of SM particle produced later: γs, νs, etc Limits as presented cannot be combined and applied to models with mixed final states (= all non-toy models) extra complications with neutrinos from capture- balance Proper treatment of indirect detection for BSM searches requires full phenomenological recast abilities full experimental and theoretical treatment at the same time → (Actually not so dissimilar to the LHC in this respect. . . )

8 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements telescope likelihoods: nulike

Unbinned ν telescope likelihood =⇒ full event-level angular and energy info

n Ytot Lunbin ≡ Lnum(ntot|θtot) (fSLS,i + fBGLBG,i ) i=1 Strategy: precompute partial likelihoods for each event, then reweight with the ν spectrum at for each model precompute step uses nusigma with CTEQ6-DIS PDFs to get charged current ν − n and ν − p cross-sections as function of x and y like step input: neutrino spectrum at Earth (from DarkSUSY or whatever else you want to use) like step output: num predicted events, likelihood → fully model-independent = future-proof for global fits

9 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

10 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

11 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

12 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

13 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

14 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i |

15 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM This is what needs to be provided by theory

Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i | Nulike precomputes and tabulates these over E for every event

16 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Likelihoods: horrible details (the abridged version)

ntot Y (n θ ) f + f  , (1) Lunbin ≡L num tot| tot SLS,i BGLBG,i i=1

∞ ntot −(θ +θ ) "  2# 1 Z (θBG + θS) e BG S 1 1 ln  num(ntot θtot)= exp d, (2) L | √2πσ 0 ntot!  − 2 σ

c 0 dPBG c dPBG 0 ,i (N , φ )= (N ) (φ ) , (3) LBG i i c i φ0 i dNi d i Z π Z ∞ 2P c 0 ~ c 0 d S ~ S,i (Ni , φi ξ)= Q(Ni , φi E, φ) (E, φ, ξ) dE dφ, (4) L | 0 0 | dE dφ Z ∞ Φ 1 2Σ texp X d ν ~ b  c 0  d ν→µ = (E, ξ~)f (E) Qµ N , φ Eµ, φµ (x, y E) dx dy dE , (5) θ E ν x i i | x y | S ν,ν¯ 0 d 0 d d 2 2 d Σν→µ X d σν→µ,N (x, y E)= V (Eµ) n (x, y E) , (6) | eff N | dx dy N=p,n dx dy c 0 c 0 Qµ(N , φ Eµ, φµ)= E (N Eµ)PSF(φ φµ, Eµ) . (7) i i | disp i | i | Nulike precomputes and tabulates these over E for every event This is what needs to be provided by theory

17 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Reprocessing 86-string data to recastable (=nulike) format still needs doing. . .

Introduction Current status Recent & near-future improvements 79-string IceCube re-analysis

33 ) 10− 2 + b¯b, n only τ τ −, n only

(cm 34 10− ¯ + ,p bb, full τ τ −, full L L SD +

σ 35 W W −, n only PRL soft 10− + W W −, full PRL hard 36 L 10−

37 10− Available at nulike.hepforge.org 38 10−

39 10−

40 10−

Dark matter-proton cross-section 41 10− 101 102 103 104 Dark matter mass mχ (GeV) IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016 nulike: model-independent unbinned limit calculator for generic BSM models 18 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Reprocessing 86-string data to recastable (=nulike) format still needs doing. . .

Introduction Current status Recent & near-future improvements 79-string IceCube re-analysis

33 IceCube Collaboration 2016 ) 10− 2 + gg W W − 34 (cm 10− b¯b ZZ ,p + SD 35 hh τ τ − σ 10− tt¯ νν¯ 36 10−

37 10− Available at 38 10− nulike.hepforge.org

39 10−

40 10−

41 10− IC79

Dark matter-proton cross-section 42 10− 101 102 103 104 Dark matter mass mχ (GeV) IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016 nulike: model-independent unbinned limit calculator for generic BSM models 19 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Reprocessing 86-string data to recastable (=nulike) format still needs doing. . .

Introduction Current status Recent & near-future improvements 79-string IceCube re-analysis

35 IceCube Collaboration 2016

) 10− 2

36 b ¯ 10− b (cm Area where essentially

,p τ 37 + all MSSM models are 10− τ 0 SD − excluded by IC79 σ 38 10− MSSM excluded by 39 10− IC79 depending on channel 40 10− Available at Well-tempered MSSM models not 41 nulike.hepforge.org 10− excluded by IC79

42 10− χ± coannihilation -proton cross-section 0 1 43 ˜ χ 10− B q˜ Pure h˜ MSSM-25 benchmarks coann.− 44 excluded at >90% CL A funnel 10− tension (68% – 90% CL) 45 10− allowed Effective 101 102 103 104 Dark matter mass mχ (GeV) IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016 nulike: model-independent unbinned limit calculator for generic BSM models 20 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, JCAP 2016 nulike: model-independent unbinned limit calculator for generic BSM models

Introduction Current status Recent & near-future improvements 79-string IceCube re-analysis

35 IceCube Collaboration 2016

) 10− 2

36 b ¯ 10− b (cm Area where essentially

,p τ 37 + all MSSM models are 10− τ 0 SD − excluded by IC79 σ 38 10− MSSM excluded by 39 10− IC79 depending on channel 40 10− Available at Well-tempered MSSM models not 41 neutralinos nulike.hepforge.org 10− excluded by IC79

42 10− χ± coannihilation -proton cross-section 0 1 43 ˜ χ 10− B q˜ Pure h˜ MSSM-25 benchmarks coann.− 44 excluded at >90% CL A funnel 10− tension (68% – 90% CL) 45 10− allowed Effective 101 102 103 104 Dark matter mass mχ (GeV)

Reprocessing 86-string data to recastable (=nulike) format still needs doing. . .

21 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements

Recent & near-future improvements

22 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Recasting limits to other models: asymmetric DM

Vincent, PS & Serenelli, arXiv:1605:06502 Catena, arXiv:1503.04109 IceCube data can now be fully Murase & Shoemaker, arXiv:1606.03087 recast to basically any model Limits from helioseismology and (regular) solar neutrinos are one of the leading constraints on asymmetric DM (A. Vincent, Thu) Some ADM models are not fully asymmetric high-E νs constrain asymmetry → parameter r = nχ¯/nχ ∞ Many ADM models are q or v-dependent non-relativistic effective operator → capture should be combined with nulike recast of limits 23 novelPat Scott and – July significant 25 – Exploring limits the Dark Universe Neutrinos from solar DM → Three new calculations of the rate, including two new Monte Carlo simulations of showers and propagation: Argüelles, de Wasseige, Fedynitch, Jones, arXiv:1703.07798 Ng, Beacom, Peter, Rott, arXiv:1703:10280 Edsjö, Elevant, Enberg, Niblaeus, arXiv:1704:02892

Predicted rates less than factor of 10 from current limits needs to be included in future analyses. →

Introduction Current status Recent & near-future improvements Recent updates of solar atmospheric ν calculations

Irreducible background due to high-energy ν creation in hadronic cascades in solar atmosphere:

Incoming CR Secondary particle Neutrino `

R

· b R

Œe Sun Œe Earth

24 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Predicted rates less than factor of 10 from current limits needs to be included in future analyses. →

Introduction Current status Recent & near-future improvements Recent updates of solar atmospheric ν calculations

Irreducible background due to high-energy ν creation in hadronic cascades in solar atmosphere:

Three new calculations of the rate, including two new Monte Carlo simulations of showers and propagation: Argüelles, de Wasseige, Fedynitch, Jones, arXiv:1703.07798 Ng, Beacom, Peter, Rott, arXiv:1703:10280 Edsjö, Elevant, Enberg, Niblaeus, arXiv:1704:02892

25 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Irreducible background due to high-energy ν creation in hadronic cascades in solar atmosphere:

Three new calculations of the rate, including two new Monte Carlo simulations of showers and propagation: Argüelles, de Wasseige, Fedynitch, Jones, arXiv:1703.07798 Ng, Beacom, Peter, Rott, arXiv:1703:10280 Edsjö, Elevant, Enberg, Niblaeus, arXiv:1704:02892

Introduction Current status Recent & near-future improvements Recent updates of solar atmospheric ν calculations

Ng, Beacom, Peter & Rott, arXiv:1703:10280

10-38

-39 F 8 10 C 3 ] 0 6 τ¯ 2 - τ CO ) m PI 6 c -40 1

[ 10 0 Super-K(2015) τ τ¯ (2 D p C S χ I σ 10-41

10-42 ττ¯ floor ττ¯ floor Super-K IceCube 10-43 101 102 103 104 mχ [ GeV ] Predicted rates less than factor of 10 from current limits needs to be included in future analyses. → 26 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Prospects for combination of data

Combination of neutrino telescope limits Initial efforts to make combined limit started across IceCube, ANTARES & SuperK Straightforward in nulike framework ANTARES data is almost identical to IceCube format should just ‘slot in’ → SuperK data less so due to electromagnetic showers

27 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Prospects for combination of data

Combination with all other DM searches Direct detection, other indirect detection, collider, relic density,. . . Ideally, want to be able to deal with any DM model and easily add new likelihoods, observables, samplers, datasets, etc need a new, flexibe and modular global fitting tool →

28 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements

M B I T G A

29 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements GAMBIT

3 physics papers + 6 code papers: Scalar singlet DM arXiv:1705.07931 GUT-scale MSSM arXiv:1705.07935 weak-scale MSSM arXiv:1705.07917

GAMBIT Core arXiv:1705.07908 DarkBit arXiv:1705.07920 ColliderBit arXiv:1705.07919 FlavBit arXiv:1705.07933 SpecBit+DecayBit+PrecisionBit arXiv:1705.07936 ScannerBit arXiv:1705.07959

+ public code & dataset releases – see gambit.hepforge.org 30 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM Introduction Current status Recent & near-future improvements Summary

1 Neutrino telescopes give the best sensitivity to spin-dependent DM-nucleon scattering 2 Even better pheno with neutrino telescope data on the near horizon: ADM + data combinations 3 GAMBIT is here! allows neutrino telescope (and all other) limits to → properly feed into global fits

31 Pat Scott – July 25 – Exploring the Dark Universe Neutrinos from solar DM