Durham E-Theses

Total Page:16

File Type:pdf, Size:1020Kb

Durham E-Theses Durham E-Theses Atmospheric pressure metal-organic vapour phase epitaxy of InP, (GaIn)as, and (GaIn)(AsP) alloys Butler, Barry R. How to cite: Butler, Barry R. (1989) Atmospheric pressure metal-organic vapour phase epitaxy of InP, (GaIn)as, and (GaIn)(AsP) alloys, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6545/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Abstract Atmospheric Pressure Metal-Organic Vapour Phase Epitaxy of InP, (Galn)As, and (GaIn)(AsP) Alloys. Barry R. Butler An introduction to optical communications and opto-electronic devices is given, which demonstrates the motivation for research into III/V devices, and materials. Different epitaxial growth techniques are compared, an introduction to Metal-Organic Vapour Phase Epitaxy (MOVPE) is given, and the author's reactor is described. The reaction chemistry of MOVPE is discussed and results from studies of the passivation of p-type InP are used to confirm the surface nature of reactions. Results upon the background doping of MOVPE grown InP and the effect of growth conditions are discussed. High electron mobility results from InP layers are presented. The growth of epitaxial alloy layers of (Galn)As and (GaIn)(AsP) is described with particular reference to crystallinity, lattice matching and composition control. A novel method of monitoring the dynamic vapour pressure of metal alkyls is described, and theoretical and practical results upon the factors affecting gas mixing and alloy uniformity are presented. Results on the intentional doping of epitaxial layers with dimethylzinc, hydrogen selenide, and silane and the effect of varying the growth conditions are presented; and the use of other dopants is reviewed. The passivation of zinc acceptors by hydrogen in p-type InP is reported and discussed in detail. Results upon the use of ferrocene as a semi-insulating dopant are presented and the literature is reviewed. Photoluminescence and transmission electron microscopy results are presented upon the growth of low dimensional structures, containing layers of less than lOOA thickness. Systematic studies of growth conditions are reported which have led to an understanding of the factors affecting hetero-interface abruptness. Experimental results are reported upon distributed feedback lasers and all MOVPE double heterostructure and ridge waveguide lasers. A discussion on safety aspects of MOVPE is included, with particular reference to the toxicity of arsine and phosphine, and the prevention of environmental pollution. Atmospheric Pressure Metal-Organic Vapour Phase Epitaxy of InP, (Galn)As and (GaIn)(AsP) Alloys. Barry R. Butler This thesis was submitted to the Faculty of Science of the University of Durham, for the degree of Master of Science. 1989 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. 2 6 J^N 1990 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. Contents Page Abstract Preface Chapter 1: Introduction Optical Fibre Communications 1 Optical Fibres 2 Cost Advantages of Optical Fibres 3 Optical Fibre Communication Systems 4 Opto-Electronic Devices 8 III/V Semiconductors 10 Device Fabrication 11 Epitaxial Layer Growth 12 Liquid Phase Epitaxy 13 Vapour Phase Epitaxy 14 Metal Organic Vapour Phase Epitaxy 15 Molecular Beam Epitaxy 16 Metal Organic Molecular Beam Epitaxy 17 Summary 17 Chapter 2: MOVPE Chemistry Reaction Mechanism for MOVPE 18 Metal Organic Compounds 21 Group V Precursors 23 Preparation of Metal Organic Compounds 25 Chapter 3: InP Epitaxy Crystal Structure of InP 28 Epitaxial Crystal Growth 28 Substrates 30 Substrate Preparation 30 InP Growth Conditions 31 Background Doping of InP 32 Variation of InP Background Doping Level 33 with Growth Conditions Interface Carrier Concentration Spikes 34 Source of Background Doping 35 Single Epilayer Mobilities 37 Chapter 4: (GaIn)(AsP) Alloy Epitaxy III/V Alloy Systems 40 Lattice Matching of Alloys 41 (Galn)As 42 (GaIn)(AsP) 45 Alloy Uniformity 47 Non-Uniformity Due to Slow Arrival of Reactants 47 Ultrasonic Binary Gas Composition Monitoring 48 Trimethylindium Vapour Pressure Rise Time Measurements 51 Run to Run Vapour Pressure Stability 52 Trimethylindium Source Exhaustion Characteristics 53 Gas Mixing 54 Turbulent Mixing 56 Diffusion Mixing of Gases 58 Interface Abruptness: The Effect of Gas Diffusion 59 Interface Abruptness: Effect of Parabolic Velocity Profile 60 Entrance Effects 61 Longitudinal Compositional Uniformity 62 Thickness Uniformity 63 Chapter 5: Impurity Doping of InP and (Gain)As n-type Dopants 64 Silane 65 Disilane 67 Hydrogen selenide 67 Hydrogen sulphide 68 Diethyltelluride 68 Tetraethyllead 68 p-type Dopants 69 Dimethylzinc and Diethylzinc 69 Dimethylcadmium 71 Magnesium Doping 72 Manganese Doping 72 Hydrogen Passivation of Acceptors in p-type InP 73 Hydrogen Incorporation in p-InP/p+(GaIn)As Structures 73 Hydrogen Incorporation into p-InP Layers 77 Relevance of Hydrogen Incorporation to Reaction Mechanism 78 Bonding Mechanism for Hydrogen in p-InP 79 Rare Earth Element Doping 80 Iron Doping of InP 80 Cobalt Doping 83 Chapter 6: Low Dimensional Structures Background 84 Device Applications 86 Growth on Mismatched Substrates 87 Growth of Low Dimensional Structures 88 Photoluminescence Studies of (GaIn)As/InP Quantum Wells 90 TEM Studies of (GaIn)As/InP Quantum Wells 92 Double Crystal X-ray Analysis of (GaIn)As/InP Quantum Wells 95 (GaIn)(AsP) Quantum Well Structures 95 Chapter 7: Semiconductor Lasers Grown by MOVPE History 97 Theory of Operation 98 Heterostructures 101 Double Heterostructure Lasers 102 Ideal Device Performance 104 Ridge-Waveguide Lasers 105 Distributed Feedback Lasers 106 Contact Layers 108 p and n-Type Doping of InP Confining Layers 108 Reliability of Lasers 109 Buried Heterostructure Lasers 110 The Use of Semi-Insulating Materials in Buried Heterostructure Lasers 112 Quantum Well InP Based Lasers 113 Chapter 8: MOVPE Safety Metal-Organic Chemicals 115 Phosphorus 116 Hydrogen 116 The Toxicity of Arsine and Phosphine 117 Safe Reactor Design and Operation 117 Gas Containment upon Equipment Failure 118 Cylinder Changing, Handling and Storage 119 Medical Aspects of Exposure to Arsine and Phosphine 120 Arsine and Phosphine Monitoring 120 Alternative Group V Sources 121 Environmental Protection 122 Charcoal Adsorption 122 Wet Scrubbers 123 Future Developments 124 Appendix 1: Atmospheric Pressure MOVPE Reactor B at STL Vent-Run Design 125 Pressure and Flow Balancing 125 Mass Flow Controllers and Reactant Lines 126 Metal-Organic Sources 126 Gaseous Sources 127 Reaction Chamber 127 Exhaust and Toxic Gas Monitoring 127 Computer Control and In-situ Monitoring 128 Leak Testing and Vacuum System 128 Acknowledgements 129 References Tables are incorporated within the text. References are denoted using square brackets: [n] Figures Figures are included at the end of each chapter. 1.1 Summary of telecommunication systems and opto-electronic components. 1.2 Attenuation in silica optical fibres. 1.3 Semiconductor laser fabrication steps. 3.1 Growth of InP upon a non-planar surface. 3.2 InP background doping level as a function of growth temperature. 3.3 SIMS profile through InP grown at different temperatures. 3.4 InP background doping level as a function of growth rate. 3.5 SIMS profile through InP grown at different rates. 3.6 InP background doping level as a function of V/III ratio. 3.7 SIMS profile through InP grown under different V/III ratios. 3.8 Electrochemical profile through high mobility InP. 3.9 Low temperature photoluminescence spectrum for high purity InP. 4.1 Lattice matching and band-gap contours for compositions of ternary and quaternary alloys. 4.2 Morphology of good and poor quality (Galn)As. 4.3 Morphology of (Galn)As grown using different arsine over-pressures. 4.4 77K photoluminescence from a 1.3)jm quaternary layer. 4.5 X-ray rocking curve for l.lSym quaternary material. 4.6 X-ray rocking curve for 1.3ym quaternary material. 4.7 Diagram of reactor trimethylindium line and ultrasonic reagent monitor. 4.8 Time response of trimethylindium vapour pressure at 50°C. 4.9 Time response of the ultrasonic reagent monitor. 4.10 Time response of trimethylindium vapour pressure at 40°C. 4.11 Run to run repeatability of trimethylindium vapour pressure. 4.12 Trimethylindium vapour pressure source exhaustion characteristics. 4.13 Lateral composition of epitaxial (Galn)As. 4.14 Lateral composition of epitaxial (Galn)As after reversal of the gas manifold inlet configuration. 4.15 Lateral composition of epitaxial (Galn)As grown with an increased trimethylgallium injection velocity. 4.16 Lateral composition of epitaxial (Galn)As grown using a protruding inlet gas switching manifold. 4.17 Lateral composition of epitaxial (Galn)As grown using a high impedance gas mixing nozzle. 4.18 Calculation for diffusion of trimethylgallium in hydrogen. 4.19 Photoluminescence map of (Galn)As grown using a dual line reactor. 4.20 Photoluminescence map of 1.55)jm quaternary material. 4.21 Variation of gallium content as a function of growth tube temperature. 4.22 Variation of arsenic content as a function of growth tube temperature.
Recommended publications
  • Zinc Selenide Quantum Dots
    Chapter 3 Zinc Selenide Quantum Dots 3.1 Introduction: Nanoscale materials have been extensively studied in recent years to study the evolution of the electronic structure from molecules to bulk. The properties or the electronic structure of nanoparticles is not a simple extrapolation of its corresponding molecular or bulk state. Quantum dots show unique features arising from the variation in crystal structure parameters, discretization of electron energy levels, concentration of oscillator strength for particular transitions, high polarizability of electron energy levels and increased surface to volume ratio [1-4]. Quantum confinement in semiconductors leads to discrete transitions that are blue shifted in energy from the bulk. Inhomogeneous broadening of the optical spectra due to size distribution and shape variations of the nanoparticles, conceal the fine structure in the energy states of quantum dots. In order to study the evolution of the electronic, optical and structural properties of material with size it is essential to synthesize nanoparticles of different sizes (with narrow size distribution) and controlled surface properties. II-VI semiconductors are relatively easy to synthesize, yielding free standing colloidal quantum dots by wet chemical routes. The evolving electronic structure as a function of size can be determined by non-contact optical probes in case of direct band gap II-VI semiconductors. The quantum size effects in CdSe nanoparticles with wurtzite structure are thoroughly investigated [5], while relatively less attention is being paid to other II-VI nanocrystals such as zinc selenide or zinc oxide. ZnSe is a II-VI direct band gap, zinc blende semiconductor with a bulk band gap of 2.7 eV at room temperature.
    [Show full text]
  • Zinc Selenide Optical Crystal
    Revision date: 07/12/2020 Revision: 1 SAFETY DATA SHEET Zinc Selenide Optical Crystal SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name Zinc Selenide Optical Crystal CAS number 1315-09-9 EU index number 034-002-00-8 EC number 215-259-7 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Optical Material for manufacture of Optical Components 1.3. Details of the supplier of the safety data sheet Supplier Knight Optical (UK) LTD Roebuck Business Park Harrietsham Kent ME17 1AB UK +44 (0)1622 859444 [email protected] 1.4. Emergency telephone number Emergency telephone +44 (0)1622 859444 (Monday to Friday 08:30 to 17:00 GMT) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Not Classified Health hazards Acute Tox. 3 - H301 Acute Tox. 3 - H331 Environmental hazards Aquatic Chronic 1 - H410 2.2. Label elements EC number 215-259-7 Hazard pictograms Signal word Danger Hazard statements H301+H331 Toxic if swallowed or if inhaled. H410 Very toxic to aquatic life with long lasting effects. 1/10 Revision date: 07/12/2020 Revision: 1 Zinc Selenide Optical Crystal Precautionary statements P264 Wash contaminated skin thoroughly after handling. P270 Do not eat, drink or smoke when using this product. P273 Avoid release to the environment. P403+P233 Store in a well-ventilated place. Keep container tightly closed. P501 Dispose of contents/ container in accordance with national regulations.
    [Show full text]
  • Material Safety Data Sheet
    LTS Research Laboratories, Inc. Safety Data Sheet Zinc Selenide ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Zinc selenide Chemical Formula: ZnSe Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 855-587-2436 / 855-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: Danger Hazard Statements: H301+H331: Toxic if swallowed or if inhaled H373: May cause damage to organs through central nervous system, the liver, and the digestive system through prolonged or repeated exposure. Route of exposure: Oral, inhalative. H410 Very toxic to aquatic life with long lasting effects Precautionary Statements: P260 Do not breathe dust/fume/gas/mist/vapours/spray P264 Wash skin thoroughly after handling P273: Avoid release to the environment P270: Do not eat, drink, or smoke when using this product. P309: IF exposed or you feel unwell: P310: Immediately call a POISON CENTER or doctor/physician P302+P352: IF ON SKIN: Wash with soap and water P391: Collect
    [Show full text]
  • Investigations of Phonons in Zinc Blende and Wurtzite by Raman Spectroscopy 25
    ProvisionalChapter chapter 2 Investigations of of Phonons Phonons in Zinc in Zinc Blende Blende and Wurtziteand Wurtzite by Raman Spectroscopy by Raman Spectroscopy Lin Sun, Lingcong Shi and Chunrui Wang Lin Sun, Lingcong Shi and Chunrui Wang Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/64194 Abstract The importance of phonons and their interactions in bulk materials is well known to those working in the fields of solid‐state physics, solid‐state electronics, optoelectronics, heat transport, quantum electronic, and superconductivity. Phonons in nanostructures may act as a guide to research on dimensionally confined phonons and lead to phonon effects in nanostructures and phonon engineering. In this chapter, we introduce phonons in zinc blende and wurtzite nanocrystals. First, the basic structure of zinc blende and wurtzite is described. Then, phase transformation between zinc blende and wurtzite is presented. The linear chain model of a one‐dimensional diatomic crystal and macroscopic models are also discussed. Basic properties of phonons in wurtzite structure will be considered as well as Raman mode in zinc blende and wurtzite structure. Finally, phonons in ZnSe, Ge, SnS2, MoS2, and Cu2ZnSnS4 nanocrystals are discussed on the basis of the above theory. Keywords: phonons, zinc blende, wurtzite, Raman spectroscopy, molecular vibration 1. Zinc blende and wurtzite structure Crystals with cubic/hexagonal structure are of major importance in the fields of electronics and optoelectronics. Zinc blende is typical face‐centered cubic structure, such as Si, Ge, GaAs, and ZnSe. Wurtzite is typical hexagonal close packed structure, such as GaN and ZnSe.
    [Show full text]
  • Synthesis, Characterization and Optical Properties of Znse Nanoparticles
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 4606-4609 © Research India Publications. http://www.ripublication.com Synthesis, Characterization and Optical Properties of ZnSe Nanoparticles Anil Yadav1, 2*, S. P. Nehra2, Dinesh Patidar3 1Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat (Haryana) India. 2Centre of Excellence for Energy & Environmental Studies, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat (Haryana) India. 3Department of Physics, Seth G.B. Podar College, Nawalgarh, Jhunjhunu (Rajasthan) India. *Corresponding Author Abstract characterization of ZnSe semiconductors consisting particles of 2-100 nm, which are generally referred as quantum dots The chemical co-precipitation method was employed to and nanocrystals. The interests of the researchers are mainly synthesize zinc selenide (ZnSe ) nanoparticles with the help of because of their size-tunable optical, electronic and chemical Selenium powder, sodium borohydride, zinc acetate. properties [3,4]. Further miniaturization of optical and Mercaptoethanol was added as capping agent. The XRD, electronic devices leads to their commercial applications [1,4- SEM and TEM techniques were employed for the 9] are as diverse as solar cells, catalysis, biological labelling, characterization of ZnSe nanoparticles. The average diameter light-emitting diodes. As we know that Size and shape of the of ZnSe nanoparticles is 15 nm. HR transmission electron nanomaterials are responsible for their properties but synthesis microscopy (HRTEM) image displays the crystalline features of stable monodispersed nanocrystals is still a great challenge of ZnSe nanoparticles. The PL emission spectrum indicates a in Nanoscience. The control of shape of nanocrystals is also peak centered at 480 nm along with two shoulders at 453 and very important .The correlation exists between the shape and 520 nm.
    [Show full text]
  • Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R
    Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R. Triboulet, J. Ndap, A. El Mokri, A. Tromson Carli, A. Zozime To cite this version: R. Triboulet, J. Ndap, A. El Mokri, A. Tromson Carli, A. Zozime. Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide. J. Phys. IV, 1995, 05 (C3), pp.C3-141-C3-149. 10.1051/jp4:1995312. jpa-00253678 HAL Id: jpa-00253678 https://hal.archives-ouvertes.fr/jpa-00253678 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C3, supplCment au Journal de Physique 111, Volume 5, avril 1995 Solid State Recrystallization of 11-VI Semiconductors: Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R. Triboulet, 3.0. Ndap, A. El Mokri, A. Tromson Carli and A. Zozime CNRS, Laboratoire de Physique des Solides de Bellevue, 1 place Aristide Briand, F 92195 Meudon cedex, France Abstract : Solid state recrystallization (SSR) has been very rarely used for semiconductors. It has nevertheless been proposed, and industrially used, for the single crystal growth of cadmium mercury telluride according to a quench-anneal process.
    [Show full text]
  • Catalytic Asymmetric Addition of Diorganozinc Reagents to N
    Catalytic asymmetric addition of diorganozinc SPECIAL FEATURE reagents to N-phosphinoylalkylimines Alexandre Coˆ te´ , Alessandro A. Boezio, and Andre´ B. Charette* Department of Chemistry, University of Montreal, P.O. Box 6128, Station Downtown, Montreal, QC, Canada H3C 3J7 Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved February 4, 2004 (received for review October 31, 2003) The synthesis of ␣-chiral amines bearing two alkyl groups has been hampered by the accessibility and stability of the alkylimine precursor. Herein, we report an efficient strategy to generate the alkyl-substituted imine in situ that is compatible with the Me- DuPHOS monoxide⅐Cu(I) catalyzed addition of diorganozinc re- agents. The sulfinic acid adduct of the imine is readily prepared by mixing diphenylphosphinic amide, the aldehyde, and sulfinic acid. The sulfinic acid adduct is generally isolated by filtration. The addition of diorganozinc reagents in the presence of Me-DuPHOS monoxide⅐Cu(I) and the in situ-generated imines affords the cor- Fig. 1. Bioactive ␣-chiral amines. responding ␣-chiral amines in high yields and enantiomeric excesses. sensitive imines from stable precursors has been a strategy that he synthesis of ␣-chiral amines using the catalytic asymmetric has been quite successful in a number of cases. Typically, a stable Taddition of diorganozinc reagents has produced very exciting imine adduct is used as a precursor and is converted to the imine results in recent years (1–3). This very important subunit is in situ (Scheme 2). The method involves the use of a leaving ␣ CHEMISTRY commonly found in many pharmaceuticals and other biologically group (LG) on the -carbon of the N-protected amine.
    [Show full text]
  • Pyrophoric Materials
    Appendix A PYROPHORIC MATERIALS Pyrophoric materials react with air, or with moisture in air. Typical reactions which occur are oxidation and hydrolysis, and the heat generated by the reactions may ignite the chemical. In some cases, these reactions liberate flammable gases which makes ignition a certainty and explosion a real possibility. Examples of pyrophoric materials are shown below. (List may not be complete) (a) Pyrophoric alkyl metals and derivatives Groups Dodecacarbonyltetracobalt Silver sulphide Dialkytzincs Dodecacarbonyltriiron Sodium disulphide Diplumbanes Hexacarbonylchromium Sodium polysulphide Trialkylaluminiums Hexacarbonylmolybdenum Sodium sulphide Trialkylbismuths Hexacarbonyltungsten Tin (II) sulphide Nonacarbonyldiiron Tin (IV) sulphide Compounds Octacarbonyldicobalt Titanium (IV) sulphide Bis-dimethylstibinyl oxide Pentacarbonyliron Uranium (IV) sulphide Bis(dimethylthallium) acetylide Tetracarbonylnickel Butyllithium (e) Pyrophoric alkyl non-metals Diethylberyllium (c) Pyrophoric metals (finely divided state) Bis-(dibutylborino) acetylene Bis-dimethylarsinyl oxide Diethylcadmium Caesium Rubidium Bis-dimethylarsinyl sulphide Diethylmagnesium Calcium Sodium Bis-trimethylsilyl oxide Diethylzinc Cerium Tantalum Dibutyl-3-methyl-3-buten-1-Yniborane Diisopropylberyllium Chromium Thorium Diethoxydimethylsilane Dimethylberyllium Cobalt Titanium Diethylmethylphosphine Dimethylbismuth chloride Hafnium Uranium Ethyldimthylphosphine Dimethylcadmium Iridium Zirconium Tetraethyldiarsine Dimethylmagnesium Iron Tetramethyldiarsine
    [Show full text]
  • Chalcogenide Glasses for Infrared Applications: New Synthesis Routes and Rare Earth Doping
    Chalcogenide Glasses for Infrared Applications: New Synthesis Routes and Rare Earth Doping Item Type text; Electronic Dissertation Authors Hubert, Mathieu Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:13:56 Link to Item http://hdl.handle.net/10150/223357 CHALCOGENIDE GLASSES FOR INFRARED APPLICATIONS: NEW SYNTHESIS ROUTES AND RARE EARTH DOPING By Mathieu Hubert __________________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Mathieu Hubert entitled Chalcogenide glasses for infrared applications: new synthesis routes and rare earth doping and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 03/30/2012 Pierre Lucas _______________________________________________________________________ Date: 03/30/2012 B.G. Potter _______________________________________________________________________
    [Show full text]
  • Chemical List
    1 EXHIBIT 1 2 CHEMICAL CLASSIFICATION LIST 3 4 1. Pyrophoric Chemicals 5 1.1. Aluminum alkyls: R3Al, R2AlCl, RAlCl2 6 Examples: Et3Al, Et2AlCl, EtAlCl2, Me3Al, Diethylethoxyaluminium 7 1.2. Grignard Reagents: RMgX (R=alkyl, aryl, vinyl X=halogen) 8 1.3. Lithium Reagents: RLi (R = alkyls, aryls, vinyls) 9 Examples: Butyllithium, Isobutyllithium, sec-Butyllithium, tert-Butyllithium, 10 Ethyllithium, Isopropyllithium, Methyllithium, (Trimethylsilyl)methyllithium, 11 Phenyllithium, 2-Thienyllithium, Vinyllithium, Lithium acetylide ethylenediamine 12 complex, Lithium (trimethylsilyl)acetylide, Lithium phenylacetylide 13 1.4. Zinc Alkyl Reagents: RZnX, R2Zn 14 Examples: Et2Zn 15 1.5. Metal carbonyls: Lithium carbonyl, Nickel tetracarbonyl, Dicobalt octacarbonyl 16 1.6. Metal powders (finely divided): Bismuth, Calcium, Cobalt, Hafnium, Iron, 17 Magnesium, Titanium, Uranium, Zinc, Zirconium 18 1.7. Low Valent Metals: Titanium dichloride 19 1.8. Metal hydrides: Potassium Hydride, Sodium hydride, Lithium Aluminum Hydride, 20 Diethylaluminium hydride, Diisobutylaluminum hydride 21 1.9. Nonmetal hydrides: Arsine, Boranes, Diethylarsine, diethylphosphine, Germane, 22 Phosphine, phenylphosphine, Silane, Methanetellurol (CH3TeH) 23 1.10. Non-metal alkyls: R3B, R3P, R3As; Tributylphosphine, Dichloro(methyl)silane 24 1.11. Used hydrogenation catalysts: Raney nickel, Palladium, Platinum 25 1.12. Activated Copper fuel cell catalysts, e.g. Cu/ZnO/Al2O3 26 1.13. Finely Divided Sulfides: Iron Sulfides (FeS, FeS2, Fe3S4), and Potassium Sulfide 27 (K2S) 28 REFERRAL
    [Show full text]
  • Effect of Thickness on the Opticalproperties of Zinc Selenide Thin Films
    Journal of Non-Oxide Glasses Vol. 3, No 3, 2011, p. 105 - 111 EFFECT OF THICKNESS ON THE OPTICALPROPERTIES OF ZINC SELENIDE THIN FILMS N.A. OKEREKE*, I.A. EZENWA2 AND A.J. EKPUNOBIa Department Of Industrial Physics, Anambra State University,Uli, Anambra State. aDepartment Of Physics And Industrial Physics, Nnamdi Azikiwe University, Awka, Anambra State. The zinc selenide (ZnSe) thin films of thicknesses 1.60µm and 1.64µm were chemically deposited on well cleaned glass substrate at room temperature. The films are polycrystalline with cubic structure, confirmed by x-ray diffractogram. The optical spectra of zinc selenide thin films were recorded in the wavelength range of 0.36µm and 1.10µm. The spectral absorption data shows that the films absorb in the ultra violet range of 0.36- 0.45 microns and have almost zero absorbance in VIS-IR regions of the spectrum. The films have average index of refraction of 2.0. The plot of α² versus h showed a direct band gap range of 2.70eV-2.75eV. The band gap is found to decrease with increase in film thickness. (Recieved October 19, 2011; accepted September 23, 2011) Keyword: Semiconductor, thin film, Zinc selenide, chemical bath, characterization, application. 1. Introduction The 11-VI semiconductor compounds are important optoelectronics, luminescent and laser materials. Intensive research has been performed in the past to study the fabrication and characterization of these compounds in the form of thin films. Zinc selenide is a widely used 11-VI semiconductor. It is one of the most interesting binary wide band gaps of about 2.7eV at room temperature.
    [Show full text]
  • Title Exploration of Dimethylzinc-Mediated Radical Reactions
    Title Exploration of Dimethylzinc-Mediated Radical Reactions. Author(s) Yamada, Ken-Ichi; Tomioka, Kiyoshi Citation The Chemical Record (2015), 15(5): 854-871 Issue Date 2015-10 URL http://hdl.handle.net/2433/203021 This is the peer reviewed version of the following article: Yamada, K.-i. and Tomioka, K. (2015), Exploration of Dimethylzinc-Mediated Radical Reactions. Chem. Rec., 15: 854‒871, which has been published in final form at http://dx.doi.org/10.1002/tcr.201500017. This article may be used for non-commercial purposes in accordance with Wiley Right Terms and Conditions for Self-Archiving.; The full-text file will be made open to the public on 17 JUL 2016 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.; This is not the published version. Please cite only the published version.; この論文は出版社版でありません。引用の際に は出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University PersonalPersonal AccountAccount THE CHEMICAL Exploration of Dimethylzinc- RECORD Mediated Radical Reactions THE CHEMICAL RECORD Ken-ichi Yamada,[a] and Kiyoshi Tomioka[b] [a] Graduate School of Pharmaceutical Sciences, Kyoto University E-mail: [email protected] [b] Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts E-mail: [email protected] Received: [will be filled in by the editorial staff] Published online: [will be filled in by the editorial staff] ABSTRACT: In this account, our studies on radical reactions that are promoted by dimethylzinc and air are described. Advantages of this reagent and differences from conventional radical initiators, such as triethylborane, are discussed. Keywords: radical reaction, dimethylzinc, C(sp3)–H bond functionalization, C–C bond formation, Umpolung Introduction It has been long time since the word "radical" changed its useful functional group transformations via a radical meaning in chemistry.
    [Show full text]