Environmentalsetting Ofthe San Joaquin-Tulare Basins, California

Total Page:16

File Type:pdf, Size:1020Kb

Environmentalsetting Ofthe San Joaquin-Tulare Basins, California ENVIRONMENTALSETTING OFTHE SAN JOAQUIN-TULARE BASINS, CALIFORNIA by Jo Ann M. Gronberg, Neil M. Dubrovsky, Charles R. Kratzer, Joseph L. Domagalski, Larry R. Brown, and Karen R. Burow U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97-4205 National Water-Quality Assessment Program r- o CD Sacramento, California 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Water Resources Division Box 25286 Placer Hall Denver, CO 80225-0286 6000 J Street Sacramento, CA 95819-6129 FOREWORD The mission of the U.S. Geological Survey Improve understanding of the primary (USGS) is to assess the quantity and quality of the natural and human factors that affect earth resources of the Nation and to provide informa­ water-quality conditions. tion that will assist resource managers and policymak- This information will help support the development ers at Federal, State, and local levels in making sound and evaluation of management, regulatory, and moni­ decisions. Assessment of water-quality conditions and toring decisions by other Federal, State, and local trends is an important part of this overall mission. agencies to protect, use, and enhance water resources. One of the greatest challenges faced by water- resources scientists is acquiring reliable information The goals of the NAWQA Program are being that will guide the use and protection of the Nation's achieved through ongoing and proposed investigations water resources. That challenge is being addressed by of 59 of the Nation's most important river basins and Federal, State, interstate, and local water-resource aquifer systems, which are referred to as study units. agencies and by many academic institutions. These These study units are distributed throughout the organizations are collecting water-quality data for a Nation and cover a diversity of hydrogeologic settings. host of purposes that include: compliance with permits More than two-thirds of the Nation's freshwater use and water-supply standards; development of remedia­ occurs within the 59 study units and more than two- tion plans for specific contamination problems; opera­ thirds of the people served by public water-supply sys­ tional decisions on industrial, wastewater, or water- tems live within their boundaries. supply facilities; and research on factors that affect National synthesis of data analysis, based on water quality. An additional need for water-quality aggregation of comparable information obtained from information is to provide a basis on which regional- the study units, is a major component of the program. and national-level policy decisions can be based. Wise This effort focuses on selected water-quality topics decisions must be based on sound information. As a using nationally consistent information. Comparative society we need to know whether certain types of studies will explain differences and similarities in water-quality problems are isolated or ubiquitous, observed water-quality conditions among study areas whether there are significant differences in conditions and will identify changes and trends and their causes. among regions, whether the conditions are changing The first topics addressed by the national synthesis are over time, and why these conditions change from pesticides, nutrients, volatile organic compounds, and place to place and over time. The information can be aquatic biology. Discussions on these and other water- used to help determine the efficacy of existing water- quality topics will be published in periodic summaries quality policies and to help analysts determine the of the quality of the Nation's ground and surface water need for and likely consequences of new policies. as the information becomes available. To address these needs, the U.S. Congress appropri­ ated funds in 1986 for the USGS to begin a pilot pro­ This report is an element of the comprehensive gram in seven project areas to develop and refine the body of information developed as part of the NAWQA National Water-Quality Assessment (NAWQA) Pro­ Program. The program depends heavily on the advice, gram. In 1991, the USGS began full implementation of cooperation, and information from many Federal, the program. The NAWQA Program builds upon an State, interstate, Tribal, and local agencies and the existing base of water-quality studies of the USGS, as public. The assistance and suggestions of all are well as those of other Federal, State, and local agencies. greatly appreciated. The objectives of the NAWQA Program are to: Describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers. Describe how water quality is changing Robert M. Hirsch over time. Chief Hydrologist CONTENTS Abstract ..................................................................................................................................................................... 1 The National Water-Quality Assessment Program ............................................................................................................... 1 San Joaquin-Tulare Basins ................................................................................................................................................... 3 Location and Physiography ........................................................................................................................................ 3 Geology .................................................................................................................................................................^ 5 Climate..............................................................................._ 6 Natural Hydrology and Native Habitats ..................................................................................................................... 6 Ecology ..............................................................................._ 11 Ecoregions ........................................................................................................................................................ 11 Aquatic Biology ................................................................................................................................................ 11 Surface-Water Hydrology ........................................................................................................................................... 14 Distribution Systems ......................................................................................................................................... 14 Major Reservoirs .............................................................................................................................................. 15 Annual Discharge ............................................................................................................................................. 15 Seasonal Discharge ........................................................................................................................................... 17 Water Storage and Availability ......................................................................................................................... 20 Ground-Water Hydrology ........................................................................................................................................... 23 Regional Ground-Water Flow System .............................................................................................................. 23 Predevelopment Ground-Water-Flow ............................................................................................................... 25 Ground-Water Development and Response ...................................................................................................... 25 Factors Affecting Water Quality ........................................................................................................................................... 27 Land Use ......................................................................... 29 Agricultural Land Use ...................................................................................................................................... 29 Urban Land Use ................................................................................................................................................ 32 Water Use .................................................................................................................................................... 32 Point Sources ............................................................................ 32 Agricultural Sources ................................................................................................................................................... 36 Discharges to the San Joaquin River ................................................................................................................ 36 Pesticides .......................................................................................................................................................... 36 Nutrients from Fertilizers ................................................................................................................................
Recommended publications
  • Walter R. Mclean Papers, Bulk 1930-1968
    http://oac.cdlib.org/findaid/ark:/13030/tf7779n9g3 No online items Inventory of the Walter R. McLean Papers, bulk 1930-1968 Processed by the Water Resources Collections and Archives staff. Water Resources Collections and Archives Orbach Science Library, Room 118 PO Box 5900 University of California, Riverside Riverside, CA 92517-5900 Phone: (951) 827-2934 Fax: (951) 827-6378 Email: [email protected] URL: http://library.ucr.edu/wrca © 2008 The Regents of the University of California. All rights reserved. Inventory of the Walter R. MS 76/7 1 McLean Papers, bulk 1930-1968 Inventory of the Walter R. McLean Papers, bulk 1930-1968 Collection number: MS 76/7 Water Resources Collections and Archives University of California, Riverside Riverside, California Contact Information: Water Resources Collections and Archives Orbach Science Library, Room 118 PO Box 5900 University of California, Riverside Riverside, CA 92517-5900 Phone: (951) 827-2934 Fax: (951) 827-6378 Email: [email protected] URL: http://library.ucr.edu/wrca Processed by: Water Resources Collections and Archives staff Date Completed: October 1976 © 2008 The Regents of the University of California. All rights reserved. Descriptive Summary Title: Walter R. McLean Papers, Date (inclusive): bulk 1930-1968 Collection number: MS 76/7 Creator: McLean, Walter Reginald, 1903- Extent: ca. 19 linear ft. (40 boxes) Repository: Water Resources Collections and Archives Riverside, CA 92517-5900 Shelf location: Water Resources Collections and Archives. Language: English. Access Collection is open for research. Publication Rights Copyright has not been assigned to the Water Resources Collections and Archives. All requests for permission to publish or quote from manuscripts must be submitted in writing to the Head of Archives.
    [Show full text]
  • HYDROLOGY and WATER QUALITY 3.8 Hydrology and Water Quality
    3.8 HYDROLOGY AND WATER QUALITY 3.8 Hydrology and Water Quality This section of the Draft EIR addresses the potential for the Merced General Plan to affect or modify the existing hydrology and water quality of the Planning Area. Two comment letters were received on the NOP from the Merced Irrigation District (MID) in which they said that they would “Upon development of new and existing land covered within the scope of the 2030 General Plan, MID will provide a detailed response in regards to the proposed projects and their impacts upon MID facilities.” The second letter received was in response to the NOP regarding hydrology and water quality. The commenter wants the City to prepare a Water Element and “perform an environmental review of the potentially positive environmental effects that could be based upon such additional elements.” 3.8.1 SETTING Environmental Setting CLIMATE The climate of the City of Merced is hot and dry in the summer and cool and humid in the winter. The average daily temperature ranges from 47 to 76 degrees Fahrenheit. Extreme low and high temperatures of 15°F and 111°F are also known to occur. Historical average precipitation is approximately 12” per year, with the rainy season commencing in October and running through April. On average, approximately 80% of the annual precipitation occurs between November and March. The hot and dry weather of the summer months usually results in high water demands for landscape irrigation during those months. REGIONAL TOPOGRAPHY The project area is located in and immediately adjacent to the City of Merced.
    [Show full text]
  • California's San Joaquin Valley: a Region and Its Children Under Stress
    CALIFORNIA’S SAN JOAQUIN VALLEY: A REGION AND ITS CHILDREN UNDER STRESS January 2017 Commissioned by Study Conducted by California’s San Joaquin Valley: A Region and Its Children Under Stress January 2017 Dear Colleagues, We are pleased to share with you California’s San Joaquin Valley: A Region and its Children Under Stress, commissioned by the San Joaquin Valley Health Fund, with funding from the W.K. Kellogg Foundation and Sierra Health Foundation, and prepared by the UC Davis Center for Regional Change. In preparing this report, researchers met with residents and those working with and on behalf of Valley communities to learn what their priorities are for policy and systems change. As detailed in the report, their quest for a more equitable region is focused on several priorities that include early education, healthy food, healthy living environments and equitable land use planning as the primary issues of concern. While the report documents the many racial, health and other inequities, and the particular effects they have on the lives and life chances of families raising children in the region, it also presents the vision of local leaders and community residents. We know the challenges that lie ahead will be difficult to address. While the San Joaquin Valley includes the top agricultural producing counties in California, almost 400,000 of the region’s children live in poverty and seven of the 10 counties with the highest child poverty rates in the state are in the Valley. One out of every four Valley children experiences food insecurity and they are much more likely to be exposed to pesticides while in school and to go to schools with unsafe drinking water.
    [Show full text]
  • San Joaquin Valley, California
    SAN JOAQUIN VALLEY, CALIFORNIA Largest human alteration of the Earth’s surface CALIFORNIA ining ground water for agriculture has enabled the San Joaquin Valley of California to become one of the world’s most productive agricultural regions, while simulta- S a M c neously contributing to one of the single largest alterations of the r a m C land surface attributed to humankind. Today the San Joaquin Valley e n t o is the backbone of California’s modern and highly technological E R . S N . agricultural industry. California ranks as the largest agricultural R r I e h t producing state in the nation, producing 11 T E a e F R percent of the total U.S. agricultural value. R R A The Central Valley of California, which A L includes the San Joaquin Valley, the Sacra- Delta mento Valley, and the Sacramento-San N E Joaquin Delta, produces about 25 percent S V a n A of the nation’s table food on only 1 percent San Francisco Bay Jo a D q of the country’s farmland (Cone, 1997). u A in V R iver In 1970, when the last comprehensive sur- A Mendota L veys of land subsidence were made, sub- L sidence in excess of 1 foot had affected E more than 5,200 square miles of irrigable Y San Joaquin Valley P land—one-half the entire San Joaquin a c i Valley (Poland and others, 1975). The f i c maximum subsidence, near Mendota, was O c more than 28 feet. e a n 0 80 Miles 0 80 Kilometers Approximate location of maxi- mum subsidence in United States identified by research efforts of Joseph Poland (pic- tured).
    [Show full text]
  • 4.9 Biological Resources
    METROPOLITAN BAKERSFIELD METROPOLITAN BAKERSFIELD GENERAL PLAN UPDATE EIR 4.9 BIOLOGICAL RESOURCES The purpose of this Section is to identify existing biological resources within the Metropolitan Bakersfield area. In addition, this Section provides an assessment of biological resources (including sensitive species) impacts that may result from implementation of the General Plan Update references General Plan goals and policies, and, where necessary, recommends mitigation measures to reduce the significance of impacts. This Section describes the biological character of the site in terms of vegetation, flora, wildlife, and wildlife habitats and analyzes the biological significance of the site in view of Federal, State and local laws and policies. ENVIRONMENTAL SETTING The study area for the Metropolitan Bakersfield General Plan Update encompasses 408 square miles of the southern portion of the San Joaquin Valley, the southernmost basin of the Central Valley of California. Prior to industrial, agricultural and urban development, the San Joaquin Valley comprised a variety of ecological communities. Runoff from the surrounding mountains fostered hardwood and riparian forests, marshes and grassland communities. Away from the influence of the mountain runoff, several distinct dryland communities of grasses and shrubs developed along gradients of rainfall, soil texture and soil alkalinity, providing a mosaic of habitats for the assemblage of endemic plants and animals. Agriculture, urban development and oil/gas extraction have resulted in many changes in the natural environment of the San Joaquin Valley. For example, lakes and wetlands in the delta area have been drained and diverted, native plant and animal species have been lost and a decrease in the acreage of native lands has occurred.
    [Show full text]
  • About Kern County • Background Kern County • Water Use • Water Sources R.I
    Water in Bakersfield and Kern County About Kern County • Background Kern County • Water use • Water sources R.I. Connecticut 1,212 sq. mi. • Entities that control water 5,018 sq. mi. • Groundwater recharge Delaware 2,045 sq. mi. Area 8,170 sq. mi. – Kern County covers 5.21 million Sources: acres, roughly the area of Tom Haslebacher, Kern County Water Agency Connecticut, Delaware and Rhode Jon Parker, Kern Water Bank Authority Island. About Kern County About Kern County Delano Kernville Area Ridgecrest McFarland About one-third of Inyokern Wasco Kern’s area is on Shafter the valley floor, Oildale BAKERSFIELD which is intensively Population Lamont cultivated. Kern County’s Arvin California City Taft There are 860,000 irrigated acres population is Tehachapi 677,400. It is one of on the valley floor, one-third of Maricopa which are permanent crops. the fastest growing counties in the state, Kern consistently ranks 3rd or 4th in growing 19% since the state in value of production. 1995, and about 2% per year. Kern is California’s 14th most populous county. Annual water usage in Kern County: Municipal and industrial - 182,000 acre-feet Agricultural - 2,250,000 acre-feet 1 Gross Water Supplies and Net Water Requirements San Joaquin Valley Portion of Kern County Acre-Feet July 5, 2001 4,500,000 4,000,000 Additions to Kern County water sources: 3,500,000 Groundwater Storage 3,000,000 Kern River - 22% 2,500,000 Withdrawals from 2,000,000 Groundwater Storage State Water Project (California Aqueduct) - 1,500,000 23% 1,000,000 500,000 Federal (Friant-Kern
    [Show full text]
  • San Joaquin Valley Groundwater Basin Kings Subbasin
    Tulare Lake Hydrologic Region California’s Groundwater San Joaquin Valley Groundwater Basin Bulletin 118 San Joaquin Valley Groundwater Basin Kings Subbasin • Groundwater Subbasin Number: 5-22.08 • County: Fresno, Kings, and Tulare • Surface Area: 976,000 acres (1,530 square miles) Subbasin Boundaries and Hydrology The San Joaquin Valley is surrounded on the west by the Coast Ranges, on the south by the San Emigdio and Tehachapi Mountains, on the east by the Sierra Nevada and on the north by the Sacramento-San Joaquin Delta and Sacramento Valley. The northern portion of the San Joaquin Valley drains toward the Delta by the San Joaquin River and its tributaries, the Fresno, Merced, Tuolumne, and Stanislaus Rivers. The southern portion of the valley is internally drained by the Kings, Kaweah, Tule, and Kern Rivers that flow into the Tulare drainage basin including the beds of the former Tulare, Buena Vista, and Kern Lakes. The Kings Subbasin is bounded on the north by the San Joaquin River. The northwest corner of the subbasin is formed by the intersection of the east line of the Farmers Water District with the San Joaquin River. The west boundary of the Kings Subbasin is the eastern boundaries of the Delta- Mendota and Westside Subbasins. The southern boundary runs easterly along the northern boundary of the Empire West Side Irrigation District, the southern fork of the Kings River, the southern boundary of Laguna Irrigation District, the northern boundary of the Kings County Water District, the southern boundaries of Consolidated and Alta Irrigation Districts, and the western boundary of Stone Corral Irrigation District.
    [Show full text]
  • Analysis of San Joaquin County Economic & Social Indicators
    SJC Index San Joaquin County 2020 Analysis of San Joaquin County Economic & Social Indicators Prepared by: Meredith Huang, Jeremy Padge and Thomas E. Pogue 2 Forward This report is being released in fall 2020, a year defined by extreme social and economic change due to the global COVID‐19 pandemic. At this time, very few of the indicators highlighted in this report have any local, San Joaquin County, data available for 2020, and what is available covers only the very initial stages of the pandemic. As a result, we have decided to only present data indicators in this report through the end of 2019. In this sense, we believe it provides a useful snapshot of the current state and progress of San Joaquin County just prior to the onset of the COVID‐19 pandemic. As we review these indicators in the future, some social, economic, and demographic characteristics of the county described in these pages will return to pre‐pandemic trends while others may be fundamentally changed. Thus, this edition of the San Joaquin County Index can serve as a useful benchmark for measuring the effects of COVID‐19, and a picture of the County’s comparative profile without the confounding effects of COVID‐19 that have made many traditional data indicators difficult to interpret. By reviewing data indicators for San Joaquin County and its communities in comparison to the other counties, regions, the state and the nation, the Index fosters a shared understanding about opportunities and challenges. Thus, the Index provides a foundation of reliable information to support actions to advance economic and community development.
    [Show full text]
  • Northern Calfornia Water Districts & Water Supply Sources
    WHERE DOES OUR WATER COME FROM? Quincy Corning k F k N F , M R , r R e er th th a a Magalia e Fe F FEATHER RIVER NORTH FORK Shasta Lake STATE WATER PROJECT Chico Orland Paradise k F S , FEATHER RIVER MIDDLE FORK R r STATE WATER PROJECT e Sacramento River th a e F Tehama-Colusa Canal Durham Folsom Lake LAKE OROVILLE American River N Yuba R STATE WATER PROJECT San Joaquin R. Contra Costa Canal JACKSON MEADOW RES. New Melones Lake LAKE PILLSBURY Yuba Co. W.A. Marin M.W.D. Willows Old River Stanislaus R North Marin W.D. Oroville Sonoma Co. W.A. NEW BULLARDS BAR RES. Ukiah P.U. Yuba Co. W.A. Madera Canal Delta-Mendota Canal Millerton Lake Fort Bragg Palermo YUBA CO. W.A Kern River Yuba River San Luis Reservoir Jackson Meadows and Willits New Bullards Bar Reservoirs LAKE SPAULDING k Placer Co. W.A. F MIDDLE FORK YUBA RIVER TRUCKEE-DONNER P.U.D E Gridley Nevada I.D. , Nevada I.D. Groundwater Friant-Kern Canal R n ia ss u R Central Valley R ba Project Yu Nevada City LAKE MENDOCINO FEATHER RIVER BEAR RIVER Marin M.W.D. TEHAMA-COLUSA CANAL STATE WATER PROJECT YUBA RIVER Nevada I.D. Fk The Central Valley Project has been founded by the U.S. Bureau of North Marin W.D. CENTRAL VALLEY PROJECT , N Yuba Co. W.A. Grass Valley n R Reclamation in 1935 to manage the water of the Sacramento and Sonoma Co. W.A. ica mer Ukiah P.U.
    [Show full text]
  • Central Valley Latino-Led Organizations
    CENTRALCENTRAL VALLEYVALLEY LATINO-LEDLATINO-LED ORGANIZATIONSORGANIZATIONS ABOUT LATINO COMMUNITY FOUNDATION (LCF) LCF IS ON A MISSION TO UNLEASH THE POWER OF LATINOS IN CALIFORNIA. LCF fulfills its mission by building a movement of civically engaged philanthropic leaders, investing in Latino- led organizations, and increasing political participation of Latinos in California. LCF connects donors to emerging leaders, community organizations with funding, and advocates with key decision makers. At LCF, our approach is rooted in the very essence of what it means to be Latino, with a fierce tenacity and a focus on community and authentic relationships. LATINO NONPROFITS We believe in our community’s ability to lead change. That is why we invest in Latino-led nonprofits working on the frontlines of social change. Our grantees have the entrepreneurial vision and passion to transform their communities. We stand beside them to get it done. Below you will find a working list of Latino nonprofits in the Central Valley. To see our full database of Latino nonprofits in California, visit latinocf.org/map. THE CENTRAL VALLEY The economic engine and the heart and soul of California—the 6th largest economy in the world. The Central Valley is home to a $35 billion agricultural industry fueled by Latino and immigrant labor. Comprising half the population, Latino families from the Valley are proud, resilient people who believe in the promise of the American dream. Yet, they are battling the reality of poverty, pollution, and violence daily. Fresno, Modesto, and Bakersfield-Delano—cities with the highest revenues from agriculture—are among the top five U.S.
    [Show full text]
  • Draft Supplement to the Final Environmental Impact Statement / Environmental Impact Report
    Draft Supplement to the Final Environmental Impact Statement / Environmental Impact Report Public Hearings 1 July 2017 CEQA/NEPA Previous Milestones • CCWD and Reclamation completed the Draft EIS/EIR in February 2009 • Included alternatives for reservoir expansion to 160 TAF and 275 TAF • CCWD and Reclamation completed a Final EIS/EIR for LVE in March 2010 • Selected Alternative 4 (160 TAF) for near term implementation • Included Timing Variant to describe future expansion to 275 TAF • CCWD filed the Notice of Determination for Phase 1 Expansion in April 2010 • Reclamation issued Record of Decision for Phase 1 Expansion in March 2011 • CCWD completed Phase 1 Expansion in July 2012 • Expanded reservoir from 100 TAF to 160 TAF 2 Note: TAF is thousand acre-feet Draft Supplement to the Final EIS/EIR – Public Hearings – July 2017 CEQA/NEPA Process • CCWD and Reclamation prepared Draft Supplement to the Final EIS/EIR to evaluate: • Changed conditions in the project setting • Updated demands from local agency potential partners and wildlife refuges • Refined facilities and alternatives • Modifications to project operations • Quantitative analysis of climate change scenarios 3 Draft Supplement to the Final EIS/EIR – Public Hearings – July 2017 CEQA/NEPA Process • Draft Supplement document is posted to web • CCWD website: www.ccwater.com/lvstudies • Reclamation website: www.usbr.gov/mp/vaqueros/index.html • CD copies available on request (send email to [email protected]) • Notice of Availability published in Federal Register • Notice of Completion filed with State Clearinghouse • Additional notices filed with County Clerks • Contra Costa, Alameda, Amador, and Calaveras • Direct mailing of CEQA Notice of Availability to parties that previously commented • Please submit written comments by 5:00 p.m.
    [Show full text]
  • An Introduction to High-Frequency Nutrient and Biogeochemical Monitoring for the Sacramento– San Joaquin Delta, Northern California
    Prepared in cooperation with the Delta Regional Monitoring Program An Introduction to High-Frequency Nutrient and Biogeochemical Monitoring for the Sacramento– San Joaquin Delta, Northern California Scientific Investigations Report 2017–5071 U.S. Department of the Interior U.S. Geological Survey FRONT COVER: Top left: Photograph showing monitoring buoy at Liberty Island, California, being serviced by hydrologic technician. Photograph by Bryan Downing, December 19, 2013. Bottom Left: Example of a daily report for the monitoring buoy in Liberty Island, California that is emailed out to interested parties. Report generated by Frank Anderson, 2014. Bottom middle: Photograph showing vertical water quality profiler in the Sacramento River. Photograph by Michael Sauer, April 16, 2013. Right: Map of nitrate concentrations collected via high speed boat mapping in the Cache Slough Complex/North Delta. Map created by Travis von Dessonneck and Bryan Downing, October 10, 2014. BACK COVER: Top left: Photograph showing monitoring buoy at Liberty Island, California. Photograph by Bryan Downing, March 8, 2017. Bottom Left: Photograph showing vertical profiling instrumentation, Sacramento River, Freeport, California. Photograph courtesy of Michael Sauer, April 16, 2013. Right: Photograph showing flow monitoring station in Liberty Island, California. Photograph by Bryan Downing, March 8, 2017. Bottom: Photograph showing sunset in the northern Delta, Little Holland Tract, California. Photograph by Bryan Downing, March 8, 2017. An Introduction to High-Frequency Nutrient and Biogeochemical Monitoring for the Sacramento–San Joaquin Delta, Northern California By Tamara E.C. Kraus, Brian A. Bergamaschi, and Bryan D. Downing Prepared in cooperation with the Delta Regional Monitoring Program Scientific Investigations Report 2017–5071 U.S.
    [Show full text]