Pregnancy-Related Death: Hepatic System
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Perturbation of Mitochondrial Dynamics in Alcoholic Liver Disease
EXTENDED ABSTRACT Journal of the World Mitochondria Society Vol. 2, Issue n°2 DOI 10.18143/JWMS_v2i2_1948 Perturbation of mitochondrial dynamics in alcoholic liver disease Elena PALMA(1, 2), Antonio RIVA(1, 2), Satvinder MUDAN(3), Nikolai MANYAKIN(3), Dawn MORRISON(3), Christophe MORENO(4, 5), Delphine DEGRÉ(4, 5), Eric TREPO(4, 5), Pau SANCHO- BRU(6, 7), Jose ALTAMIRANO(6, 8), Juan CABALLERIA(6, 7), Gemma ODENA(9), Ramon BATALLER(9), Roger WILLIAMS(1, 2), Shilpa CHOKSHI(1, 2) 1Institute of Hepatology, Foundation for Liver Research, London, United Kingdom. 2King’s College London, Faculty of Life Sciences and Medicine, London, United Kingdom. 3The London Clinic, London, United Kingdom. 4CUB Hôpital Erasme, Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Université Libre de Bruxelles, Brussels, Belgium. 5Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium. 6Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. 7Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain. 8Liver Unit -Internal Medicine Department Vall d'Hebron University Hospital. Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. 9Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Corresponding author: Elena Palma Institute of Hepatology, Foundation for Liver Research 111 Coldharbour Lane, London, SE5 9NT (UK) [email protected] Abstract Alcoholic Liver Disease (ALD) is a global issue that causes increasing number of deaths annually. In the complex pathogenesis of ALD the involvement of mitochondria is well established and gross morphological alterations (mega-mitochondria) in the liver biopsies of patients are recognised as hallmarks of ALD. -
USMLE – What's It
Purpose of this handout Congratulations on making it to Year 2 of medical school! You are that much closer to having your Doctor of Medicine degree. If you want to PRACTICE medicine, however, you have to be licensed, and in order to be licensed you must first pass all four United States Medical Licensing Exams. This book is intended as a starting point in your preparation for getting past the first hurdle, Step 1. It contains study tips, suggestions, resources, and advice. Please remember, however, that no single approach to studying is right for everyone. USMLE – What is it for? In order to become a licensed physician in the United States, individuals must pass a series of examinations conducted by the National Board of Medical Examiners (NBME). These examinations are the United States Medical Licensing Examinations, or USMLE. Currently there are four separate exams which must be passed in order to be eligible for medical licensure: Step 1, usually taken after the completion of the second year of medical school; Step 2 Clinical Knowledge (CK), this is usually taken by December 31st of Year 4 Step 2 Clinical Skills (CS), this is usually be taken by December 31st of Year 4 Step 3, typically taken during the first (intern) year of post graduate training. Requirements other than passing all of the above mentioned steps for licensure in each state are set by each state’s medical licensing board. For example, each state board determines the maximum number of times that a person may take each Step exam and still remain eligible for licensure. -
Review Article Alcohol Induced Liver Disease
J Clin Pathol: first published as 10.1136/jcp.37.7.721 on 1 July 1984. Downloaded from J Clin Pathol 1984;37:721-733 Review article Alcohol induced liver disease KA FLEMING, JO'D McGEE From the University of Oxford, Nuffield Department ofPathology, John Radcliffe Hospital, Oxford OX3 9DU, England SUMMARY Alcohol induces a variety of changes in the liver: fatty change, hepatitis, fibrosis, and cirrhosis. The histopathological appearances of these conditions are discussed, with special atten- tion to differential diagnosis. Many forms of alcoholic liver disease are associated with Mallory body formation and fibrosis. Mallory bodies are formed, at least in part, from intermediate filaments. Associated changes in intermediate filament organisation in alcoholic liver disease also occur. Their significance in the pathogenesis of hepatocyte death may be related to abnormalities in messenger RNA function. The mechanisms underlying hepatic fibrogenesis are also discussed. Although alcohol has many effects on the liver, all formed after some period of alcohol abstinence, except cirrhosis are potentially reversible on cessa- alcohol related changes may not be seen. Accord- tion of alcohol ingestion. Cirrhosis is irreversible ingly, we shall consider the morphological changes and usually ultimately fatal. It is therefore important associated with alcohol abuse under the headings in to determine what factors are responsible for Table 1. development of alcohol induced cirrhosis, especially In the second part, the pathogenesis of alcohol since only 17-30% of all alcoholics become' cirrho- induced liver disease will be discussed, but this will tic.' This is of some urgency now, since there has deal only with the induction of alcoholic hepatitis, been an explosive increase in alcohol consumption fibrosis, and cirrhosis-that is, chronic alcoholic http://jcp.bmj.com/ in the Western World, particularly affecting young liver disease-and not with fatty change, for two people, resulting in a dramatic increase in the inci- reasons. -
1 Pathology Week 1 – Cellular Adaptation, Injury and Death
Pathology week 1 – Cellular adaptation, injury and death Cellular responses to injury Cellular Responses to Injury Nature and Severity of Injurious Stimulus Cellular Response Altered physiologic stimuli: Cellular adaptations: • ↑demand, ↑ trophic stimulation (e.g. growth factors, hormones) • Hyperplasia, hypertrophy • ↓ nutrients, stimulation • Atrophy • Chronic irritation (chemical or physical) • Metaplasia Reduced oxygen supply; chemical injury; microbial infection Cell injury: • Acute and self-limited • Acute reversible injury • Progessive and severe (including DNA damage) • Irreversible injury → cell death Necrosis Apoptosis • Mild chronic injury • Subcellular alterations in organelles Metabolic alterations, genetic or acquired Intracell accumulations; calcifications Prolonged life span with cumulative sublethal injury Cellular aging Hyperplasia - response to increased demand and external stimulation - ↑ number cells - ↑ volume of organ - often occurs with hypertrophy - occurs if cells able to synthesize DNA – mitotic division - physiologic or pathologic Physiological hyperplasia A) hormonal – ↑ functional capacity tissue when needed (breast in puberty, uterus in pregnancy) B) compensatory - ↑ tissue mass after damage/resection (post-nephrectomy) Mechanisms: - ↑ local production growth factors or activation intracellular signaling pathways o both → production transcription factors that turn on cellular genes incl those encoding growth factors, receptors for GFs, cell cycle regulators →→ cellular proli feration - in hormonal hyperplasia -
Liver Giant Mitochondria Revisited
412 J Clin Pathol 1992;45:412-415 Liver giant mitochondria revisited N J Robertson, C H Kendall J Clin Pathol: first published as 10.1136/jcp.45.5.412 on 1 May 1992. Downloaded from Abstract alcohol induced liver damage and the presence Aims: To examine the correlation be- of ICRBs. In a study by Chedid et al' in 1986, tween the severity of alcohol induced ICRBs were observed most frequently in liver liver damage and the presence of biopsies exhibiting mild degrees of alcohol intracytoplasmic red bodies (defined as induced damage. Junge et al2 in 1987 obtained periodic acid-Schiff diastase negative, similar results. However, in a study by globular, hyaline cytoplasmic inclusions Bruguera et al' in 1977 the frequency of larger in size than the hepatocyte ICRBs in liver biopsies from alcoholic nucleolus). To investigate the incidence patients was found to be unrelated to the of intracytoplasmic red bodies (ICRBs) nature of the histological changes present. in non-alcoholic liver disease. The significance of ICRBs with respect to Methods: Liver biopsy specimens from non-alcoholic liver disease remains equally 53 patients with alcoholic liver disease unclear. The main purposes of this study are and 50 patients with a variety of non- therefore: (1) to examine the correlation be- alcohol related liver diseases were tween the severity of alcohol induced liver examined by light microscopy for the damage and the presence of ICRBs; (2) to presence of ICRBs. For the 53 patients investigate the incidence of ICRBs in non- with alcoholic liver disease an assess- alcoholic liver disease. -
Session 2 Cellular and Tissue Response to Damage
Session 2 Cellular and Tissue Response to Damage B.M.C.Randika Wimalasiri B.Sc in MLS(Peradeniya) Lecturer(Probationary) Department of Medical Laboratory Sciences • The changes that occur in the various cellular organelles and cytoskeleton Cellular response to damage • Non lethal damage- changes in organelles and in the cytoskeleton. • The type of response - type of the injurious agent. • Different cellular organelles - different types of damage. • More common reactions. Changes in Mitochondria • Function: mediate cellular respiration • Non lethal damage to mitochondria -alterations in number, size, shape and function. • Examples 1. Hypertrophy - increased demand causes increase in workload ad increase in the number of mitochondria. 2. Atrophy - decrease the number of mitochondria in a cell 3. Megamitochondria - are very large, sometimes abnormally shaped. Ex : alcoholic liver disease nutritional deficiencies 4. Mitochondrial myopathies - group of genetic disorders causing metabolic disease of skeletal muscle. • Increased numbers of unusually large mitochondria containing abnormal cristae filled with crystalloids • muscle fibers do not work due to mitochondrial defects) Smooth endoplasmic reticulum • Functions - detoxification and metabolism of various drugs and chemicals including alcohol, barbiturates, insecticides, steroids etc. • Examples 1. Barbiturates- • metabolized in the liver by the cytochrome P-450 oxidase system found in the SER. • Prolonged usage leads to a state of tolerance, with a decrease in the effects of the drug and the need to use increasing doses. This adaptation is due to increased volume (hypertrophy) of the SER of hepatocytes and increased P-450 enzymatic activity. • More of the enzyme is produced the drugs and toxins are metabolized quicker and the patients ‘adapt’ to the drug . -
Communications Between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis
cells Review Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis Pengcheng Zhang, Daniels Konja, Yiwei Zhang and Yu Wang * The State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; [email protected] (P.Z.); [email protected] (D.K.); [email protected] (Y.Z.) * Correspondence: [email protected] Abstract: Mitochondria associated membranes (MAM), which are the contact sites between en- doplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases. Keywords: mitochondria; endoplasmic reticulum; MAM; energy metabolism 1. Introduction Citation: Zhang, P.; Konja, D.; Zhang, In mammalian cells, the mitochondrion is the organelle specialized for energy produc- Y.; Wang, Y. Communications tion through the processes of oxidative phosphorylation, tricarboxylic acid (TCA) cycle between Mitochondria and and fatty acid β-oxidation [1]. Approximately 90% of cellular reactive oxygen species Endoplasmic Reticulum in the (ROS) are produced from mitochondria during the reactions of oxidative phosphorylation Regulation of Metabolic Homeostasis. (OXPHOS) -
Mitochondrial Reactive Oxygen Species and Apoptosis Christophe Fleury, Bernard Mignotte, Jean-Luc Vayssière
Mitochondrial reactive oxygen species and apoptosis Christophe Fleury, Bernard Mignotte, Jean-Luc Vayssière To cite this version: Christophe Fleury, Bernard Mignotte, Jean-Luc Vayssière. Mitochondrial reactive oxygen species and apoptosis. Mitochondrial Ubiquinone (Coenzyme Q10): Biochemical, Functional, Medical and Therapeutic Aspects in Human Health and Disease, 2002. hal-03002776 HAL Id: hal-03002776 https://hal.archives-ouvertes.fr/hal-03002776 Submitted on 12 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. - 1 - Mitochondrial reactive oxygen species and apoptosis Christophe Fleury1, Bernard Mignotte1,2 and Jean-Luc Vayssière1 1 CNRS - UPRES-A 8087, Université de Versailles/Saint-Quentin, Bâtiment Fermat, 45 avenue des Etats-Unis, 78035 VERSAILLES cedex 2 Laboratoire de Génétique Moléculaire et Physiologique de l’EPHE, Université de Versailles/Saint-Quentin, Bâtiment Fermat, 45 avenue des Etats-Unis, 78035 VERSAILLES cedex - 2 - 1 Introduction ........................................................................................................................ -
Thrombosis, Embolism, Infarction
Thrombosis, Embolism and Infarction THROMBOSIS Thrombus formation (called Virchow's triad): (1) endothelial injury, (2) stasis or turbulent blood flow (3) hypercoagulability of the blood Endothelial Injury Endothelial injury is particularly important for thrombus formation in the heart or the arterial circulation, where the normally high flow rates might otherwise impede clotting by preventing platelet adhesion and washing out activated coagulation factors. Thus, thrombus formation within cardiac chambers (e.g., after endocardial injury due to myocardial infarction), over ulcerated plaques in atherosclerotic arteries, or at sites of traumatic or inflammatory vascular injury (vasculitis) is largely a consequence of endothelial cell injury. Endothelial Injury Physical loss of endothelium can lead to exposure of the subendothelial ECM, adhesion of platelets, release of tissue factor, and local depletion of PGI2 and plasminogen activators. However, it should be emphasized that endothelium need not be denuded or physically disrupted to contribute to the development of thrombosis; any perturbation in the dynamic balance of the prothombotic and antithrombotic activities of endothelium can influence local clotting events. Thus, dysfunctional endothelial cells can produce more procoagulant factors (e.g., platelet adhesion molecules, tissue factor, PAIs) or may synthesize less anticoagulant effectors (e.g., thrombomodulin, PGI2, t-PA). Endothelial dysfunction can be induced by a wide variety of insults, including hypertension, turbulent blood flow, bacterial endotoxins, radiation injury, metabolic abnormalities such as hypercholesterolemia. Alterations in Normal Blood Flow Turbulence contributes to arterial and cardiac thrombosis by causing endothelial injury or dysfunction, as well as by forming countercurrents and local pockets of stasis; stasis is a major contributor in the development of venous thrombi. -
3. Thrombosis. Embolism. DIC. Shock
3. Thrombosis. Embolism. DIC. Shock. PATHOLOGY OF VASCULAR OCCLUSION: thrombosis, embolism, disseminated intravascular coagulation (DIC) Hemostasis (”stopping of hemorrhage”) Physiological process to maintain blood in a fluid, clot-free state in normal vessels, and to stop bleeding from ruptured vessels Main components of hemostasis: endothelium, platelets, and coagulation proteins Endothelial cells have both procoagulant and anticoagulant properties, and according to the needs of the body they may either promote clotting or inhibiting it Procoagulant functions Release of • von Willebrand factor (vWF); mediates the binding of platelets to endothelial surfaces • Tissue factor (TF); promotes the extrinsic pathway of the coagulation cascade • Inhibitors of plasminogen activator Anticoagulant functions • Inhibition of platelet aggregation via prostacyclin secretion • Dilation of blood vessels via nitric oxide secretion • Antithrombin activity, accomplished by thrombomodulin, which captures thrombin • Fibrinolysis, via secreting plasminogen activator, which generates plasmin from plasminogen Platelets Upon contact with TF and/or vWF, platelets become activated and 1) adhere to injured sites 2) release chemical mediators to induce further platelet aggregation, and activation of coagulation proteins 3) aggregate with other platelets and form the hemostatic plug. Both RBCs and leukocytes are also found in hemostatic plugs. Coagulation proteins Group of plasma proteins that are activated by acting upon each other in a sequence known as the extrinsic and intrinsic pathway. These proteins converge, and finally thrombin converts fibrinogen to fibrin within and about the platelet plug. THROMBOSIS • Intravascular clotting in a living person • Clots formed inside the blood vessels or cardiac chambers are called thrombi • Thrombi are always potential sources of further complications Factors promoting thrombus formation (Virchow’s triad) 1. -
Role and Mechanisms of Mitophagy in Liver Diseases
cells Review Role and Mechanisms of Mitophagy in Liver Diseases Xiaowen Ma 1, Tara McKeen 1, Jianhua Zhang 2 and Wen-Xing Ding 1,* 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; [email protected] (X.M.); [email protected] (T.M.) 2 Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-913-588-9813 Received: 13 February 2020; Accepted: 28 March 2020; Published: 31 March 2020 Abstract: The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases. Keywords: alcohol; autophagy; mitochondria; NAFLD; Parkin; Pink1 1. Introduction Autophagy (or macroautophagy) involves the formation of a double membrane structure called an autophagosome. Autophagosomes bring the enveloped cargoes to the lysosomes to form autolysosomes where the lysosomal enzymes consequently degrade the cargos [1,2]. -
A Whole Blood Thrombus Mimic: Constitutive Behavior Under Simple Shear a B a a a Gabriella P
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.19.210732; this version posted July 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. A Whole Blood Thrombus Mimic: Constitutive Behavior Under Simple Shear a b a a a Gabriella P. Sugerman , Sotirios Kakaletsis , Parin Thakkar , Armaan Chokshi , Sapun H. Parekh a,b,g < and Manuel K. Rausch , aUniversity of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, TX 78712 bUniversity of Texas at Austin, Department of Aerospace Engineering & Engineering Mechanics, 2617 Wichita St, Austin, TX 78712 gUniversity of Texas at Austin, Oden Institute for Computational Engineering and Sciences, 201 E 24th St, Austin, TX 78712 ARTICLEINFO ABSTRACT Keywords: Deep vein thrombosis and pulmonary embolism affect 300,000-600,000 patients each year in the US. venous thrombus The progression from deep vein thrombus to pulmonary embolism occurs when blood clots, as a hyperelasticity whole or partially, break off from the deep veins and eventually occlude the pulmonary arteries. Ve- large deformation nous thromboembolism is the cause of up to 100,000 deaths per year in the US alone. To date, we deep vein thrombosis don’t fully understand this mechanical process among other reasons because in-vivo samples are dif- pulmonary embolism ficult to obtain, highly heterogeneous, and their shapes are inappropriate for most mechanical tests. Toward overcoming these obstacles, we have set out to develop an in-vitro thrombus mimic and to test this mimic under large deformation simple shear.