Level 2 Earth and Space Science Internal Assessment Resource
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
FT1 Taupo Volcano
Geological Society of New Zealand New Zealand Geophysical Society 26th New Zealand Geothermal Workshop 6th - 9th December 2004 Great Lake Centre Taupo Field Trip Guides Organising Committee Vern Manville (Convenor) Diane Tilyard (Administration and right-hand) Paul White, Chris Bromley, Shane Cronin, Ian Smith, Stuart Simmons (Science Programme) Brent Alloway (Sponsorship) Geoff Kilgour, Tamara Tait (Social Programme) Brad Scott, Mike Rosenberg, Peter Kamp, Adam Vonk, Cam Nelson, Jim Cole, Graham Leonard, Karl Spinks and Greg Browne (Field trip leaders) Nick Mortimer (Web master) And Student helpers and off-siders and Members of the Geological Society and Geophysical Society Committees Geological Society of New Zealand Miscellaneous Publication 117B ISBN 0-908678-99-1 Field Trip Guides – Contents Field Trip 1 Taupo Volcano 1-10 Mike Rosenberg & Geoff Kilgour Field Trip 2 Geothermal systems 13-40 Stuart F. Simmons, Patrick R.L. Browne & Bradley J. Scott Field Trip 5 Stratigraphic Architecture and 43-86 Sedimentology of King Country and Eastern Taranaki Basins Peter J.J. Kamp, Adam J. Vonk, & Campbell S. Nelson Field Trip 6 The Miocene-Pliocene interior seaway of the 89-109 central North Island: sedimentary patterns and tectonic styles in the Kuripapango Strait Greg H. Browne Field Trip 7 Caldera Volcanism in the Taupo 111-135 Volcanic Zone Karl D. Spinks, J.W. Cole, & G.S. Leonard Field Trip 1 Taupo Volcano Michael Rosenberg and Geoff Kilgour Institute of Geological & Nuclear Sciences, Wairakei Research Centre, Private Bag 2000, Taupo -
Revision 3 New Petrological, Geochemical and Geochronological
1 Revision 3 2 New petrological, geochemical and geochronological perspectives 3 on andesite-dacite magma genesis at Ruapehu volcano, New 4 Zealand 5 6 7 Chris E. Conway1,2*, John A. Gamble1,3, Colin J. N. Wilson1, Graham S. Leonard4, Dougal 8 B. Townsend4, Andrew T. Calvert5 9 10 11 1 School of Geography, Environment and Earth Sciences, Victoria University, PO Box 600, 12 Wellington 6140, New Zealand 13 2 Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 14 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 15 3 School of Biological, Earth and Environmental Sciences, University College Cork, Ireland 16 4 GNS Science, PO Box 30-368, Lower Hutt 6315, New Zealand 17 5 US Geological Survey, 345 Middlefield Road, MS-937, Menlo Park, CA 94025, USA 18 19 20 *Email: [email protected] 1 21 ABSTRACT 22 Time-composition relationships in eruptive sequences at composite volcanoes can 23 show how the ongoing intrusion of magmas progressively affects the lithosphere at 24 continental convergent margins. Here, new whole-rock and microanalytical major and trace 25 element data from andesite-dacite lava flows are integrated with previous studies and existing 26 isotopic data, and placed within the framework of a high-resolution chronostratigraphy for 27 Ruapehu volcano (southern Taupo Volcanic Zone, New Zealand). The geochemical evolution 28 of lavas erupted over the ~200 kyr lifetime of the exposed edifice reflects variable degrees of 29 fractionation and systematic changes in the type of crustal assimilation in the Ruapehu 30 magma system. Lavas erupted from ~200–150 ka have previously been distinguished from 31 those erupted <150 ka based on Sr-Nd isotopic characteristics, which indicate that the oldest 32 lavas were sourced from magmas that assimilated oceanic crust. -
3D Visualisation Model of the Taupo Volcanic Zone Basement S.A
3D VISUALISATION MODEL OF THE TAUPO VOLCANIC ZONE BASEMENT S.A. Alcaraz 1, M.S. Rattenbury 2, M.D. Rosenberg 1, S. Soengkono 1, G. Bignall 1 and H. van Moerkerk 3 1 GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand 2 GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand 3 ARANZ Geo Ltd., PO Box 3894, Christchurch 8140, New Zealand [email protected] Keywords: 3D modelling, 3D visualisation, calderas, 2001). The TVZ has been drilled for geothermal and Taupo Volcanic Zone, Torlesse Supergroup, Leapfrog mineral exploration, with recent drilling including Geothermal exploration, production and injection of deep geothermal boreholes. These boreholes are providing new information ABSTRACT on the geology and structure of several TVZ geothermal The Taupo Volcanic Zone (TVZ; ~350 km long, ~60 km systems, including Wairakei-Tauhara (Rosenberg et al., wide) constitutes the southern portion of the active Lau- 2009; Bignall et al., 2010; Alcaraz et al., 2010), Ohaaki Havre-Taupo extensional back arc basin, and formed by (Milicich et al., 2008; Milicich et al., 2010b), Kawerau extension of crust above the Hikurangi subduction zone in (Milicich et al., 2010a; Alcaraz, 2010) and Ngatamariki the central North Island. The fault-controlled depression is (Bignall, 2009). infilled by Quaternary volcanic rock and sediments, with the top of underlying basement greywacke displaced up to In recent years, the New Zealand geothermal community 1-2 km below sea level. has come to consider the potential of untapped, deeper and hotter geothermal resources in the TVZ – i.e. beyond the 1 A geological basement model of top surface of the Torlesse to 3 km depth interval that defines most of the >240°C greywacke in the TVZ is presented. -
Wood Calderas and Geothermal Systems in The
WOOD CALDERAS AND GEOTHERMAL SYSTEMS IN THE TAUPO VOLCANIC ZONE, NEW ZEALAND C Peter Wood Institute of Geological Nuclear Sciences Ltd, Wairakei Research Centre Taupo, New Zealand Key Words: Calderas, Geothermal Systems, Taupo Volcanic Zone. New Zcaland 2. TAUPO VOLCANIC ZONE The Taupo Volcanic Zone Fig. 1) is the consequence of plate subduction beneath the North Island of New Zcaland. ABSTRACT The thin continental crust (-15 km, Stem and Davey, 1987) spreads at rates up to 18 (Darby and Williams, 1991) Silicic calderas and geothermal systems in Taupo Volcanic in active rifting and subsidence. Since c. 1.6 Ma, the Zone (TVZ) of New Zealand are spatially related. Eight calderas, central TVZ has been the most frequently active and productive active since 1.6 Ma, occupy 45% of the Boundaries of region of rhyolitic volcanism on earth (Houghton et al., 1994). calderas arc often speculative, but of 20 geothermal systems producing an estimated 10 - 15 of rhyolite, and considercd, 15 occur on or next to a caldera margin where there is subordinate dacite, andesite and basalt. Debate continues whether enhanced deep permeability: the best examples are at Haroharo TVZ is a migrating andesitic arc and zone of asymmetric crustal where systems occur at the intersection of volcanic lineations and spreading (eg. Stem, or an andesite-dacite arc with bimodal caldera embayments, and at Rotorua. Drillhole evidence supports rhyolite-basalt back arc (eg. Cole, 1990). Whichever is the case, a realignment of caldera margin through the Wairakei- it is a matter of observation that most geothermal fields are geothermal field. Four geothermal systems have no known contained within the area of rhyolite volcanism. -
Large-Scale Mass-Wasting Processes Following The
EGU2020-11852 https://doi.org/10.5194/egusphere-egu2020-11852 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Large-scale mass-wasting processes following the 232 CE Hatepe Eruption of Taupo Volcano, New Zealand - Sedimentary features and dispersal of reworked Taupo Ignimbrite in the Ongarue River valley Anke Verena Zernack and Jonathan Noel Procter Volcanic Risk Solutions, Massey University, Palmerston North, New Zealand ([email protected]) The 232 CE Hatepe Eruption of Taupo Volcano, New Zealand (also referred to as Taupo Eruption), was one of the most violent and complex silicic eruptions worldwide in the last 5,000 years. The pyroclastic sequence was subdivided into 7 distinct stratigraphic units that reflect diverse eruption mechanisms with pumice fallout unit 5 (Taupo Plinian) and unit 6 (Taupo Ignimbrite) contributing the largest volumes, an estimated 5.8 km3 and 12.1 km3DRE respectively. The non-welded Taupo Ignimbrite was emplaced by a highly energetic flow over a near-circular area of 20,000 km2 around the vent, reaching distances of 80±10 km. It consists of an irregular basal layer and a thicker pumice-dominated main unit containing varying proportions of pumice clasts, vitric ash and dense components, overlain by a thin co-ignimbrite ash bed. The main ignimbrite unit shows two distinct facies, a landscape-mantling veneer deposit that gradually decreases from 10 m proximal thickness to 15-30 cm distally and a more voluminous, up to 70-m thick valley-ponded ignimbrite that filled depressions and smoothed out the landscape. -
The Taupo Eruption Sequence of AD 232±10 in Aotearoa New
地学雑誌 Journal of Geography(Chigaku Zasshi) 130(1)117141 2021 doi:10.5026/jgeography.130.117 The 100s: Significant Exposures of the World( No. 12) The Taupō Eruption Sequence of AD 232 ± 10 in Aotearoa New Zealand: A Retrospection * * David J. LOWE and Adrian PITTARI [Received 9 June, 2020; Accepted 13 August, 2020] Abstract The Taupō eruption, also known as eruption Y, occurred in late summer to early autumn (typically late March to early April) in AD 232 10 yr at Taupō volcano, an ‘inverse’ caldera volcano underlying Lake Taupō in the central Taupō Volcanic Zone, North Island, Aotearoa New Zealand. The complex rhyolitic eruption, the most powerful eruption globally in the last 5000 years, lasted between several days and several weeks and generated five markedly contrasting pyroclastic fall deposits( units Y1 to Y5) followed by the extremely violent emplacement of a low-aspect-ratio ignimbrite( unit Y6). The fall deposits include three phreatomagmatic units, Y1, Y3, and Y4, the latter two being the products of archetypal phreatoplinian events; and two magmatic units, Y2 and Y5, the latter being the product of an exceptionally powerful plinian (previously described as ‘ultraplinian’) event with an extreme magma discharge rate around 108 to 1010 kg s-1. The pyroclastic fall-generating eruptions were followed by the climactic emplace- ment of the entirely non-welded Taupō ignimbrite( Y6). It was generated by the catastrophic collapse of the 35 to 40-km-high plinian eruption column( Y5) that produced a very-fast-moving (600 to 900 km h-1), hot( up to 500°C) pyroclastic flow( density current) that covered about 20,000 km2 of central North Island over a near-circular area ~160 km in diameter, centred on Lake Taupō, in fewer than about ten to 15 minutes. -
Volcanic Unrest at Taupō Volcano in 2019: Causes, 10.1029/2021GC009803 Mechanisms and Implications Key Points: Finnigan Illsley-Kemp1 , Simon J
RESEARCH ARTICLE Volcanic Unrest at Taupō Volcano in 2019: Causes, 10.1029/2021GC009803 Mechanisms and Implications Key Points: Finnigan Illsley-Kemp1 , Simon J. Barker1 , Colin J. N. Wilson1 , • In 2019 Taupō volcano underwent a Calum J. Chamberlain1 , Sigrún Hreinsdóttir2 , Susan Ellis2 , Ian J. Hamling2 , period of volcanic unrest, indicated 1 1 3 by multiple seismic swarms and Martha K. Savage , Eleanor R. H. Mestel , and Fabian B. Wadsworth ground deformation 1 • Earthquakes define a brittle-ductile School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand, 2 3 transition around an aseismic zone GNS Science, Lower Hutt, New Zealand, Department of Earth Sciences, Durham University, Durham, UK that is coincident with an inflating deformation source • These observations suggest the 3 Abstract Taupō volcano, New Zealand, is a large caldera volcano that has been highly active presence of ≥250 km of magma mush in the mid-crust with through the Holocene. It most recently erupted 1,800 years ago but there have been multiple periods >20%–30% melt fraction of historic volcanic unrest. We use seismological∼ and geodetic analysis to show that in 2019 Taupō underwent a period of unrest characterized by increased seismic activity through multiple swarms and Supporting Information: was accompanied by ground deformation within the caldera. The earthquakes, which include non-double- Supporting Information may be found couple events, serve to outline an aseismic zone beneath the most recent eruptive vents. This aseismic in the online version of this article. zone is coincident with an inflating source, based on forward modeling of ground deformation data. -
POTENTIAL IMPACTS from a SUPERVOLCANO: Taupō Volcanic Centre Rodrigo Calderon Barraza ([email protected])
POTENTIAL IMPACTS FROM A SUPERVOLCANO: Taupō Volcanic Centre Rodrigo Calderon Barraza ([email protected]) Supervisors: Tom Wilson (University of Canterbury) - Graham Leonard (GNS Science) Caldera volcanoes are large, extended, and complex volcanic systems, and their On the other hand, caldera unrest without led any eruption is a more frequent phenomenon, formation is usually related to high explosive eruptions collapsing the roof of magma chambers and multiple episodes were recorded in historical times for both TVC and OVC (Johnston, 2002). (Lockwood, 2017). On a global scale, Taupō Volcanic Zone (TVZ) in Aotearoa - New Zealand Caldera unrest may include earthquakes, ground deformation, thermal and is the most active caldera volcanic system, and it includes two well-established caldera chemical changes, among other processes, in which occurrence can result in hazards volcanoes: Taupō Volcanic Centre (TVC) and Okataina volcanic Centre (OVC). (Newhall & Dzurisin, 1988; Johnston, 2002). Some OVC's relevant episodes are hydrothermal 3 From these calderas, the TVC hosted the last identified supereruption (over 1000 km of eruptions with two fatalities and a guest house destroyed in 1917, and earthquake activity with erupted material) known as Oruanui, which occurs ~25.5 ka ago (Wilson, 2001; Barker, 2020). losses of over USD 29,000 in 1983USD. For TVC, earthquake swarms' episodes were associated Its last explosive event was known as the Taupō event in the 232 CE, with ~45 km3 of total with ground deformation in 1922, and high public anxiety was reported despite minor damage. erupted material. Oruanui and Taupō events were associated with large Pyroclastic Density Similar episodes occurred in 1964-65 but with less interest from media coverage (Johnston, 2002; Currents (PDCs), among other volcanic processes, devastating a vast land portion. -
Brothers Volcano
Volcano Fact Sheet Brothers Volcano Description • This is a submarine (undersea) volcano in the Kermadec Arc, 400km north east of White Island. • Brothers is three times bigger than White Island. • It has an oval shape approx 13 km long and 8 km wide. • It has a 3km wide summit caldera with walls 300-500m high. • The caldera walls are very steep and there is evidence of landslides. • A dome rises 350m from the caldera floor. • The caldera floor is 1850m below sea level. ~1.5km below A computer generated 3D image of sea level Brothers Volcano. Caldera Dome Brothers is a submarine caldera volcano - a volcano that has collapsed into itself, forming a large ring crater. Seafloor Black smoker chimneys form when hydrothermal fluid jets react with cold Magma sea water. Features Type • Brothers Volcano Currently has more • This is an active submarine caldera. hydrothermal activity than any other Cause volcano in the Kermadec Arc. • It was created by subduction of the • The hydrothermal vents (hot springs) on Pacific Plate below the Australian Plate. the caldera wall have formed a large field of ‘black smoker’ chimneys up to 8m high. Eruptive history • This is unknown at present. When hot hydrothermal fluid jets out of Eruptive material a vent, it mixes with cold sea water and • The crater walls reveal layers of dacite a chemical reaction occurs. This causes lava flows. Dacite is between rhyolite and metals in the fluid to precipitate out of andesite in viscosity. the solution. The plumes of black ‘smoke’ created by this reaction settle and form Last eruptive activity deposits of metallic minerals on the crater • Unknown. -
Geodiversity of Geothermal Fields in the Taupo Volcanic Zone
Geodiversity of geothermal fields in the Taupo Volcanic Zone Ashley D. Cody DOC RESEArcH & DEVELOPMENT SERIES 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright October 2007, New Zealand Department of Conservation ISSN 1176–8886 (hardcopy) ISSN 1177–9306 (web PDF) ISBN 978–0–478–14285–3 (hardcopy) ISBN 978–0–478–14286–0 (web PDF) This is a client report commissioned by Tongariro/Taupo and Rotorua Conservancies and funded from the Science Advice Fund. It was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. ContEnts Abstract 5 1. Introduction 6 1.1 Geothermal geodiversity 6 1.2 The range of geothermal features found in the TVZ 8 2. Work requested 9 3. Details of spreadsheet preparation, including description and qualification of terms used 11 3.1 Type and size of feature 12 3.2 Main features and groups of features 12 3.3 Status and quality 12 3.4 Representation 12 3.5 Hydrological and gaseous character 13 3.6 Bulk chemistry 13 3.7 Physical character 13 3.8 Sinter deposition 14 3.9 Landform types 14 3.10 Significance 14 4. -
The Effects and Consequences of Very Large Explosive Volcanic Eruptions
Phil. Trans. R. Soc. A (2006) 364, 2073–2097 doi:10.1098/rsta.2006.1814 Published online 28 June 2006 The effects and consequences of very large explosive volcanic eruptions BY S. SELF* Volcano Dynamics Group, Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450 km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26 000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1 km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. -
Evolution of the Intra-Arc Taupo-Reporoa Basin Within the Taupo Volcanic Zone of New Zealand
Evolution of the intra-arc Taupo-Reporoa Basin within the Taupo Volcanic Zone of New Zealand D.T. Downs1,*, J.V. Rowland1, C.J.N. Wilson2, M.D. Rosenberg3, G.S. Leonard4, and A.T. Calvert5 1School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand 2School of Geography, Environment, and Earth Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand 3GNS Science, Private Bag 2000, Taupo 3352, New Zealand 4GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand 5U.S. Geological Survey, Volcano Science Center, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT 58 ± 26 k.y. of Paeroa Subgroup emplace- of eruptions can provide readily datable and ment, but in two stages. The northern Paeroa identifi able time horizons that allow for high The spatial and temporal distributions block underwent uplift and associated tilting resolution (e.g., 10 to 100 k.y.) interpretation of volcaniclastic deposits in arc-related fi rst, followed by the southern Paeroa block. of a basin’s evolution (e.g., Houghton et al., basins refl ect a complex interplay between Elevations (>500 m above sea level) of lacus- 1995; Smith et al., 2008). However, these same tectonic, volcanic, and magmatic processes trine sediments within the southern Paeroa rates of volcanic production, in combination that is typically diffi cult to unravel. We take block are consistent with elevations of rhyo- with varying vent locations, positions of avail- advantage of comprehensive geothermal drill lite lavas in the Ongaroto Gorge, the outlet to able accommodation space, and extreme post- hole stratigraphic records within the Taupo- the paleolake in which these sediments were eruptive sedimentation rates, generally result in Reporoa Basin (TRB), and integrate them deposited, and indicate that the Paeroa block rapid lateral facies changes and burial of strata, with new 40Ar/39Ar age determinations, exist- has remained relatively stable since develop- greatly complicating the stratigraphic architec- ing age data, and new mapping to develop a ment.